CN101787518A - Multi-ion-beam sputter-deposition technology for doping with diamond-like carbon (DLC) coating - Google Patents
Multi-ion-beam sputter-deposition technology for doping with diamond-like carbon (DLC) coating Download PDFInfo
- Publication number
- CN101787518A CN101787518A CN 201010132905 CN201010132905A CN101787518A CN 101787518 A CN101787518 A CN 101787518A CN 201010132905 CN201010132905 CN 201010132905 CN 201010132905 A CN201010132905 A CN 201010132905A CN 101787518 A CN101787518 A CN 101787518A
- Authority
- CN
- China
- Prior art keywords
- ion source
- ion
- sputtering
- ion beam
- deposition
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000576 coating method Methods 0.000 title claims abstract description 37
- 239000011248 coating agent Substances 0.000 title claims abstract description 30
- 238000001659 ion-beam spectroscopy Methods 0.000 title claims abstract description 24
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 title claims abstract description 20
- 229910052799 carbon Inorganic materials 0.000 title claims abstract description 12
- 238000005516 engineering process Methods 0.000 title claims description 16
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 claims abstract description 70
- 238000000151 deposition Methods 0.000 claims abstract description 49
- 230000008021 deposition Effects 0.000 claims abstract description 42
- 229910052786 argon Inorganic materials 0.000 claims abstract description 35
- 238000004544 sputter deposition Methods 0.000 claims abstract description 31
- 239000007789 gas Substances 0.000 claims abstract description 29
- 238000010884 ion-beam technique Methods 0.000 claims abstract description 29
- 230000007704 transition Effects 0.000 claims abstract description 18
- 229910052751 metal Inorganic materials 0.000 claims abstract description 17
- 239000002184 metal Substances 0.000 claims abstract description 17
- 238000007735 ion beam assisted deposition Methods 0.000 claims abstract description 14
- 238000000034 method Methods 0.000 claims abstract description 13
- 229910002804 graphite Inorganic materials 0.000 claims abstract description 8
- 239000010439 graphite Substances 0.000 claims abstract description 8
- 238000004140 cleaning Methods 0.000 claims abstract description 7
- 238000011109 contamination Methods 0.000 claims abstract description 6
- 238000004506 ultrasonic cleaning Methods 0.000 claims abstract description 6
- 239000002923 metal particle Substances 0.000 claims abstract description 5
- 239000002245 particle Substances 0.000 claims abstract description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 23
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims description 16
- 229910052757 nitrogen Inorganic materials 0.000 claims description 11
- 229910052804 chromium Inorganic materials 0.000 claims description 7
- 229910052719 titanium Inorganic materials 0.000 claims description 7
- 238000005530 etching Methods 0.000 claims description 6
- 229910052721 tungsten Inorganic materials 0.000 claims description 5
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 claims description 4
- 229910000077 silane Inorganic materials 0.000 claims description 4
- 239000000758 substrate Substances 0.000 claims description 4
- TXEYQDLBPFQVAA-UHFFFAOYSA-N tetrafluoromethane Chemical compound FC(F)(F)F TXEYQDLBPFQVAA-UHFFFAOYSA-N 0.000 claims description 3
- 229910052726 zirconium Inorganic materials 0.000 claims description 3
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 2
- 239000000956 alloy Substances 0.000 claims description 2
- 229910045601 alloy Inorganic materials 0.000 claims description 2
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 claims description 2
- QGJOPFRUJISHPQ-NJFSPNSNSA-N carbon disulfide-14c Chemical compound S=[14C]=S QGJOPFRUJISHPQ-NJFSPNSNSA-N 0.000 claims description 2
- 125000002534 ethynyl group Chemical group [H]C#C* 0.000 claims description 2
- 239000001257 hydrogen Substances 0.000 claims description 2
- 229910052739 hydrogen Inorganic materials 0.000 claims description 2
- 229910052758 niobium Inorganic materials 0.000 claims description 2
- 239000000203 mixture Substances 0.000 claims 3
- RAHZWNYVWXNFOC-UHFFFAOYSA-N Sulphur dioxide Chemical compound O=S=O RAHZWNYVWXNFOC-UHFFFAOYSA-N 0.000 claims 2
- 229910001873 dinitrogen Inorganic materials 0.000 claims 1
- 150000002431 hydrogen Chemical class 0.000 claims 1
- 239000013077 target material Substances 0.000 claims 1
- 150000002500 ions Chemical class 0.000 abstract description 88
- 230000002194 synthesizing effect Effects 0.000 abstract description 2
- 238000002360 preparation method Methods 0.000 description 12
- 239000011651 chromium Substances 0.000 description 9
- 239000010936 titanium Substances 0.000 description 8
- QGJOPFRUJISHPQ-UHFFFAOYSA-N Carbon disulfide Chemical compound S=C=S QGJOPFRUJISHPQ-UHFFFAOYSA-N 0.000 description 3
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical group [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 3
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 3
- 238000005477 sputtering target Methods 0.000 description 3
- 230000000295 complement effect Effects 0.000 description 2
- 229910052731 fluorine Inorganic materials 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 2
- 239000010937 tungsten Substances 0.000 description 2
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical compound S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 description 1
- 229910003481 amorphous carbon Inorganic materials 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 229910000037 hydrogen sulfide Inorganic materials 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Landscapes
- Physical Vapour Deposition (AREA)
Abstract
一种制备掺杂类金刚石(DLC)涂层的多离子束溅射沉积方法,特征是首先利用超声波清洗去除工件表面污染层,利用离子源产生的氩离子束对工件表面进行离子束轰击清洗,获得原子级的清洁表面;然后利用离子束辅助溅射沉积方法制备梯度过渡层;最后在梯度过渡层上利用多离子束溅射+低能离子束辅助沉积合成多元掺杂DLC涂层。利用多离子束溅射+低能离子束辅助沉积合成多元掺杂DLC涂层的过程中,在溅射离子源轰击石墨靶和金属靶产生的碳粒子和金属粒子沉积到工件表面的同时,辅助沉积离子源产生的气体离子持续轰击生长的膜层表面,调控膜层微观结构和实现多元素掺杂。A multi-ion beam sputtering deposition method for preparing a doped diamond-like carbon (DLC) coating, characterized in that firstly, ultrasonic cleaning is used to remove the contamination layer on the workpiece surface, and an argon ion beam generated by an ion source is used to perform ion beam bombardment cleaning on the workpiece surface, A clean surface at the atomic level is obtained; then the gradient transition layer is prepared by ion beam assisted sputtering deposition; finally, multi-element doped DLC coating is synthesized on the gradient transition layer by multi-ion beam sputtering + low energy ion beam assisted deposition. In the process of synthesizing multi-component doped DLC coatings by using multi-ion beam sputtering + low-energy ion beam-assisted deposition, while the carbon particles and metal particles produced by the sputtering ion source bombard graphite targets and metal targets are deposited on the surface of the workpiece, the assisted deposition The gas ions generated by the ion source continuously bombard the surface of the growing film to regulate the microstructure of the film and achieve multi-element doping.
Description
所属技术领域:Technical field:
本发明专利涉及一种制备掺杂类金刚石(DLC)涂层的多离子束溅射沉积技术,属于高性能DLC涂层材料的复合制备技术。The patent of the invention relates to a multi-ion beam sputtering deposition technology for preparing doped diamond-like carbon (DLC) coating, which belongs to the composite preparation technology of high-performance DLC coating materials.
背景技术:Background technique:
类金刚石涂层具有高硬度、高弹性模量、优异的摩擦磨损性能、化学稳定性及生物相容性,具有非常广泛的应用前景。但内应力大、膜/基结合力差、热稳定性差、脆性大等限制了DLC涂层在苛刻服役条件下的应用。Diamond-like carbon coatings have high hardness, high elastic modulus, excellent friction and wear properties, chemical stability and biocompatibility, and have very broad application prospects. However, large internal stress, poor film/substrate bonding force, poor thermal stability, and high brittleness limit the application of DLC coatings in harsh service conditions.
采用过渡层可克服膜/基界面处结构、性能差异大的问题,缓解DLC膜的内应力和提高DLC涂层的膜/基结合力。通过在DLC涂层中掺杂W、Ti、Cr、Zr、Cu、Si、F等元素,形成以非晶碳膜为基体的多元复相结构,可显著改善DLC膜的综合性能;但掺杂单一元素也存在一些问题,如掺杂钨会增大DLC涂层的摩擦系数,掺杂钛导致DLC涂层脆性增大,掺杂F导致DLC涂层的热稳定性变差;为了进一步改善DLC涂层的性能,需要通过DLC涂层的多种元素掺杂实现不同掺杂元素的优势互补,但目前还没有开发出适合工业化批量生产的DLC涂层多元掺杂技术。The use of the transition layer can overcome the problem of large differences in structure and performance at the film/substrate interface, relieve the internal stress of the DLC film and improve the film/substrate bonding force of the DLC coating. By doping W, Ti, Cr, Zr, Cu, Si, F and other elements in the DLC coating to form a multi-component multi-phase structure based on the amorphous carbon film, the comprehensive performance of the DLC film can be significantly improved; but doping There are also some problems with a single element, such as doping tungsten will increase the friction coefficient of the DLC coating, doping titanium will cause the brittleness of the DLC coating to increase, and doping F will cause the thermal stability of the DLC coating to deteriorate; in order to further improve the DLC coating The performance of the coating needs to achieve the complementary advantages of different doping elements through the doping of multiple elements of the DLC coating, but a multi-component doping technology for DLC coatings suitable for industrial mass production has not yet been developed.
多离子束溅射沉积技术的工艺参数可以严格控制,制备的DLC膜力学性能优异,是一种合成高性能DLC涂层的理想方法,但目前还没有利用该方法合成多元掺杂DLC涂层的文献报道。The process parameters of multi-ion beam sputtering deposition technology can be strictly controlled, and the prepared DLC film has excellent mechanical properties. It is an ideal method for synthesizing high-performance DLC coatings. Literature reports.
开发新型的多元掺杂DLC涂层及其过渡层的多离子束溅射沉积技术,制备出具有优化梯度分布的过渡层的高性能多元掺杂DLC涂层对DLC涂层在苛刻服役条件下的应用具有重要意义。Develop a new type of multiple ion beam sputtering deposition technology for multi-component doped DLC coating and its transition layer, and prepare a high-performance multi-component doped DLC coating with an optimized gradient distribution transition layer. application is important.
发明内容:Invention content:
为了克服目前DLC涂层制备技术和掺杂方案存在的不足,本发明专利提出了一种新型的DLC涂层多离子束溅射沉积技术,其特征在于:所述方法将离子束溅射沉积、离子束辅助沉积、离子束刻蚀清洗结合起来,制备多元掺杂DLC涂层,该方法依次包括以下步骤:In order to overcome the deficiencies in the current DLC coating preparation technology and doping scheme, the patent of the present invention proposes a new DLC coating multi-ion beam sputtering deposition technology, which is characterized in that: the method combines ion beam sputtering deposition, Combining ion beam assisted deposition and ion beam etching cleaning to prepare a multi-component doped DLC coating, the method includes the following steps in sequence:
(1)首先利用超声波清洗技术去除工件表面污染层;(1) First, use ultrasonic cleaning technology to remove the contamination layer on the surface of the workpiece;
(2)利用离子源产生的氩离子束对工件表面进行离子束刻蚀清洗,获得原子级的清洁表面;(2) Use the argon ion beam generated by the ion source to perform ion beam etching and cleaning on the surface of the workpiece to obtain an atomic-level clean surface;
(3)利用离子束辅助沉积方法制备梯度过渡层;(3) Utilize the ion beam assisted deposition method to prepare the gradient transition layer;
(4)利用多离子束溅射+低能离子束辅助沉积方法制备多元掺杂DLC膜。(4) Multi-component doped DLC films were prepared by multi-ion beam sputtering and low-energy ion beam-assisted deposition.
在上述制备方法中,步骤(2)的离子源可采用考夫曼离子源、射频感应耦合离子源、电子回旋共振离子源中的任何一种离子源。In the above preparation method, the ion source in step (2) can be any one of Kaufmann ion source, radio frequency inductively coupled ion source, and electron cyclotron resonance ion source.
在上述制备方法中,步骤(2)向离子源中通入氩气。In the above preparation method, step (2) injects argon gas into the ion source.
在上述制备方法中,步骤(3)在溅射离子源从金属靶材上溅射的金属粒子沉积在工件表面的同时,利用辅助沉积离子源发射的气体离子束持续轰击沉积膜层表面,形成梯度过渡层。In the above preparation method, in step (3), while the metal particles sputtered by the sputtering ion source from the metal target are deposited on the surface of the workpiece, the gas ion beam emitted by the auxiliary deposition ion source is used to continuously bombard the surface of the deposited film layer, forming Gradient transition layer.
在上述制备方法中,步骤(3)的溅射离子源采用考夫曼离子源;金属靶材可以为Ti、Cr、Zr、W、Nb中的任何一种金属;溅射离子源发射的离子束能量为300-4000eV,束流为10-200mA。In the above preparation method, the sputtering ion source of step (3) adopts a Kaufman ion source; the metal target can be any metal in Ti, Cr, Zr, W, Nb; the ion emitted by the sputtering ion source The beam energy is 300-4000eV, and the beam current is 10-200mA.
在上述制备方法中,步骤(3)的辅助沉积离子源可以采用考夫曼离子源、射频感应耦合离子源、电子回旋共振离子源中的任何一种离子源;先后向溅射离子源中通入氩气、氩气/氮气混合气、氩气/氮气/含碳气体混合气、氩气/含碳气体混合气;辅助沉积离子源发射的离子束能量为50-1000eV,束流为10-200mA。In the above-mentioned preparation method, the auxiliary deposition ion source of step (3) can adopt any ion source in Kaufman ion source, radio frequency induction coupling ion source, electron cyclotron resonance ion source; Enter argon, argon/nitrogen mixed gas, argon/nitrogen/carbon-containing gas mixed gas, argon/carbon-containing gas mixed gas; the ion beam energy emitted by the auxiliary deposition ion source is 50-1000eV, and the beam current is 10- 200mA.
在上述制备方法中,步骤(3)制备的梯度过渡层包括Ti/TiN/TiCN/TiC、Cr/CrN/CrCN/CrC、Zr/ZrN/ZrCN/ZrC、W/WC、Nb/NbN/NbC等梯度过渡层。In the above preparation method, the gradient transition layer prepared in step (3) includes Ti/TiN/TiCN/TiC, Cr/CrN/CrCN/CrC, Zr/ZrN/ZrCN/ZrC, W/WC, Nb/NbN/NbC, etc. Gradient transition layer.
在上述制备方法中,步骤(4)利用一个或几个溅射离子源从石墨靶上溅射碳粒子,利用一个或几个溅射离子源从金属靶材上溅射金属粒子,同时利用辅助沉积离子源发射的气体离子持续轰击沉积膜层表面,调控掺杂DLC涂层微观结构和实现多元掺杂。In the above preparation method, step (4) utilizes one or several sputtering ion sources to sputter carbon particles from the graphite target, utilizes one or several sputtering ion sources to sputter metal particles from the metal target, and simultaneously utilizes auxiliary The gas ions emitted by the deposition ion source continuously bombard the surface of the deposited film layer to regulate the microstructure of the doped DLC coating and realize multiple doping.
在上述制备方法中,步骤(4)溅射石墨靶的溅射离子源采用考夫曼离子源,溅射离子源发射的离子束能量为300-4000eV,束流为10-200mA。In the above preparation method, the sputtering ion source of step (4) sputtering the graphite target adopts a Kaufmann ion source, and the energy of the ion beam emitted by the sputtering ion source is 300-4000eV, and the beam current is 10-200mA.
在上述制备方法中,步骤(4)溅射金属靶的溅射离子源采用考夫曼离子源,金属靶材可以为金属靶、合金靶或金属镶嵌靶,溅射离子源发射的离子束能量为300-4000eV,束流为10-200mA。In the above preparation method, the sputtering ion source of the step (4) sputtering the metal target adopts a Kaufman ion source, and the metal target can be a metal target, an alloy target or a metal mosaic target, and the ion beam energy emitted by the sputtering ion source 300-4000eV, beam current 10-200mA.
在上述制备方法中,步骤(4)辅助沉积离子源可以采用考夫曼离子源、射频感应耦合离子源、电子回旋共振离子源中的任何一种离子源,除了向辅助沉积离子源中通入氩气或氩气/氢气混合气外,还至少向辅助沉积离子源中通入甲烷、乙炔、氮气、硫化氢、二硫化碳、硅烷、四氟化碳等气体中的一种气体,辅助沉积离子源的离子束能量为50-500eV,束流为10-200mA。In the above preparation method, step (4) auxiliary deposition ion source can adopt any ion source in Kaufman ion source, radio frequency inductively coupled ion source, electron cyclotron resonance ion source, in addition to passing into the auxiliary deposition ion source In addition to argon or argon/hydrogen mixed gas, at least one of methane, acetylene, nitrogen, hydrogen sulfide, carbon disulfide, silane, carbon tetrafluoride and other gases is passed into the auxiliary deposition ion source to assist the deposition ion source The energy of the ion beam is 50-500eV, and the beam current is 10-200mA.
本发明专利的优点是充分发挥离子束刻蚀清洗、离子束溅射沉积、离子束辅助沉积的优点,利用离子束刻蚀清洗获得原子级的清洁表面,利用离子束辅助沉积获得高膜基结合力的梯度过渡层,利用离子束溅射沉积+离子束辅助沉积在梯度过渡层上合成多元掺杂的DLC涂层,实现多种掺杂元素的优势互补,显著改善DLC涂层的综合性能。The advantage of the patent of the present invention is to give full play to the advantages of ion beam etching cleaning, ion beam sputtering deposition, and ion beam assisted deposition, use ion beam etching cleaning to obtain an atomic-level clean surface, and use ion beam assisted deposition to obtain high film-base bonding. Gradient transition layer of force, using ion beam sputtering deposition + ion beam assisted deposition to synthesize multi-component doped DLC coating on the gradient transition layer, realize the complementary advantages of various doping elements, and significantly improve the comprehensive performance of DLC coating.
实施方式:Implementation method:
下面结合具体实施例对本发明专利作进一步详细描述,但不作为对本发明专利的限定。The patent of the present invention will be described in further detail below in conjunction with specific examples, but not as a limitation to the patent of the present invention.
实施例1Example 1
首先利用超声波清洗技术去除工件表面污染层;然后利用考夫曼离子源产生的氩离子束轰击清洗工件表面,获得原子级的清洁表面。再利用离子束辅助溅射沉积技术制备Ti/TiN/TiCN/TiC梯度过渡层;溅射离子源采用考夫曼离子源,离子能量为2000eV,束流为100mA,溅射靶材为钛;辅助沉积离子源采用考夫曼离子源,先后向辅助沉积离子源中通入氩气、氩气/氮气混合气、氩气/氮气/甲烷混合气、氩气/甲烷混合气,离子能量为100-300eV,束流为100mA。最后利用多离子束溅射+低能离子束辅助沉积方法制备Ti、Si共掺杂的DLC涂层;用一个考夫曼离子源溅射石墨靶,离子能量为1500eV,束流为100-150mA;用一个考夫曼离子源溅射钛靶,离子能量为800eV,束流为5-20mA;辅助沉积离子源采用考夫曼离子源,向辅助沉积离子源中通入氩气和硅烷,离子能量为100eV,束流为50-150mA。First, ultrasonic cleaning technology is used to remove the contamination layer on the surface of the workpiece; then, the surface of the workpiece is bombarded and cleaned by the argon ion beam generated by the Kaufman ion source to obtain an atomically clean surface. Then use ion beam assisted sputtering deposition technology to prepare Ti/TiN/TiCN/TiC gradient transition layer; the sputtering ion source adopts Kaufman ion source, the ion energy is 2000eV, the beam current is 100mA, and the sputtering target is titanium; The deposition ion source adopts the Kaufmann ion source, and argon, argon/nitrogen mixed gas, argon/nitrogen/methane mixed gas, argon/methane mixed gas are introduced into the auxiliary deposition ion source successively, and the ion energy is 100- 300eV, the beam current is 100mA. Finally, a Ti and Si co-doped DLC coating was prepared by multi-ion beam sputtering + low-energy ion beam-assisted deposition; a Kaufman ion source was used to sputter a graphite target with an ion energy of 1500eV and a beam current of 100-150mA; A Kaufmann ion source is used to sputter the titanium target, the ion energy is 800eV, and the beam current is 5-20mA; the auxiliary deposition ion source adopts the Kaufmann ion source, and argon and silane are passed into the auxiliary deposition ion source, and the ion energy It is 100eV, and the beam current is 50-150mA.
实施例2Example 2
首先利用超声波清洗技术去除工件表面污染层;然后利用考夫曼离子源产生的氩离子束轰击清洗工件表面,获得原子级的清洁表面。再利用离子束辅助溅射沉积技术制备Cr/CrN/CrCN/CrC梯度过渡层;溅射离子源采用考夫曼离子源,离子能量为2000eV,束流为100mA,溅射靶材为铬;辅助沉积离子源采用考夫曼离子源,先后向辅助沉积离子源中通入氩气、氩气/氮气混合气、氩气/氮气/甲烷混合气、氩气/甲烷混合气,离子能量为100-300eV,束流为100mA。最后利用多离子束溅射+低能离子束辅助沉积方法制备Cr、F共掺杂的DLC涂层;用一个考夫曼离子源溅射石墨靶,离子能量为1500eV,束流为100-150mA;用一个考夫曼离子源溅射铬靶,离子能量为800eV,束流为5-20mA;辅助沉积离子源采用考夫曼离子源,向辅助沉积离子源中通入氩气和四氟化碳,离子能量为100eV,束流为50-150mA。First, ultrasonic cleaning technology is used to remove the contamination layer on the surface of the workpiece; then, the surface of the workpiece is bombarded and cleaned by the argon ion beam generated by the Kaufman ion source to obtain an atomically clean surface. Then use ion beam assisted sputtering deposition technology to prepare Cr/CrN/CrCN/CrC gradient transition layer; the sputtering ion source adopts Kaufman ion source, the ion energy is 2000eV, the beam current is 100mA, and the sputtering target is chromium; The deposition ion source adopts the Kaufmann ion source, and argon, argon/nitrogen mixed gas, argon/nitrogen/methane mixed gas, argon/methane mixed gas are introduced into the auxiliary deposition ion source successively, and the ion energy is 100- 300eV, the beam current is 100mA. Finally, a Cr and F co-doped DLC coating was prepared by multi-ion beam sputtering + low-energy ion beam-assisted deposition; a Kaufman ion source was used to sputter a graphite target with an ion energy of 1500eV and a beam current of 100-150mA; A Kaufmann ion source is used to sputter the chromium target, the ion energy is 800eV, and the beam current is 5-20mA; the auxiliary deposition ion source adopts the Kaufmann ion source, and argon and carbon tetrafluoride are passed into the auxiliary deposition ion source , the ion energy is 100eV, and the beam current is 50-150mA.
实施例3Example 3
首先利用超声波清洗技术去除工件表面污染层;然后利用考夫曼离子源产生的氩离子束轰击清洗工件表面,获得原子级的清洁表面。再利用离子束辅助溅射沉积技术制备Cr/CrN/CrCN/CrC梯度过渡层;溅射离子源采用考夫曼离子源,离子能量为2000eV,束流为100mA,溅射靶材为铬;辅助沉积离子源采用考夫曼离子源,先后向辅助沉积离子源中通入氩气、氩气/氮气混合气、氩气/氮气/甲烷混合气、氩气/甲烷混合气,离子能量为100-300eV,束流为100mA。最后利用多离子束溅射+低能离子束辅助沉积方法制备WS2、Si共掺杂DLC膜;用一个考夫曼离子源溅射石墨靶,离子能量为1500eV,束流为100-150mA;用一个考夫曼离子源溅射钨靶,离子能量为600eV,束流为5-20mA;辅助沉积离子源采用考夫曼离子源,向辅助沉积离子源中通入氩气、硅烷和二硫化碳,离子能量为100eV,束流为50-150mA。First, ultrasonic cleaning technology is used to remove the contamination layer on the surface of the workpiece; then, the surface of the workpiece is bombarded and cleaned by the argon ion beam generated by the Kaufman ion source to obtain an atomically clean surface. Then use ion beam assisted sputtering deposition technology to prepare Cr/CrN/CrCN/CrC gradient transition layer; the sputtering ion source adopts Kaufman ion source, the ion energy is 2000eV, the beam current is 100mA, and the sputtering target is chromium; The deposition ion source adopts the Kaufman ion source, and argon, argon/nitrogen mixed gas, argon/nitrogen/methane mixed gas, and argon/methane mixed gas are fed into the auxiliary deposition ion source successively, and the ion energy is 100- 300eV, the beam current is 100mA. Finally, the WS 2 and Si co-doped DLC film was prepared by multi-ion beam sputtering + low-energy ion beam-assisted deposition method; a Kaufman ion source was used to sputter the graphite target, the ion energy was 1500eV, and the beam current was 100-150mA; A Kaufmann ion source sputters a tungsten target, the ion energy is 600eV, and the beam current is 5-20mA; the auxiliary deposition ion source adopts a Kaufmann ion source, and argon, silane and carbon disulfide are passed into the auxiliary deposition ion source, and the ions The energy is 100eV and the beam current is 50-150mA.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 201010132905 CN101787518A (en) | 2010-03-24 | 2010-03-24 | Multi-ion-beam sputter-deposition technology for doping with diamond-like carbon (DLC) coating |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 201010132905 CN101787518A (en) | 2010-03-24 | 2010-03-24 | Multi-ion-beam sputter-deposition technology for doping with diamond-like carbon (DLC) coating |
Publications (1)
Publication Number | Publication Date |
---|---|
CN101787518A true CN101787518A (en) | 2010-07-28 |
Family
ID=42530893
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN 201010132905 Pending CN101787518A (en) | 2010-03-24 | 2010-03-24 | Multi-ion-beam sputter-deposition technology for doping with diamond-like carbon (DLC) coating |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN101787518A (en) |
Cited By (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102345094A (en) * | 2010-08-04 | 2012-02-08 | 鸿富锦精密工业(深圳)有限公司 | Coating, coated member with coating, and preparation method of coated member |
CN102517543A (en) * | 2011-12-23 | 2012-06-27 | 西北有色金属研究院 | TiAlSiN-DLC composite film and its preparation method |
CN102586735A (en) * | 2012-03-16 | 2012-07-18 | 广州有色金属研究院 | Hydrogen-free silicon incorporated diamond film and preparation method thereof |
CN102703858A (en) * | 2012-06-13 | 2012-10-03 | 中国地质大学(北京) | Metallic DLC (diamond-like carbon) film preparation method |
CN103160779A (en) * | 2011-12-16 | 2013-06-19 | 中国科学院兰州化学物理研究所 | Ultralow-friction silicon-aluminum double-element mixed amorphous carbon film preparing method |
CN103374697A (en) * | 2012-04-20 | 2013-10-30 | 深圳富泰宏精密工业有限公司 | Surface treatment method and product of diamond-like carbon film layer |
CN103882376A (en) * | 2012-12-21 | 2014-06-25 | 中国科学院兰州化学物理研究所 | Preparation method of super-lubricity amorphous carbon film with nano-structure |
CN104294230A (en) * | 2014-10-09 | 2015-01-21 | 中国科学院宁波材料技术与工程研究所 | High-hardness and low-stress multi-element composite diamond-like coating and preparation method thereof |
CN106947940A (en) * | 2017-04-24 | 2017-07-14 | 信利光电股份有限公司 | A kind of DLC film and preparation method thereof |
CN107419228A (en) * | 2017-06-19 | 2017-12-01 | 信利光电股份有限公司 | A kind of Titanium doped diamond film and preparation method thereof |
CN107686972A (en) * | 2017-09-07 | 2018-02-13 | 蚌埠玻璃工业设计研究院 | A kind of preparation method of co-doped diamond film |
CN108265292A (en) * | 2018-03-01 | 2018-07-10 | 中国农业机械化科学研究院 | A kind of titanium alloy surface composite coating and its preparation method and application |
CN108707865A (en) * | 2018-06-04 | 2018-10-26 | 中建材蚌埠玻璃工业设计研究院有限公司 | A kind of preparation method of witch culture DLC film |
CN109487226A (en) * | 2018-12-13 | 2019-03-19 | 北京金轮坤天特种机械有限公司 | A kind of titanium alloy protective coating and preparation method thereof |
CN110735120A (en) * | 2019-10-31 | 2020-01-31 | 江苏科技大学 | NbN/MoSN/MoS2Hard self-lubricating nano-structure composite film and preparation method thereof |
CN111676450A (en) * | 2020-06-24 | 2020-09-18 | 吉林大学 | Hexagonal boron nitride thick film based on ion beam sputtering deposition and preparation method and application |
CN113913735A (en) * | 2021-09-07 | 2022-01-11 | 广州今泰科技股份有限公司 | Vanadium/yttrium co-doped DLC coating and preparation method thereof |
CN114686829A (en) * | 2020-12-29 | 2022-07-01 | 苏州吉恒纳米科技有限公司 | Wear-resistant, fatigue-resistant and repeated impact-resistant coating and production process thereof |
CN115142034A (en) * | 2022-07-04 | 2022-10-04 | 超微中程纳米科技(苏州)有限公司 | High-speed diamond-like coating preparation method |
CN116219391A (en) * | 2023-05-09 | 2023-06-06 | 艾瑞森表面技术(苏州)股份有限公司 | AlN doped diamond-like coating process |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101285167A (en) * | 2008-06-03 | 2008-10-15 | 西安工业大学 | Ion beam emission source capable of outputting single ion energy |
US20090124159A1 (en) * | 2007-03-02 | 2009-05-14 | Jean Pierre Briand | Method of fabrication of cold cathodes on thin diamondlike carbon films irradiated with multicharged ions and field emissive corresponding surfaces |
CN101501813A (en) * | 2006-08-03 | 2009-08-05 | 科里普瑟维斯赛尔公司 | Process and apparatus for the modification of surfaces |
-
2010
- 2010-03-24 CN CN 201010132905 patent/CN101787518A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101501813A (en) * | 2006-08-03 | 2009-08-05 | 科里普瑟维斯赛尔公司 | Process and apparatus for the modification of surfaces |
US20090124159A1 (en) * | 2007-03-02 | 2009-05-14 | Jean Pierre Briand | Method of fabrication of cold cathodes on thin diamondlike carbon films irradiated with multicharged ions and field emissive corresponding surfaces |
CN101285167A (en) * | 2008-06-03 | 2008-10-15 | 西安工业大学 | Ion beam emission source capable of outputting single ion energy |
Non-Patent Citations (3)
Title |
---|
《TFC 09 全国薄膜技术学术研讨会论文摘要集》 20091231 姜金龙等 Ti/Si共掺杂含氢类金刚石薄膜的摩擦学性能研究 110 1-7 , 2 * |
《功能材料》 20090228 聂朝胤,安藤彰朗,卢春灿,廖兵 Ti掺杂及Ti应力缓和层对类金刚石薄膜附着力的影响 226-229 1-7 第40卷, 第2期 2 * |
《摩擦学学报》 19950430 朱宏等 单源低能离子束辅助沉积类金刚石薄膜摩擦性能的研究 27-30 1-7 第15卷, 第2期 2 * |
Cited By (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102345094A (en) * | 2010-08-04 | 2012-02-08 | 鸿富锦精密工业(深圳)有限公司 | Coating, coated member with coating, and preparation method of coated member |
CN103160779B (en) * | 2011-12-16 | 2015-07-08 | 中国科学院兰州化学物理研究所 | Ultralow-friction silicon-aluminum double-element mixed amorphous carbon film preparing method |
CN103160779A (en) * | 2011-12-16 | 2013-06-19 | 中国科学院兰州化学物理研究所 | Ultralow-friction silicon-aluminum double-element mixed amorphous carbon film preparing method |
CN102517543A (en) * | 2011-12-23 | 2012-06-27 | 西北有色金属研究院 | TiAlSiN-DLC composite film and its preparation method |
CN102586735A (en) * | 2012-03-16 | 2012-07-18 | 广州有色金属研究院 | Hydrogen-free silicon incorporated diamond film and preparation method thereof |
CN103374697A (en) * | 2012-04-20 | 2013-10-30 | 深圳富泰宏精密工业有限公司 | Surface treatment method and product of diamond-like carbon film layer |
CN102703858B (en) * | 2012-06-13 | 2013-10-23 | 中国地质大学(北京) | A kind of preparation method of metal-containing diamond-like carbon film |
CN102703858A (en) * | 2012-06-13 | 2012-10-03 | 中国地质大学(北京) | Metallic DLC (diamond-like carbon) film preparation method |
CN103882376A (en) * | 2012-12-21 | 2014-06-25 | 中国科学院兰州化学物理研究所 | Preparation method of super-lubricity amorphous carbon film with nano-structure |
CN104294230A (en) * | 2014-10-09 | 2015-01-21 | 中国科学院宁波材料技术与工程研究所 | High-hardness and low-stress multi-element composite diamond-like coating and preparation method thereof |
CN106947940A (en) * | 2017-04-24 | 2017-07-14 | 信利光电股份有限公司 | A kind of DLC film and preparation method thereof |
CN107419228B (en) * | 2017-06-19 | 2019-11-22 | 信利光电股份有限公司 | A kind of Titanium doped diamond film and preparation method thereof |
CN107419228A (en) * | 2017-06-19 | 2017-12-01 | 信利光电股份有限公司 | A kind of Titanium doped diamond film and preparation method thereof |
CN107686972A (en) * | 2017-09-07 | 2018-02-13 | 蚌埠玻璃工业设计研究院 | A kind of preparation method of co-doped diamond film |
CN108265292A (en) * | 2018-03-01 | 2018-07-10 | 中国农业机械化科学研究院 | A kind of titanium alloy surface composite coating and its preparation method and application |
CN108707865A (en) * | 2018-06-04 | 2018-10-26 | 中建材蚌埠玻璃工业设计研究院有限公司 | A kind of preparation method of witch culture DLC film |
CN109487226A (en) * | 2018-12-13 | 2019-03-19 | 北京金轮坤天特种机械有限公司 | A kind of titanium alloy protective coating and preparation method thereof |
CN109487226B (en) * | 2018-12-13 | 2020-10-30 | 北京金轮坤天特种机械有限公司 | A kind of titanium alloy protective coating and preparation method thereof |
CN110735120A (en) * | 2019-10-31 | 2020-01-31 | 江苏科技大学 | NbN/MoSN/MoS2Hard self-lubricating nano-structure composite film and preparation method thereof |
CN111676450A (en) * | 2020-06-24 | 2020-09-18 | 吉林大学 | Hexagonal boron nitride thick film based on ion beam sputtering deposition and preparation method and application |
CN114686829A (en) * | 2020-12-29 | 2022-07-01 | 苏州吉恒纳米科技有限公司 | Wear-resistant, fatigue-resistant and repeated impact-resistant coating and production process thereof |
CN113913735A (en) * | 2021-09-07 | 2022-01-11 | 广州今泰科技股份有限公司 | Vanadium/yttrium co-doped DLC coating and preparation method thereof |
CN115142034A (en) * | 2022-07-04 | 2022-10-04 | 超微中程纳米科技(苏州)有限公司 | High-speed diamond-like coating preparation method |
CN116219391A (en) * | 2023-05-09 | 2023-06-06 | 艾瑞森表面技术(苏州)股份有限公司 | AlN doped diamond-like coating process |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101787518A (en) | Multi-ion-beam sputter-deposition technology for doping with diamond-like carbon (DLC) coating | |
CN101748381A (en) | Method for preparing high-performance doped diamond-like film | |
CN101787512A (en) | Method for preparing multi-metal element doped diamond film | |
CN107022761A (en) | Composite thick film and its film plating process based on DLC film | |
CN101787520A (en) | Tungsten-titanium co-doped diamond coating material and preparation technique thereof | |
JP3660866B2 (en) | Method and apparatus for forming hard carbon film | |
CN101787521B (en) | A kind of preparation method of metal sulfide diamond-like composite film | |
CN106244986B (en) | Diamond-like carbon film of functionally gradient and preparation method thereof and product | |
CN104746030B (en) | Method for improving bonding strength of hard alloy and diamond coating | |
CN207313693U (en) | Composite thick film based on DLC film | |
CN101319324B (en) | Diamond-like film preparation method | |
CN101818332B (en) | Super-hard self-lubricating diamond/diamond-like composite laminated coating material and preparation method thereof | |
CN101712215B (en) | TiCN series nanometer gradient compound multi-layer coating and method for preparing same | |
CN101701332B (en) | Method for preparing compound diamond-like carbon coating by using medium-frequency magnetic-control glow discharge method | |
CN106119783B (en) | Diamond-like carbon film of functionally gradient and preparation method thereof and product | |
CN102650053A (en) | Manufacturing method for CVD (Chemical Vapor Deposition) diamond/diamond-like composite coating tool with complex shape | |
Zhou et al. | Effect of bias voltage on microstructure and optical properties of Al2O3 thin films prepared by twin targets reactive high power impulse magnetron sputtering | |
CN102453859A (en) | Preparation method of hydrogen-containing diamond-like carbon film material | |
CN104141109B (en) | Method for in-situ synthesis of composite TiC-DLC coating on surface of titanium | |
CN105506566B (en) | A kind of preparation method of elastic hard lubrication nano composite film | |
TW201344762A (en) | Surface treatment method for diamond-like carbon layer and product manufactured by the method | |
CN109402555A (en) | A method of high-quality thin film is prepared with ionized cluster beam cluster combination HIPIMS technology | |
CN105200392A (en) | Method for preparing diamond coating on cemented carbides surface | |
CN105039928A (en) | Preparation method of diamond/silicon carbide three-dimensional composite structure and prepared product | |
CN104233217A (en) | New method for preparing diamond coated cutting tool |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C02 | Deemed withdrawal of patent application after publication (patent law 2001) | ||
WD01 | Invention patent application deemed withdrawn after publication |
Open date: 20100728 |