CN101787575A - Preparation method for micro-nano piezoelectric fiber - Google Patents

Preparation method for micro-nano piezoelectric fiber Download PDF

Info

Publication number
CN101787575A
CN101787575A CN 201010122870 CN201010122870A CN101787575A CN 101787575 A CN101787575 A CN 101787575A CN 201010122870 CN201010122870 CN 201010122870 CN 201010122870 A CN201010122870 A CN 201010122870A CN 101787575 A CN101787575 A CN 101787575A
Authority
CN
China
Prior art keywords
micro
nano
substrate
solution
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN 201010122870
Other languages
Chinese (zh)
Other versions
CN101787575B (en
Inventor
刘伟庭
李霏
傅新
P·达里奥
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University ZJU
Original Assignee
Zhejiang University ZJU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University ZJU filed Critical Zhejiang University ZJU
Priority to CN2010101228708A priority Critical patent/CN101787575B/en
Publication of CN101787575A publication Critical patent/CN101787575A/en
Application granted granted Critical
Publication of CN101787575B publication Critical patent/CN101787575B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)

Abstract

The invention discloses a preparation method for a micro-nano piezoelectric fiber. The solution dissolved with piezoelectric material is extruded from a glass capillary micro needle through a micro injection pump; through the solvent evaporation in the moving and stretching processes of a three-dimensional operating platform, the micro-nano piezoelectric fiber is prepared; and the subsequential polarization is carried out on the micro-nano piezoelectric fiber. In the invention, by controlling the temperature and the stretching speed of the solution at the micro needle, and the viscoelasticity and the fluidity of a PVDF solution system, the structure scale of the prepared micro-nano piezoelectric fiber can be adjusted, so as to meet different needs for designs of a sensor. Compared with the traditional preparation method for the micro-nano piezoelectric fiber, the invention has simple procedure and convenient control and can accurately position the preparation position of the piezoelectric fiber.

Description

Preparation method at micro-nano piezoelectric fiber
Technical field
The present invention relates to a kind of micro nano-scale fiber structure preparation method, especially relate to a kind of preparation method based on directed micro-nano piezoelectric fiber.
Background technology
The microcilium receptor is a kind of mechanical stimulus sensory perceptual system that is prevalent in Animal World.The diameter range of these microcilium receptors is from nano-scale to several micron, and length does not wait to 1500 μ m from 20 μ m, thus vibration, power, speed and the acceleration of can perception different CFs.Along with improving constantly of micro-processing technology, the research of the artificial microcilium structure by simulating biological microcilium sensory perceptual system, become a research focus of sensor and little manufacturing field in recent years, all drop into a large amount of research foundations in succession as the U.S. and European Union's framework project and started the breadboard Nanofiber project of U.S.'s Ka Naijimeilong nanometer robot, the Artificial hair receptor project of illinois university nanometer manufacturing laboratory and the Cilia project of European Union etc.
Existing micro-nano fiber production technology mainly comprises traditional etching micro-processing method, phase separation method, and self-assembly method is drawn into Si Fa and method of electrostatic spinning.But its application prospect of their limitations restrict separately in sensor field.Traditional etching micro-processing method is when the unsettled fibre structure of preparation, and technology is too complicated; Be separated and required time of self-organizing method too tediously long; And be drawn into a method is a kind of industrial method that is used for preparing continuously chemical fibre commonly used, but the chemical fibre stock size that it obtained is bigger; Although method of electrostatic spinning can prepare the polymer micro-nano fiber of diameter from several nanometers to several microns, can only obtain arbitrarily crooked, that fiber the is continuous non-woven pad structure of direction usually, and can't prepare fiber mechanism at ad-hoc location.Therefore, be necessary to develop the polymer micro-nano meter level fiber production method that makes new advances, reaching the purpose for preparing micro/nano level functional fiber structure at ad-hoc location, thereby adapt to the demand of sensor field.
Summary of the invention
The object of the present invention is to provide a kind of preparation method, reduce preparation cost and simplify the complicated technology for preparing, reach the requirement for preparing micro/nano level functional fiber structure at ad-hoc location at micro-nano piezoelectric fiber.
The technical scheme that the present invention solves its technical problem employing is:
The present invention utilizes micro-injection pump will be dissolved with the solution of piezoelectric by extruding in the miniature syringe needle of capillary glass tube, by the solvent evaporation in the mobile and drawing process of three-dimensional manipulating platform, preparation micro-nano piezoelectric fiber; Its concrete steps that prepare with follow-up method for polarized treatment that stretch are as follows:
(1) under the normal temperature, Kynoar is dissolved in dimethyl formamide solution, by the mode that stirs it is mixed all, mixing quality compares 15%-30%;
(2) heating plate is fixed on the automatic three-dimensional manipulating platform, substrate is fixed on this heating plate, the miniature syringe needle of capillary glass tube is installed on the manual three-dimensional manipulating platform, and the front end of the miniature syringe needle of this capillary glass tube vertically is right against substrate, and the rear end links to each other with micro-injection pump;
(3) regulate manual Three dimensional steerable platform to adjust the initial position of the miniature syringe needle of capillary glass tube with respect to substrate; The control temperature of heating plate is 60 ℃-75 ℃; And solution is expressed on the substrate from the miniature syringe needle of capillary glass tube by micro-injection pump, thereby moving the automatic Three dimensional steerable platform that is loaded with substrate stretches to the solution of extruding, in drawing process, solvent evaporation in the solution, solution solidifies, thereby form unsettled micro nano-scale fiber, repeat above (2) step and (3) step, in substrate, prepare the micro-nano piezoelectric fiber array with piezoelectric property;
(4) substrate is together placed by two metal polar plates and dielectric material together with the micro-nano piezoelectric fiber array on it formed the fiber polarization device, between two metal polar plates, apply 10kV voltage, to finish the polarization of array of piezoelectric fibres.
Compare with other micro nano-scale fiber technology of preparing, the beneficial effect that the present invention has is:
Utilize the viscoelastic property of polymer solution, it is drawn into silk, avoided the complicated flow process of traditional micro-processing technology; Whole process of preparation weak point consuming time, the efficient height; Only use small amount of polymer solution aspect material, the cost of material is low; Can prepare single micro nano-scale fiber or micro nano-scale fiber array at ad-hoc location, but its array structure free adjustment; Be applicable to the preparation of polymer fiber; Prepared micro nano-scale fiber diameter is generally 370 nanometers to 20 micron, has piezoelectric property; By changing the component in the solvent, this fiber production method also can be used for preparing the functional micro nano-scale fiber with other characteristic.
Description of drawings
Fig. 1 is the schematic diagram of micro-nano piezoelectric fiber stretching preparation experiment platform.
Fig. 2 is micro-nano tensile fiber preparation technology's a schematic diagram.
Fig. 3 is a micro-nano piezoelectric fiber polarization device schematic diagram.
Among the figure: 1, experimental stand, 2, automatic three-dimensional manipulating platform, 3, heating plate, 4, micro-injection pump, 5, the miniature syringe needle of capillary glass tube, 6, substrate, 7, manual three-dimensional manipulating platform, 8, metal electrode, 9, dielectric material, 10, the micro-nano piezoelectric fiber array, (a) manual Three dimensional steerable platform (b) is regulated with the position of the miniature syringe needle of initialization capillary glass tube with respect to substrate in the position of syringe needle and substrate before the stretching, thereby (c) move the automatic three-dimensional manipulating platform that is loaded with substrate the solution of extruding is stretched, (d) evaporation of the solvent in the solution in the drawing process, material solidifies, and (e) stretches and finishes, and syringe needle leaves substrate, the unsettled micro nano-scale fiber structure with piezoelectric property forms
The specific embodiment
The invention will be further described below in conjunction with drawings and Examples.
The present invention utilizes solution that micro-injection pump will be dissolved with piezoelectric by extruding in the miniature syringe needle of capillary glass tube, by the three-dimensional manipulating platform move and drawing process in the solvent evaporation, prepare micro-nano piezoelectric fiber at the substrate ad-hoc location.
As shown in Figure 1, the preparation platform of micro-nano piezoelectric fiber is made up of experimental stand 1, automatic three-dimensional manipulating platform 2, heating plate 3, substrate 6, the miniature syringe needle 5 of capillary glass tube and micro-injection pump 4.Heating plate 3 is fixed on the automatic three-dimensional manipulating platform 2, and substrate 6 is fixed on this heating plate 3, and the substrate material therefor is a polyimides.Miniature syringe needle 5 clampings of capillary glass tube are installed on the manual three-dimensional manipulating platform 7, the front end of this miniature syringe needle vertically is right against substrate 6, the rear end links to each other with micro-injection pump 4, and three-dimensional manipulating platform 2 and manual three-dimensional manipulating platform 7 are installed on the experimental stand 1 automatically.
Solution required in the preparation is mixed with solvent dimethylformamide at normal temperatures mutually by the Kynoar powder, and by the mode that stirs it is mixed all, and mixing quality compares 15%-30%.For reaching mixed uniformly effect, the required incorporation time of variable concentrations solution is as shown in the table:
Figure GSA00000055637100031
Before the preparation micro-nano piezoelectric fiber, at first should be by regulating the position of the miniature syringe needle 5 of manual Three dimensional steerable platform 2 initialization capillary glass tubies with respect to substrate 6; And make the temperature of heating plate that is loaded with substrate be controlled at 60 ℃-75 ℃; The stretching preparation flow of micro-nano piezoelectric fiber as shown in Figure 2, after treating that the needle position setting finishes, lock manual three-dimensional manipulating platform, and solution is expressed on the substrate 6 from the miniature syringe needle 5 of capillary glass tube by micro-injection pump 4, after waiting for a period of time, thereby moving the automatic Three dimensional steerable platform 2 that is loaded with substrate 6 stretches to the solution of extruding, in drawing process, solvent evaporation in the solution, material solidifies, thereby forms the unsettled micro nano-scale fiber with piezoelectric property.Repeat the step of above location-stretching, can in substrate 6, prepare micro-nano piezoelectric fiber array 10.The result is as shown in the table in preparation:
Solution concentration Heating-up temperature Stand-by period Draw speed Micro-injection pump pumps speed The fibre diameter of preparing The fibre length of preparing
??15% ??70 2 minutes 25 mm/second 1 microlitre/hour 375 nanometers 5 microns
??30% ??70℃ 30 seconds 25 mm/second 1 microlitre/hour 20 microns 2 millimeters
As shown in Figure 3, the micro-nano fiber with piezoelectric property by Kynoar and dimethyl formamide solution preparation also need polarize before encapsulation and handle to improve its piezoelectric modulus.With substrate 6 together with the micro-nano piezoelectric fiber array 10 on it together place by two metal polar plates 8 and dielectric material 9 form the fiber polarization device, apply 10kV voltage 8 of two metal polar plates, continue 1 hour, finish the polarization of array of piezoelectric fibres 10.
As Fig. 1, Fig. 2, shown in Figure 3, utilize micro-injection pump will be dissolved with the solution of piezoelectric by extruding in the miniature syringe needle of capillary glass tube, by moving of three-dimensional localization platform a part of solution is drawn into silk, solvent evaporation in becoming the silk process in the solution, material solidifies, thereby form the micro nano-scale fiber structure in the position of needs, after the fibre structure preparation is finished to the fiber processing that polarizes, thereby the unsettled fiber of micro/nano level that obtains having piezoelectric property.Its preparation and method for polarized treatment are divided into four steps:
(1) under the room temperature, the Kynoar powder is dissolved in dimethyl formamide solution, by the mode that stirs it is mixed, the stretching spinnability of solution system can be judged by following formula,
P=h s·μ/σ
Wherein, P is the parameter that is used for describing solution system stretching spinnability, and on behalf of this solution system, little P value be fit to stretch spinning, h more sBe the evaporation rate of solvent, μ is the viscosity of solution system, and σ is the surface tension of solution, and among the present invention, for the rheological properties that makes solution system is suitable for tensile fiber, the mixing quality ratio is controlled at 15%-30%.
(2) stretching of micro-nano piezoelectric fiber prepares platform as shown in Figure 1.Heating plate 3 is fixed on the automatic three-dimensional manipulating platform 2, and substrate 6 is fixed on this heating plate,, the miniature syringe needle 5 of capillary glass tube is installed on the manual three-dimensional manipulating platform 7, the front end of this syringe needle is vertically for substrate, and the rear end links to each other with micro-injection pump 4.Wherein, the miniature syringe needle of capillary glass tube adopts the glass tube stretcher to stretch under the heating and melting state and forms, this syringe needle be installed on the manual three-dimensional manipulating platform so that before stretching the miniature syringe needle of initialization with respect to the position of substrate, the liquid of extruding can be contacted with base material and over time with the base material strong bonded;
(3) the stretching preparation process of micro-nano piezoelectric fiber as shown in Figure 2.At first regulate manual Three dimensional steerable platform 7 to adjust the initial position of the miniature syringe needle 5 of capillary glass tube with respect to substrate 6; Control heating plate 3 temperature are 60 ℃-75 ℃; After treating that the needle position setting finishes, lock manual three-dimensional manipulating platform, and 0.01-0.03ml solution is expressed on the substrate from miniature syringe needle by micro-injection pump, wait for after one minute, the automatic Three dimensional steerable platform that is loaded with substrate moves along draw direction with the speed of 20-30mm/s, thereby the solution of extruding is stretched.In drawing process, the solvent evaporation in the solution, material solidifies, thereby forms the unsettled micro nano-scale fiber with piezoelectric property.
(4) micro-nano piezoelectric fiber still needs follow-up polarization to handle to improve its piezoelectric modulus before application, and its polarization process as shown in Figure 3.Substrate 6 is together placed metal electrode 8 formed high voltage electric fields together with the micro-nano piezoelectric fiber array 10 on it, between two electrodes, apply 12kV voltage to finish the polarization of piezoelectric fabric.Because size is less, for fear of puncture, the film that dielectric material 9 is made is placed between two-plate.

Claims (1)

1. preparation method at micro-nano piezoelectric fiber, it is characterized in that: utilize micro-injection pump will be dissolved with the solution of piezoelectric by extruding in the miniature syringe needle of capillary glass tube, by the solvent evaporation in the mobile and drawing process of three-dimensional manipulating platform, preparation micro-nano piezoelectric fiber; Its concrete steps that prepare with follow-up method for polarized treatment that stretch are as follows:
(1) under the normal temperature, Kynoar is dissolved in dimethyl formamide solution, by the mode that stirs it is mixed all, mixing quality compares 15%-30%;
(2) heating plate (3) is fixed on the automatic three-dimensional manipulating platform (2), substrate (6) is fixed on this heating plate (3), the miniature syringe needle of capillary glass tube (5) is installed on the manual three-dimensional manipulating platform (7), the front end of the miniature syringe needle of this capillary glass tube (5) vertically is right against substrate (6), and the rear end links to each other with micro-injection pump (4);
(3) regulate manual Three dimensional steerable platform (7) to adjust the initial position of the miniature syringe needle of capillary glass tube (5) with respect to substrate (6); Control heating plate (3) temperature is 60 ℃-75 ℃; And from the miniature syringe needle of capillary glass tube (5), be expressed into solution on the substrate (6) by micro-injection pump (4), move be loaded with the automatic Three dimensional steerable platform (2) of substrate (6) thus the solution of extruding is stretched, in drawing process, solvent evaporation in the solution, solution solidifies, thereby form unsettled micro nano-scale fiber, repeat above (2) step and (3) step, in substrate (6), prepare micro-nano piezoelectric fiber array (10) with piezoelectric property;
(4) substrate (6) is together placed by two metal polar plates (8) and dielectric material (9) together with the micro-nano piezoelectric fiber array (10) on it formed the fiber polarization device, between two metal polar plates (8), apply 10kV voltage, to finish the polarization of array of piezoelectric fibres (10).
CN2010101228708A 2010-03-12 2010-03-12 Preparation method for micro-nano piezoelectric fiber Expired - Fee Related CN101787575B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2010101228708A CN101787575B (en) 2010-03-12 2010-03-12 Preparation method for micro-nano piezoelectric fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2010101228708A CN101787575B (en) 2010-03-12 2010-03-12 Preparation method for micro-nano piezoelectric fiber

Publications (2)

Publication Number Publication Date
CN101787575A true CN101787575A (en) 2010-07-28
CN101787575B CN101787575B (en) 2011-05-18

Family

ID=42530948

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2010101228708A Expired - Fee Related CN101787575B (en) 2010-03-12 2010-03-12 Preparation method for micro-nano piezoelectric fiber

Country Status (1)

Country Link
CN (1) CN101787575B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110042481A (en) * 2019-04-26 2019-07-23 西安工程大学 A kind of device and method of continuous production piezoelectric fabric
CN110306248A (en) * 2019-06-14 2019-10-08 西安工程大学 A kind of continuous producing method and device of PVDF piezoelectric fabric

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050224999A1 (en) * 2004-04-08 2005-10-13 Research Triangle Institute Electrospinning in a controlled gaseous environment
CN1858308A (en) * 2006-04-21 2006-11-08 东南大学 Preparing low density porous tin dioxide nano fiber laser target material by electro-static spinning method
CN101220524A (en) * 2007-01-11 2008-07-16 刘冉 Method for producing nano-fibre film with macromolecular solution electrostatic filature and implementing equipment
CN101302682A (en) * 2008-07-03 2008-11-12 吉林邦安宝医用设备有限公司 Production method and apparatus of antibiotic superfine fibre nonwoven cloth with nano-silver being embedded
CN201224821Y (en) * 2007-12-29 2009-04-22 中国科学院长春应用化学研究所 Apparatus for preparing non-woven fabric by fused mass and solution centrifugal spinning

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050224999A1 (en) * 2004-04-08 2005-10-13 Research Triangle Institute Electrospinning in a controlled gaseous environment
CN1858308A (en) * 2006-04-21 2006-11-08 东南大学 Preparing low density porous tin dioxide nano fiber laser target material by electro-static spinning method
CN101220524A (en) * 2007-01-11 2008-07-16 刘冉 Method for producing nano-fibre film with macromolecular solution electrostatic filature and implementing equipment
CN201224821Y (en) * 2007-12-29 2009-04-22 中国科学院长春应用化学研究所 Apparatus for preparing non-woven fabric by fused mass and solution centrifugal spinning
CN101302682A (en) * 2008-07-03 2008-11-12 吉林邦安宝医用设备有限公司 Production method and apparatus of antibiotic superfine fibre nonwoven cloth with nano-silver being embedded

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110042481A (en) * 2019-04-26 2019-07-23 西安工程大学 A kind of device and method of continuous production piezoelectric fabric
CN110306248A (en) * 2019-06-14 2019-10-08 西安工程大学 A kind of continuous producing method and device of PVDF piezoelectric fabric

Also Published As

Publication number Publication date
CN101787575B (en) 2011-05-18

Similar Documents

Publication Publication Date Title
CN101776495B (en) Micro/nano fiber structure-based touch sensor and preparation method thereof
CN105926162B (en) A kind of method that electrostatic spinning prepares porous structure nanofiber
Zhao et al. Preparation and formation mechanism of highly aligned electrospun nanofibers using a modified parallel electrode method
US20120112389A1 (en) Electrospinning membrane machine in warp and weft directions and application process thereof
Zhang et al. Spraying functional fibres by electrospinning
WO2008066538A1 (en) Improved electrospinning control for precision electrospinning of polymer fibers
CN106048749B (en) A kind of linear channel-shaped needle-free electrostatic spinning apparatus and spinning process
CN101787575B (en) Preparation method for micro-nano piezoelectric fiber
US11180868B2 (en) Method for producing elongated structures such as fibers from polymer solutions by straining flow spinning
CN102534836B (en) Method for preparing nano-fibers with special structures by using electrostatic spinning
CN105664730A (en) Composite film capable of adjusting liquid one-way permeation range and preparation method thereof
CN108950703A (en) The device and method of piezopolymer MEMS structure is prepared based on one step chemical industry skill of near field electrostatic spinning
CN105063771B (en) A kind of air-flow air bubble spinning device
Roman et al. Maximizing spontaneous jet density and nanofiber quality in unconfined electrospinning: The role of interjet interactions
Vats et al. Stable Electrospinning of Core-Functionalized Coaxial Fibers Enabled by the Minimum-Energy Interface Given by Partial Core–Sheath Miscibility
CN101724917B (en) Method for preparing polyvinyl alcohol electrostatic spinning solution
CN103966676B (en) Nano thin-film device for spinning
Palit et al. Formation of core-sheath polymer fibers by free surface spinning of aqueous two-phase systems
Yang et al. Control of the morphology of micro/nanostructures of polycarbonate via electrospinning
CN104085852B (en) A kind of many rings micro-nano fiber resonator preparation facilities and preparation method thereof
CN101423984A (en) Ice surface collection method of polymer fiber electrostatic imitated silk and apparatus thereof
CN108642574B (en) Device and method for preparing submicron fiber membrane with batch composite three-dimensional structure
Li et al. Dry-jet wet spinning and encapsulating for preparing multifunctional fibers based on anti-Rayleigh-Plateau-Instability solution
CN110219068A (en) A kind of composite fibre thermoelectric material and preparation method thereof
CN211814725U (en) MTES/graphene composite fiber membrane preparation facilities

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20110518

Termination date: 20150312

EXPY Termination of patent right or utility model