CN101776516A - 基于位置探测器的共分划面多光谱标靶 - Google Patents

基于位置探测器的共分划面多光谱标靶 Download PDF

Info

Publication number
CN101776516A
CN101776516A CN201010000554A CN201010000554A CN101776516A CN 101776516 A CN101776516 A CN 101776516A CN 201010000554 A CN201010000554 A CN 201010000554A CN 201010000554 A CN201010000554 A CN 201010000554A CN 101776516 A CN101776516 A CN 101776516A
Authority
CN
China
Prior art keywords
target
position sensor
psd
multispectral
sharing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201010000554A
Other languages
English (en)
Other versions
CN101776516B (zh
Inventor
赵维谦
邱丽荣
沙定国
贾馨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Institute of Technology BIT
Original Assignee
Beijing Institute of Technology BIT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Institute of Technology BIT filed Critical Beijing Institute of Technology BIT
Priority to CN2010100005543A priority Critical patent/CN101776516B/zh
Publication of CN101776516A publication Critical patent/CN101776516A/zh
Application granted granted Critical
Publication of CN101776516B publication Critical patent/CN101776516B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

本发明涉及一种基于PSD位置探测的共分划面多光谱标靶,属于光电成像与测试技术领域。本发明的PSD位置探测共分划面多光谱标靶,包括基底、PSD、多杆靶组、多圆孔靶和分划线;其中,PSD制作在基底中心区域,分划线中心的延长线与PSD的中心线重合,多杆靶组由具有不同间距、杆长和杆宽的多杆靶构成,且其任意放置在PSD以外的区域;多圆孔靶放置在PSD以外的区域,关于PSD中心对称;基底是多光谱透射材质,分划线是具有标识特征的任意图形。本发明将可透射多光谱波段的材料应用于分划板基底,大大减少了人工或机械调整控制转换对测量精度的影响,该分划板可实现可见光、红外、激光分划标靶合一的功能,具有无失调、精度高、体积小、重量轻等显著特点。

Description

基于位置探测器的共分划面多光谱标靶
技术领域
本发明涉及的基于位置探测器(PSD)的共分划面多光谱标靶技术,属于光电成像与测试技术领域,可广泛应用于光电成像系统的多光轴一致性、有效作用距离、像倾斜及成像放大倍率等测量与校准中。
技术背景
许多光电观瞄和跟踪系统主要用于全天候侦察、制导、跟踪目标等,通常由可见光观瞄、微光夜视、红外热像、激光测距等多光轴系统组成,各分系统的光轴一致性是其重要的参数。多光轴一致性检校系统是用于检验和校准上述光电观瞄和跟踪系统多光轴一致性的一种精密检校装置,由准直物镜、分划板、光源及信号采集和处理系统等组成。在多光谱的工作条件下,各类光电传感器工作在不同的光谱波段上,检校系统需要定量鉴定多个光轴的偏差,用同一分划板进行多光谱光轴的精密检测具有很高的难度。分划板是该装置的核心部件,其设计、材料选取、照明方法将直接影响多光轴一致性的检测精度和可靠性。
目前国内研究机构对多光谱光轴一致性的测量也提出了一些方法,主要有:中国科学院西安光学精密机械研究所在《室内多波段光轴一致性测试系统的设计》一文中提出的测量方法如图1所示,被测设备放置于平行光管前,其中可见光设备直接瞄准焦面上的十字目标,调整可见光设备使得可见光设备的十字丝中心和焦面的十字目标像重合,以这一点作为基准和红外设备的十字中心像进行对比,即可得到可见与红外设备之间的光轴偏差量;同时,该被测设备发出的激光光斑通过多光谱分光镜成像在CCD电视上。此系统采用直径0.1mm的铁镍铝合金丝作为十字瞄准目标,优点在于采用同一个十字分划丝可以同时满足红外目标和可见光目标的要求,但该方法用于测量激光光轴时,无法避免检测时更换十字分划线而产生的误差。这种方法所采用的分划板不具有一致性,将引起测量系统失调,光路调整较困难,加大了测量的随机误差。
长春光学精密机械学院在《多光谱光学系统光学平行性的调校和检验方法探讨》一文中提出的测量方法如图2所示,为调校红外系统和可见光系统的光轴平行性,采用既能透可见光又透红外光的熔石英玻璃制成的棱镜系统。此系统的优点在于采用同一个十字分划丝能同时测量可见光和近红外的光轴平行性,但熔石英玻璃无法检测远红外光的光轴平行性。该方法没有提出测量激光发射靶光轴的方案,当测量激光、可见光、红外分划标靶等多光轴一致性时,所采用的基准目标十字分划标靶不具有一致性,将给系统引入测量误差,更换十字分划标靶易受温度、气流、振动等环境状态因素的干扰,导致重复性差、稳定性不好、精度低等不足。
中国科学院长春光学精密机械与物理研究所在《强激光与红外光学系统光轴平行性检测方法的探讨》一文中提出的测量方法如图3所示,星点孔及可见光CCD摄像机均放置在光学准直系统的焦面上,测量时照明星点孔,使其成像在可见光系统的视场中心。由激光测距机发出的激光光束经过衰减片汇聚在可见光CCD摄像机上,通过测量激光像点偏离可见光CCD摄像机中心的量,即得到激光测距机与可见光系统的平行性误差。这种方法的优点在于被测可见光系统和红外系统的通光口径是可调整的,减少了由于激光的发散角带来的测量误差。但该方法利用星点孔作为对准目标,降低了测量精确性,无法将激光、可见光、红外分划标靶完全统一,难以保证各标靶间的一致性,因而存在测量校准精度不高、效率低、自动化程度低等不足。
此外,以色列在2008年SPIE中《Electro-optical systems toaccurately align(boresight)laser designator,FLIR and CCD on the groundbefore the mission》一文中提出的测量方法如图4所示,其原理采用热靶技术,即将激光器发射的1.06μm的激光光束转换为3μm-5μm及8μm-12μm红外光线的热斑。测量时,将被测激光光束经过准直系统聚焦在热靶上,使其产生热斑,热斑经准直系统进入被检红外系统,成像在红外系统的像面上。热斑像偏离视场中心的角度即为激光测距机的光轴与红外系统的光轴平行性误差。这种方法的优点在于,简化了仪器结构,使测量装置简单。该校轴靶存在的主要缺陷是:靶面为整块材料,其热扩散后导致光斑增大,当用重复频率脉冲激光打点时,会出现多个光点无法区分的现象,影响校轴的基准计算精度。当测量激光、红外以及可见光系统的光轴时,必须通过人工或机械调整控制转换,增加了系统测量的失调误差。测量过程中所采用的基准十字分划板不具有一致性,无法将激光、可见光、红外分划标靶完全统一,无法实现激光、可见光、红外分划标靶的绝对不失调特性。
以上几种多光谱光轴测量方法均采用激光、可见光、红外光轴的分离检测与校轴,但由于激光、可见光、红外分划标靶不能完全统一,难以保证各标靶间的一致性,因而存在测量校准精度不高、效率低、自动化程度低等不足。
为此,本发明提出一种将激光、可见光、红外分划标靶完全统一的PSD位置探测共分划面多光谱标靶技术,以期实现激光、可见光、红外分划标靶的绝对不失调特性,同时融合了对光电稳瞄系统有效作用距离、像倾斜和成像放大倍率的高精度测量。
PSD位置探测共分划面多光谱标靶的工作原理:在基底上刻蚀分划线作为对准目标,用于测量可见光与红外的光轴一致性。在基底上镀光敏材料形成PSD,用于测量激光发射轴、可见光和红外的光轴一致性。在基底上刻蚀或镀膜形成多杆靶组和多圆孔靶,其中多杆靶组用于测量光学系统有效作用距离,多圆孔靶用于测量光学系统的像倾斜和成像放大倍率。
发明内容
本发明的目的是为了克服上述已有技术的缺点,提出基于位置探测器(PSD)的共分划面多光谱标靶,用于解决多光谱光轴一致性的高精度测量问题,同时可测量光学系统的有效作用距离、像倾斜和成像放大倍率。
本发明的目的是通过下述技术方案实现的。
本发明的位置探测器(PSD)共分划面多光谱标靶,包括基底、PSD、多杆靶组、多圆孔靶和分划线;其中,PSD制作在基底中心区域;分划线中心的延长线与PSD的中心线重合;多杆靶组包括不同间距、杆长和杆宽的多杆靶,且其任意放置在与PSD不重合的区域;多圆孔靶放置在与PSD不重合的区域,且以PSD为中心点中心对称;基底是全光谱透射材质,分划线是具有标识特征的任意图形。该标靶可以是基底与PSD的组合,PSD制作在基底的中心区域。
该标靶可以是基底、PSD与多杆靶组的组合,多杆靶组位于PSD以外的区域。
该标靶可以是基底、PSD与多圆孔靶的组合,多圆孔靶位于PSD以外的区域,关于PSD中心对称。
PSD还可以是PSD组,其中PSD组由多个具有不同光谱响应的PSD层叠构成。
多杆靶组可以是四杆靶组、三杆靶组或两杆靶组。
多圆孔靶由关于PSD中心对称的不少于两个圆孔靶构成。
PSD位置探测共分划面多光谱标靶还可以配合多光谱光源、光学准直系统实现多光轴一致性、有效作用距离、像倾斜和成像放大倍率的测量。
有益效果
本发明具有以下特点及良好效果:
1.本发明提出将可透射多光谱波段的材料应用于分划板基底,简化了仪器结构,有利于消除检测仪自身失调,可实现PSD位置探测共分划面多光谱标靶的绝对不失调特性,这是本发明区别于现有技术创新点之一。
2.本发明提出在分划板上制作PSD,其中PSD光谱响应范围宽、可靠性高,可以精确探知测量激光光斑质心位置坐标,这是本发明区别于现有技术创新点之二。
3.本发明提出在分划板上制作PSD组,其中PSD组由多个具有不同光谱响应的PSD层叠构成,可兼顾测量激光发射轴的多光谱波段,这是本发明区别于现有技术创新点之三。
4.本发明提出在基底上镀有多杆靶组和多圆孔靶,用于光学系统有效作用距离、像倾斜和成像放大倍率的测量;同时,PSD位置探测共分划面多光谱标靶可同时实现可见光、红外和激光发射轴的多光轴一致性精密测量,这是本发明区别于现有技术创新点之四。
由于上述相关技术的采用,使该装置具有如下特点:
1.将可透射多光谱波段的材料应用于分划板基底,大大减少了人工或机械调整控制转换对测量精度的影响,具有稳定性好、便携式等优点,可作为多光轴一致性标靶的基准。
2.根据测试激光光谱范围,在分划板上制作多个具有不同光谱响应的PSD组,扩大了激光发射轴的测试范围。
3.通过在基底中心PSD以外区域排布具有不同间距、杆长和杆宽的多杆靶组及多圆孔靶,使PSD位置探测共分划面多光谱标靶实现可见光、红外和激光发射轴的多光轴测量的同时兼具有检测光学系统有效作用距离、像倾斜和成像放大倍率的功能。
附图说明
图1为引用文献一的结构示意图;
图2为引用文献二的结构示意图;
图3为引用文献三的结构示意图;
图4为引用文献四的结构示意图;
图5为本发明的结构示意图;
图6为PSD位置探测共分划面多光谱标靶的结构示意图,图中a-为以中线为界剖视图、b-右视图;
图7为本发明实施例的结构示意图;
图8为本发明实施例的二维PSD分划标靶的结构示意图;
图9为本发明实施例被测光斑横向偏移量和纵向偏移量示意图;
其中:1-多光谱光源、2-基底、3-PSD、4-多杆靶组、5-PSD共分划面多光谱标靶、6-光学准直系统、7-抛物面反射镜、8-ZnS基底、9-多圆孔靶、10-激光测距机、11-分划线、12-带十字丝的高斯目镜、13-多光谱分光镜、14-调校棱镜系统、15-红外系统、16-可见光系统、17-平面反射镜、18-Ix1、19-Ix2、20-红外CCD摄像机、21-衰减片、22-二维PSD、23-热靶、24-红外光线、25-PSD分划标靶、26-四圆孔靶、27-可见光CCD摄像机、28-Iy1、29-Iy2、30-离轴抛物面反射镜、31-横向偏移量x、32-横向偏移量y、33-四象限探测器、34-四杆靶组。
具体实施方式
下面结合附图和实施例对本发明作进一步说明。
本发明的基本思想是利用位置探测器共分划面多光谱标靶解决多光轴一致性的高精度测量问题,同时兼具测量有效作用距离、像倾斜和成像放大倍率的功能。为兼容红外、可见光、激光等宽光谱波段的要求,采用非球面卡塞格林平行光管反射式无色差系统解决多波段光轴一致性校正和检测任务。
实施例
本发明实施例的结构如图7所示,0.5μm~14μm PSD分划标靶25包括:ZnS基底8、二维PSD 22、分划线11、四杆靶组34和四圆孔靶26,其中二维PSD 22制作在ZnS基底8中心区域,分划线11中心延长线与二维PSD 22中心线重合,四杆靶组34和四圆孔靶26位于PSD以外的区域。
测量可见光轴、红外光轴、激光发射轴一致性:将多光谱光源1放置在抛物面反射镜7的焦点处,经反射得到的平行光束均匀照射PSD分划标靶25,PSD分划标靶25放置于光学准直系统6的像方焦点处,多光谱光源1的平行光束经PSD分划标靶25和光学准直系统6成像后,发出平行光束,经被测系统成像。当测量可见光系统16的光轴时,首先切换到大视场范围方式扫描,建立初始的分划目标搜索范围,搜索目标之后换到小视场范围快速扫描目标。以PSD分划标靶25的分划线11作为对准目标,通过测量被测光斑中心与观察屏幕中心的偏差,可得出可见光系统16光轴的偏差角。当测量红外系统15的光轴时,使红外光束透过PSD分划标靶25和光学准直系统6成像,首先切换到大视场范围方式扫描,建立初始的分划目标搜索范围,搜索到目标之后换到小视场范围快速扫描目标。以PSD分划靶标25的分划线11作为对准目标,通过测量被测光斑中心与观察屏幕中心的偏差,可得出红外系统15光轴的偏差角。关闭多光谱光源1后,被测激光测距机10的光信号进过衰减片21和光学准直系统6成像于二维PSD 22的光敏面上,形成目标像斑。根据目标像斑在二维PSD 22上的分布情况得出激光测距机10的发射轴偏差角。则可得出红外系统15光轴、可见光系统16光轴、激光测距机10发射轴的一致性。
二维PSD 22将光斑位置信号转换为电流变化信号输出。信号处理电路包括信号预处理电路和后续处理电路部分,其中预处理电路包括I/V转换、运算放大处理电路;后续处理电路包括滤波电路、A/D转换、数据采集和控制电路。计算机系统通过A/D采集板得到二维PSD 22四个电极的电流信号Ix1、Ix2、Iy1、Iy2。每维方向两个电极的间距为lx和ly,则目标像斑到PSD探测器坐标原点的距离,即像斑的能量中心位置(x,y)如图9所示,其算法是:
Figure G2010100005543D00071
Figure G2010100005543D00072
测量有效作用距离,包括ZnS基底8和四杆靶组34,其中四杆靶组34制作在ZnS基底8中心二维PSD 22以外的区域,用于仿真不同作用距离的全波段目标。将多光谱光源1放置在抛物面反射镜7的焦点处,经反射得到的平行光束均匀照射PSD分划标靶25,PSD分划标靶25放置于光学准直系统6的像方焦点处,多光谱光源1的平行光束经PSD分划标靶25和光学准直系统6成像后,发出平行光束,经被测系统成像。被测系统观察屏上能够清晰分辨的四杆靶组所对应的作用距离即为被检光学系统的有效作用距离。
测量像倾斜和成像放大倍率,包括ZnS基底8和四圆孔靶26,其中四圆孔靶26制作在ZnS基底8中心二维PSD 22以外的区域上。将多光谱光源1放置在抛物面反射镜7的焦点处,经反射得平行光束均匀照射PSD分划标靶25,PSD分划标靶25放置于光学准直系统6的像方焦点处,多光谱光源1的平行光束经PSD分划标靶25和光学准直系统6成像后,发出平行光束,经被测系统成像。被测系统观察屏上四圆孔的连线方向和间距大小,即可得出被检光学系统的像倾斜和成像放大倍率。
以上结合附图对本发明的具体实施方式作了说明,但这些说明不能被理解为限制了本发明范围,本发明的保护范围由随附的权利要求书限定,任何在本发明权利要求基础上的改动都是本发明的保护范围。

Claims (9)

1.基于位置探测器的共分划面多光谱标靶,其特征在于:包括基底、位置探测器、多杆靶组、多圆孔靶和分划线;其中,位置探测器制作在基底中心区域;分划线中心的延长线与位置探测器的中心线重合;多杆靶组包括不同间距、杆长和杆宽的多杆靶,且其任意放置在与位置探测器不重合的区域;多圆孔靶放置在与位置探测器不重合的区域,且以位置探测器为中心点中心对称;基底是全光谱透射材质,分划线是具有标识特征的任意图形。
2.根据权利要求1所述的基于位置探测器的共分划面多光谱标靶,其特征在于:该标靶是基底与位置探测器的组合,位置探测器制作在基底的中心区域。
3.根据权利要求1所述的基于位置探测器的共分划面多光谱标靶,其特征在于:该标靶是基底、位置探测器与多杆靶组的组合,多杆靶组位于位置探测器以外的区域。
4.根据权利要求1所述的基于位置探测器的共分划面多光谱标靶,其特征在于:该标靶是基底、位置探测器与分划线的组合,分划线中心的延长线与位置探测器的中心线重合。
5.根据权利要求1所述的基于位置探测器的共分划面多光谱标靶,其特征在于:该标靶是基底、位置探测器与多圆孔靶的组合,多圆孔靶位于位置探测器以外的区域,关于位置探测器的中心对称。
6.根据权利要求1或2或3或4或5所述的基于位置探测器的共分划面多光谱标靶,其特征在于:位置探测器是位置探测器组,其中位置探测器组由多个具有不同光谱响应的位置探测器层叠构成。
7.根据权利要求1或3所述的基于位置探测器的共分划面多光谱标靶,其特征在于:所述多杆靶组是四杆靶组、三杆靶组或两杆靶组。
8.根据权利要求1或5所述的基于位置探测器的共分划面多光谱标靶,其特征在于:所述多圆孔靶由关于位置探测器中心对称的不少于两个圆孔靶构成。
9.根据权利要求1或2或3或4或5或6或7或8所述的基于位置探测器的共分划面多光谱标靶,其特征在于:位置探测器位置探测共分划面全光谱标靶还可以配合全光谱光源、光学准直系统实现多光轴一致性、有效作用距离、像倾斜及成像放大倍率的测量。
CN2010100005543A 2010-01-13 2010-01-13 基于位置探测器的共分划面多光谱标靶 Expired - Fee Related CN101776516B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2010100005543A CN101776516B (zh) 2010-01-13 2010-01-13 基于位置探测器的共分划面多光谱标靶

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2010100005543A CN101776516B (zh) 2010-01-13 2010-01-13 基于位置探测器的共分划面多光谱标靶

Publications (2)

Publication Number Publication Date
CN101776516A true CN101776516A (zh) 2010-07-14
CN101776516B CN101776516B (zh) 2012-06-27

Family

ID=42513032

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2010100005543A Expired - Fee Related CN101776516B (zh) 2010-01-13 2010-01-13 基于位置探测器的共分划面多光谱标靶

Country Status (1)

Country Link
CN (1) CN101776516B (zh)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103364178A (zh) * 2012-03-27 2013-10-23 业纳遥控设备有限公司 用于带激光扫描器的交通监控仪的检验设备和检验方法
CN103926001A (zh) * 2014-03-10 2014-07-16 北京理工大学 一种高速多光谱无限远动态目标发生方法与装置
CN105334027A (zh) * 2015-11-23 2016-02-17 中国人民解放军总装备部军械技术研究所 Led照明的高精度多光谱集成靶标及配套的光学检测方法
CN106872962A (zh) * 2017-02-28 2017-06-20 国家测绘地理信息局卫星测绘应用中心 一种用于星载激光测高仪检校的地面探测器的布设方法
CN107356197A (zh) * 2016-05-09 2017-11-17 南京理工大学 一种四象限光电探测器基于高斯分布的光斑定位方法
CN108020871A (zh) * 2017-12-11 2018-05-11 中国科学院长春光学精密机械与物理研究所 航空相机红外成像设备动态成像质量测试装置及测试方法
CN108134895A (zh) * 2017-12-26 2018-06-08 深圳市保千里电子有限公司 一种广角镜头模组调整装置及调整方法
CN110488474A (zh) * 2019-09-24 2019-11-22 西安佐威光电科技有限公司 一种大口径双抛物面反射模块化平行光管
CN110986903A (zh) * 2019-12-06 2020-04-10 南京理工大学 用于外场观测和校准的红外及可见光十字靶
CN111812620A (zh) * 2020-07-03 2020-10-23 山东省科学院海洋仪器仪表研究所 一种激光雷达的发射光轴与接收光轴校准方法
CN113639960A (zh) * 2021-08-09 2021-11-12 孝感华中精密仪器有限公司 一种多光谱像倾斜检测装置
CN117249977A (zh) * 2023-11-09 2023-12-19 沈阳航盛科技有限责任公司 一种多光融合的光瞄设备测试系统

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103364178A (zh) * 2012-03-27 2013-10-23 业纳遥控设备有限公司 用于带激光扫描器的交通监控仪的检验设备和检验方法
CN103926001A (zh) * 2014-03-10 2014-07-16 北京理工大学 一种高速多光谱无限远动态目标发生方法与装置
CN103926001B (zh) * 2014-03-10 2015-09-30 北京理工大学 一种高速多光谱无限远动态目标发生方法与装置
CN105334027A (zh) * 2015-11-23 2016-02-17 中国人民解放军总装备部军械技术研究所 Led照明的高精度多光谱集成靶标及配套的光学检测方法
CN105334027B (zh) * 2015-11-23 2018-04-06 中国人民解放军总装备部军械技术研究所 Led照明的高精度多光谱集成靶标及配套的光学检测方法
CN107356197A (zh) * 2016-05-09 2017-11-17 南京理工大学 一种四象限光电探测器基于高斯分布的光斑定位方法
CN107356197B (zh) * 2016-05-09 2019-10-18 南京理工大学 一种四象限光电探测器基于高斯分布的光斑定位方法
CN106872962A (zh) * 2017-02-28 2017-06-20 国家测绘地理信息局卫星测绘应用中心 一种用于星载激光测高仪检校的地面探测器的布设方法
CN106872962B (zh) * 2017-02-28 2020-01-21 自然资源部国土卫星遥感应用中心 一种用于星载激光测高仪检校的地面探测器的布设方法
CN108020871A (zh) * 2017-12-11 2018-05-11 中国科学院长春光学精密机械与物理研究所 航空相机红外成像设备动态成像质量测试装置及测试方法
CN108134895B (zh) * 2017-12-26 2020-09-04 深圳市保千里电子有限公司 一种广角镜头模组调整装置及调整方法
CN108134895A (zh) * 2017-12-26 2018-06-08 深圳市保千里电子有限公司 一种广角镜头模组调整装置及调整方法
CN110488474A (zh) * 2019-09-24 2019-11-22 西安佐威光电科技有限公司 一种大口径双抛物面反射模块化平行光管
CN110986903A (zh) * 2019-12-06 2020-04-10 南京理工大学 用于外场观测和校准的红外及可见光十字靶
CN110986903B (zh) * 2019-12-06 2021-09-17 南京理工大学 用于外场观测和校准的红外及可见光十字靶
CN111812620A (zh) * 2020-07-03 2020-10-23 山东省科学院海洋仪器仪表研究所 一种激光雷达的发射光轴与接收光轴校准方法
CN113639960A (zh) * 2021-08-09 2021-11-12 孝感华中精密仪器有限公司 一种多光谱像倾斜检测装置
CN113639960B (zh) * 2021-08-09 2024-04-12 孝感华中精密仪器有限公司 一种多光谱像倾斜检测装置
CN117249977A (zh) * 2023-11-09 2023-12-19 沈阳航盛科技有限责任公司 一种多光融合的光瞄设备测试系统
CN117249977B (zh) * 2023-11-09 2024-01-12 沈阳航盛科技有限责任公司 一种多光融合的光瞄设备测试系统

Also Published As

Publication number Publication date
CN101776516B (zh) 2012-06-27

Similar Documents

Publication Publication Date Title
CN101776516B (zh) 基于位置探测器的共分划面多光谱标靶
CN101726358B (zh) 共分划面全光谱标靶
CN101319884B (zh) 基于多波段靶板及旋转反射镜的多光轴一致性测试装置
CN109100876B (zh) 多光轴平行调节装置及多光轴平行调节方法
US7064817B1 (en) Method to determine and adjust the alignment of the transmitter and receiver fields of view of a LIDAR system
CN101405613B (zh) 用于光学测距的装置
CN100451540C (zh) 采用热靶技术对大型光电测控设备三轴平行性检测的装置
CN109632104A (zh) 一种红外阵列辐射源校准装置及校准方法
CN110487514A (zh) 一种共孔径多光谱光电探测系统的光轴平行性校准系统
CN202511766U (zh) 反射式多光谱、共光路光轴检测装置
CN101210806B (zh) 基于辅助光源的激光发射轴与机械基准面法线沿方位轴方向角度偏差及俯仰角度偏差的测量方法
CN110146259A (zh) 一种大口径离轴反射式多光轴一致性定量测试和校准装置
CN105954734B (zh) 大口径激光雷达光轴监测装置
US10466044B2 (en) Sensor imager and laser alignment system
CN114323571B (zh) 一种光电瞄准系统多光轴一致性检测方法
CN105334027B (zh) Led照明的高精度多光谱集成靶标及配套的光学检测方法
CN110823527A (zh) 一种含有激光的多传感器光轴的校准方法
CN109100733A (zh) 激光雷达设备误差检测设备、方法及装置
CN208833907U (zh) 激光雷达设备误差检测设备
CN209927419U (zh) 一种大口径离轴反射式多光轴一致性定量测试和校准装置
CN101650168B (zh) 外场环境下激光光轴瞄准偏差测试系统
RU2442959C1 (ru) Лазерный бинокль-дальномер
CN103148807A (zh) 外场环境下紫外与可见光双光轴平行性校准装置
CN110133677A (zh) 一种一体化导航敏感器
CN108168469A (zh) 一种光轴平行性检测系统及方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20120627

Termination date: 20210113