CN101775508A - Production method of low-carbon ferromanganese - Google Patents

Production method of low-carbon ferromanganese Download PDF

Info

Publication number
CN101775508A
CN101775508A CN201010102873A CN201010102873A CN101775508A CN 101775508 A CN101775508 A CN 101775508A CN 201010102873 A CN201010102873 A CN 201010102873A CN 201010102873 A CN201010102873 A CN 201010102873A CN 101775508 A CN101775508 A CN 101775508A
Authority
CN
China
Prior art keywords
low
slag
carbon ferromanganese
manganese
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201010102873A
Other languages
Chinese (zh)
Other versions
CN101775508B (en
Inventor
陈烨
易斌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangxi Sincerity Investment & Trading Co Ltd
Original Assignee
Guangxi Sincerity Investment & Trading Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangxi Sincerity Investment & Trading Co Ltd filed Critical Guangxi Sincerity Investment & Trading Co Ltd
Priority to CN2010101028735A priority Critical patent/CN101775508B/en
Publication of CN101775508A publication Critical patent/CN101775508A/en
Application granted granted Critical
Publication of CN101775508B publication Critical patent/CN101775508B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

The invention discloses a production method of low-carbon ferromanganese. The method comprises: smelting manganese-rich slag in a blast furnace, producing the low-carbon ferromanganese in a refining electric furnace, carrying out external shaking ladle dilution processing on refining slag. The production method is characterized in that three production methods of smelting the manganese-rich slag in the blast furnace, producing the low-carbon ferromanganese in the refining electric furnace and carrying out extenal shaking ladle dilution processing on the refining slag are organically connected and are in linkage operation; and the smelting pilot process (liquid manganese-rich slag->refining electric furnace and liquid low-carbon ferromanganese->refining electric furnace and refined slag->external shaking ladle) is performed with hot charging and hot adding to produce the low-carbon ferromanganese conforming to the national standard (GB/T3795-1996). The invention successfully solves the problems of shortage of raw material resources used for production, high cost, high comprehensive energy consumption of products and high product production cost in the existing low-carbon ferromanganese production process.

Description

A kind of production method of low-carbon ferromanganese
Technical field
The invention belongs to the metallurgical engineering technical field, specifically is a kind of production method of low-carbon ferromanganese.
Background technology
Low carbon ferromanganese is mainly used in steel-making or casting industry uses as alloy addition, especially is widely used in steel grade productions such as plate in the steel industry, pipe, band.
At present the The ferroalloy industry traditional method of producing low carbon ferromanganese has two kinds: the one, and remelting process is to be that raw material is produced with the middle frequency furnace remelting with electrolytic metal Mn and iron and steel scrap.There is not chemical reaction to take place in the production process.This method is simple, but product comprehensive energy consumption height (by the about 5600Kwh/ ton of the comprehensive power consumption of manganese metal power consumption 6000Kwh/ ton product) is restricted by electrolytic metal Mn resource and price simultaneously, the production cost height, and sulphur content is often higher in the product.The 2nd, electro-silicothermic process is with high silicon silicomanganese (or low-carbon (LC) silicomanganese) and high-quality (the low iron of high manganese is low-phosphorous) import manganese ore desiliconization production in electric refining furnaces.This method is low slightly than the remelting process production cost, but be subjected to the restriction of high silicon silicomanganese (or low-carbon (LC) silicomanganese) and high-quality import manganese resource and price, production cost is also higher, and product comprehensive energy consumption also higher (by the about 5200kwh/ ton of the high comprehensive power consumption of silicon silicomanganese power consumption 5400Kwh/ ton product), and be difficult to produce the high-quality low carbon ferromanganese product of P<0.15%.Electro-silicothermic process is produced the low carbon ferromanganese technical process as shown in Figure 1.
Above-mentioned two kinds of methods of producing low carbon ferromanganese are compared, electro-silicothermic process has comparative advantages than remelting process, but there are obvious three big deficiencies in the restriction that all is subjected to production technique, selects raw material resources and price for use in the low carbon ferromanganese production process: the one, produce with main raw material resource anxiety, price height; The 2nd, product comprehensive energy consumption height; The 3rd, products production cost height.The invention of this technology has successfully solved above-mentioned three big deficiencies.
Summary of the invention
The present invention is in order to overcome the deficiencies in the prior art, provide a kind of the rich manganese slag of blast-furnace smelting, electric refining furnaces are produced low carbon ferromanganese, the operation of three kinds of production method organic linking linkages of the outer shaking ladle dilution processing of refining slag hearth, produce the method for the low carbon ferromanganese that meets national standard (GB/T3795-1996).Its technological process of production is as shown in Figure 2:
The technical scheme that the present invention solves the problems of the technologies described above is as follows:
A kind of production method of low-carbon ferromanganese is that the rich manganese slag of blast-furnace smelting, electric refining furnaces are produced low carbon ferromanganese, the operation of three kinds of production method organic linking linkages of the outer shaking ladle dilution processing of refining slag hearth, produce the low carbon ferromanganese that meets national standard (GB/T3795-1996), the concrete operations steps in sequence is as follows:
1) at first be low manganese ferric manganese ore to be carried out selective reduction with coke smelt in blast furnace, remove iron and impurity element phosphorus in the manganese ore, blast-furnace smelting is produced manganese content greater than 35% rich manganese slag, output byproduct phosphoric pig iron simultaneously;
2) the liquid rich manganese slag hot charging produced of blast furnace enters electric refining furnaces, and liquid low-carbon (LC) silicomanganese hot charging in electric refining furnaces of producing with the outer shaking ladle of next procedure stove mixes, and other allocates lime slag making refining desiliconization into and produces qualified low carbon ferromanganese product;
3) the electric refining furnaces liquid slag that contains the about 20%-25% of manganese is directly poured shaking ladle into, and shaking ladle machine top is shaken the limit and added ferrosilicon or Pure Silicon Metal and slag is carried out dilution handle outside stove; Contain Mn<direct shrend of 8% shaking ladle finishing slag, simultaneously the output liquid low-carbon (LC) silicomanganese hot charging that contains C<0.3% enters electric refining furnaces and carries out next stove smelting low carbon ferromanganese.
Above-mentioned steps 1) this operation to manganese ore and coke require as follows:
The manganese ore quality should reach following requirement:
Chemical ingredients Mn Fe Mn+Fe P SiO2 Al2O3
Weight ratio (%)>25>15>50<0.1<8<10
The coke quality should reach following requirement:
Fixed carbon content ash oontent intensity granularity
The burnt standard 30-80mm of 〉=85%<13% one-level
Above-mentioned steps 2) this operation to rich manganese slag, low-carbon (LC) silicomanganese and lime require as follows:
The rich manganese slag of blast furnace output quality should reach following requirement:
Chemical Composition Mn Fe P SiO2 Al2O3
Weight ratio (%)>35<3<0.03<12<15
Shaking ladle output low-carbon (LC) silicomanganese quality should reach following requirement:
Chemical Composition Mn Si C P
Weight ratio (%)>65>13<0.3<0.15
The lime quality should reach following requirement:
Composition or require CaO SiO2 to give birth to burning, burning and be mingled with
Weight ratio (%)>85<3<10
Above-mentioned steps 3) this operation should reach following requirement to ferrosilicon or Pure Silicon Metal quality:
Chemical Composition Si C P
Weight ratio (%) 〉=70<0.2<0.1
The present invention compared with the prior art, outstanding substantive distinguishing features and marked improvement show as following several respects:
1. creatively the rich manganese slag of blast-furnace smelting, electric refining furnaces are produced low carbon ferromanganese, three technologies combinations of the outer shaking ladle dilution processing of refining slag hearth, smelting the whole hot charging heat of pilot process (liquid rich manganese slag → electric refining furnaces, liquid low-carbon (LC) silicomanganese → electric refining furnaces, the outer shaking ladle of refining slag → stove) converts, can save the products production power consumption significantly and reduce the products production cost.
2. substitute the low iron import manganese ore of the high high manganese of valency of fine quality with aboundresources and cheap low manganese high ferro import manganese ore, utilize the rich manganese slag of blast furnace production pyrogenic process process of enriching to produce high-quality rich manganese slag (Mn>35% that meets the low carbon ferromanganese production requirement, Fe<3%, P<0.03%, SiO2<12%, Al2O3<15%).Both reduce the products production cost, improved product quality again, realized utilizing fully efficiently external lean ore resource.
3. be that reductive agent utilizes the outer shaking ladle of stove that the refining slag dilution is handled with ferrosilicon or Pure Silicon Metal, produce the low-carbon (LC) silicomanganese (Mn>65%, Si>13%, C<0.30%, P<0.15%) that meets the low carbon ferromanganese production requirement simultaneously.
Description of drawings
Fig. 1 is that electro-silicothermic process is produced the low carbon ferromanganese process flow sheet.
Fig. 2 is the process flow sheet of a kind of production method of low-carbon ferromanganese of the present invention.
Embodiment
Below in conjunction with embodiment the present invention is further described.But need to prove that embodiment does not constitute the restriction to claim protection domain of the present invention.
Embodiment
1. blast-furnace smelting is produced liquid rich manganese slag: go into blast-furnace smelting after using two kinds low manganese high ferro import manganese ores and coke by following mixed preparation:
Raw material type import manganese ore 1 import manganese ore 2 coke
Every batch of material dry weight (Kg) 450 450 250
Manganese ore quality (by weight) is as follows:
Manganese ore Chemical Composition Mn Fe Mn+Fe P SiO2 Al2O3
Import manganese ore 1 weight ratio (%) 25 31 56 0.04 3.0 4.5
Import manganese ore 2 weight ratios (%) 25 29 54 0.06 3.0 5.5
Mix manganese ore weight ratio (%) 25 30 55 0.05 3.0 5.0
Coke quality (by weight) is as follows:
Fixation of C 84% ash oontent 13% (contain SiO2 40% in the ash content, Al2O3 25%, and P 0.3%)
The rich manganese dreg chemistry composition (by weight) of blast-furnace smelting output is as follows:
Rich manganese dreg chemistry composition Mn Fe P SiO2 Al2O3
Weight ratio (%) 44 2 0.02 8.3 11.6
This richness manganese slag satisfies the low carbon ferromanganese production requirement fully, and direct heat is put into electric refining furnaces.
2. electric refining furnaces is smelted and produced low carbon ferromanganese: the liquid low-carbon (LC) silicomanganese that the liquid rich manganese slag and the next procedure (the outer shaking ladle of stove) of blast furnace production are produced enters electric refining furnaces by metering by following weight proportion hot charging, allocates an amount of lime slag making simultaneously in proportion into and smelts:
The electric refining furnaces liquid low-carbon (LC) silicomanganese of the liquid rich manganese slag lime of preparing burden
Weight (Kg) 1,000 950 700
Electric refining furnaces is smelted and to be produced the low carbon ferromanganese product that meets national standard (GB/T3795-1996) and to contain refining slag about Mn22%, and its typical chemical ingredients (weight meter) is as follows:
Low carbon ferromanganese chemical ingredients Mn Si C P S Fe and other
Weight ratio (%) 84 1.0 0.25 0.12 0.01 surpluses
Refining slag chemical ingredients Mn SiO2 CaO
Weight ratio (%) 22 35 42
The low carbon ferromanganese product of producing is through cast, finishing warehouse-in, and refining slag is gone into the shaking ladle dilution and handled.
3. the outer shaking ladle of stove is produced the low-carbon (LC) silicomanganese: directly pour the refining slag that contains Mn about 22% of electric refining furnaces output into shaking ladle, shake the limit adds ferrosilicon (FeSi75) powder (add-on be about the quantity of slag about 12%) and makes reductive agent dilution slag in shaking ladle machine top, can make to contain Mn in the slag the direct shrend of finishing slag less than 8%.Produce the low-carbon (LC) silicomanganese hot charging of following quality simultaneously and go into the smelting that electric refining furnaces carries out next stove low carbon ferromanganese:
Low-carbon (LC) silicomanganese chemical ingredients Mn Si C P
Weight ratio (%) 70 16 0.2 0.08
The main material of above-mentioned examples produce low carbon ferromanganese product, energy consumption are as follows:
Name of an article import manganese ore coke ferrosilicon lime
The ton product consumes 3500Kg 950Kg 450Kg 700Kg 550Kwh
Product quality reaches the GB FeMn84C0.4Si I P I trade mark.

Claims (4)

1. production method of low-carbon ferromanganese, comprise the rich manganese slag of blast-furnace smelting, electric refining furnaces is produced low carbon ferromanganese, the outer shaking ladle dilution of refining slag hearth is handled, it is characterized in that, this method is with the rich manganese slag of blast-furnace smelting, electric refining furnaces is produced low carbon ferromanganese, the operation of three kinds of production method organic linking linkages is handled in the outer shaking ladle dilution of refining slag hearth, smelt pilot process (liquid rich manganese slag → electric refining furnaces, liquid low-carbon (LC) silicomanganese → electric refining furnaces, the outer shaking ladle of refining slag → stove) all hot charging heat is converted, produce the low carbon ferromanganese that meets national standard (GB/T3795-1996), the concrete operations steps in sequence is as follows:
1) at first be low manganese ferric manganese ore to be carried out selective reduction with coke smelt in blast furnace, remove iron and impurity element phosphorus in the manganese ore, blast-furnace smelting is produced manganese content greater than 35% rich manganese slag, output byproduct phosphoric pig iron simultaneously;
2) the liquid rich manganese slag hot charging produced of blast furnace enters electric refining furnaces, and liquid low-carbon (LC) silicomanganese hot charging in electric refining furnaces of producing with the outer shaking ladle of next procedure stove mixes, and other allocates lime slag making refining desiliconization into and produces qualified low carbon ferromanganese product;
3) the electric refining furnaces liquid slag that contains the about 20%-25% of manganese is directly poured shaking ladle into, and shaking ladle machine top is shaken the limit and added ferrosilicon or Pure Silicon Metal and slag is carried out dilution handle outside stove; Contain Mn<direct shrend of 8% shaking ladle finishing slag, simultaneously the output liquid low-carbon (LC) silicomanganese hot charging that contains C<0.3% enters electric refining furnaces and carries out next stove smelting low carbon ferromanganese.
2. a kind of production method of low-carbon ferromanganese according to claim 1 is characterized in that, this operation of described step 1) to manganese ore and coke require as follows:
The manganese ore quality should reach following requirement:
Chemical ingredients Mn Fe Mn+Fe P SiO2 Al2O3
Weight ratio (%)>25>15>50<0.1<8<10
The coke quality should reach following requirement:
Fixed carbon content ash oontent intensity granularity
The burnt standard 30-80mm of 〉=85%<13% one-level
3. a kind of production method of low-carbon ferromanganese according to claim 1 is characterized in that, described step 2) this operation to rich manganese slag, low-carbon (LC) silicomanganese and lime require as follows:
The rich manganese slag of blast furnace output quality should reach following requirement:
Chemical Composition Mn Fe P SiO2 Al2O3
Weight ratio (%)>35<3<0.03<12<15
Shaking ladle output low-carbon (LC) silicomanganese quality should reach following requirement:
Chemical Composition Mn Si C P
Weight ratio (%)>65>13<0.3<0.15
The lime quality should reach following requirement:
Composition or require CaO SiO2 to give birth to burning, burning and be mingled with
Weight ratio (%)>85<3<10
4. a kind of production method of low-carbon ferromanganese according to claim 1 is characterized in that, this operation of described step 3) should reach following requirement to ferrosilicon or Pure Silicon Metal quality:
Chemical Composition Si C P
Weight ratio (%) 〉=70<0.2<0.1.
CN2010101028735A 2010-01-29 2010-01-29 Production method of low-carbon ferromanganese Expired - Fee Related CN101775508B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2010101028735A CN101775508B (en) 2010-01-29 2010-01-29 Production method of low-carbon ferromanganese

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2010101028735A CN101775508B (en) 2010-01-29 2010-01-29 Production method of low-carbon ferromanganese

Publications (2)

Publication Number Publication Date
CN101775508A true CN101775508A (en) 2010-07-14
CN101775508B CN101775508B (en) 2012-05-30

Family

ID=42512093

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2010101028735A Expired - Fee Related CN101775508B (en) 2010-01-29 2010-01-29 Production method of low-carbon ferromanganese

Country Status (1)

Country Link
CN (1) CN101775508B (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103643056A (en) * 2013-11-27 2014-03-19 攀钢集团研究院有限公司 Smelting method of low-carbon ferromanganese
CN103643057A (en) * 2013-11-27 2014-03-19 攀钢集团研究院有限公司 Smelting method of medium-carbon ferromanganese
CN104060110A (en) * 2014-05-08 2014-09-24 无锡市阳泰冶金炉料有限公司 Reaction device for extracting manganese metal from manganese-rich slags
CN105112661A (en) * 2015-08-10 2015-12-02 云南文山斗南锰业股份有限公司 Method for preparing silicomanganese with high silicon
CN105624438A (en) * 2016-02-02 2016-06-01 镇远县鸿丰新材料有限公司 Method for refining low-carbon ferromanganese alloy through poor-manganese slag
CN106086608A (en) * 2016-06-22 2016-11-09 五矿(湖南)铁合金有限责任公司 A kind of method utilizing carbon manganese slag to produce low Carbon Manganese silicon alloy
CN108291273A (en) * 2015-11-24 2018-07-17 奥图泰(芬兰)公司 For preheating and the method and apparatus of melting manganese ore sinter
CN108588447A (en) * 2018-06-14 2018-09-28 宁夏晟晏实业集团能源循环经济有限公司 A kind of production method of metal manganese ingot
CN108796252A (en) * 2018-06-14 2018-11-13 宁夏晟晏实业集团能源循环经济有限公司 A kind of production method of pure micro-carbon ferromanganese
CN110257629A (en) * 2019-06-21 2019-09-20 宁夏森源重工设备有限公司 Full hot charging production line and production technology for the production of manganese iron
CN112921222A (en) * 2021-02-04 2021-06-08 山西东方资源发展有限公司 Method for smelting low-phosphorus low-carbon silicon-manganese alloy
CN117248128A (en) * 2023-10-13 2023-12-19 百色智成新材料科技有限公司 Treatment method of ferromanganese wet waste residues

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1382824A (en) * 2002-02-28 2002-12-04 湖南特种金属材料厂 Process for preparing low-carbon ferromanganese by induction furnace
CN1202272C (en) * 2003-03-11 2005-05-18 朱兴发 Apparatus for producing low-carbon ferromanganese iron using manganese-rich slay
CN1220786C (en) * 2003-03-11 2005-09-28 朱兴发 Production process for low-carbon ferromanganese iron using manganese-rich slag and apparatus thereof
CN101368244A (en) * 2007-08-15 2009-02-18 周孝华 Low-carbon ferromanganese manufacturing technique

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103643057A (en) * 2013-11-27 2014-03-19 攀钢集团研究院有限公司 Smelting method of medium-carbon ferromanganese
CN103643056B (en) * 2013-11-27 2015-09-16 攀钢集团研究院有限公司 The smelting process of low carbon ferromanganese
CN103643056A (en) * 2013-11-27 2014-03-19 攀钢集团研究院有限公司 Smelting method of low-carbon ferromanganese
CN104060110A (en) * 2014-05-08 2014-09-24 无锡市阳泰冶金炉料有限公司 Reaction device for extracting manganese metal from manganese-rich slags
CN105112661A (en) * 2015-08-10 2015-12-02 云南文山斗南锰业股份有限公司 Method for preparing silicomanganese with high silicon
CN108291273A (en) * 2015-11-24 2018-07-17 奥图泰(芬兰)公司 For preheating and the method and apparatus of melting manganese ore sinter
CN105624438A (en) * 2016-02-02 2016-06-01 镇远县鸿丰新材料有限公司 Method for refining low-carbon ferromanganese alloy through poor-manganese slag
CN105624438B (en) * 2016-02-02 2018-06-19 镇远县鸿丰新材料有限公司 A kind of method using poor manganese slag refining ferromanganese alloy
CN106086608A (en) * 2016-06-22 2016-11-09 五矿(湖南)铁合金有限责任公司 A kind of method utilizing carbon manganese slag to produce low Carbon Manganese silicon alloy
CN108588447A (en) * 2018-06-14 2018-09-28 宁夏晟晏实业集团能源循环经济有限公司 A kind of production method of metal manganese ingot
CN108796252A (en) * 2018-06-14 2018-11-13 宁夏晟晏实业集团能源循环经济有限公司 A kind of production method of pure micro-carbon ferromanganese
CN110257629A (en) * 2019-06-21 2019-09-20 宁夏森源重工设备有限公司 Full hot charging production line and production technology for the production of manganese iron
CN112921222A (en) * 2021-02-04 2021-06-08 山西东方资源发展有限公司 Method for smelting low-phosphorus low-carbon silicon-manganese alloy
CN117248128A (en) * 2023-10-13 2023-12-19 百色智成新材料科技有限公司 Treatment method of ferromanganese wet waste residues

Also Published As

Publication number Publication date
CN101775508B (en) 2012-05-30

Similar Documents

Publication Publication Date Title
CN101775508B (en) Production method of low-carbon ferromanganese
CN101906500B (en) It is a kind of to comprehensively utilize the method that non-calcium chromium slags are directly produced chromium-base alloy steel
CN100507013C (en) Method for directly producing ferrochromium from chrome ore powder and coal
CN101717842B (en) Method for dephosphorization and desulphurization in process of steel production in induction furnace
CN106086608B (en) A kind of method that low-carbon manganese-silicon is produced using carbon manganese slag
CN109576509A (en) A kind of silicomangan and preparation method thereof
CN101161835A (en) Utilization process of ferrosilicon smelting slag in silicon-manganese alloy smelting
CN103882181A (en) Manganese-containing steel alloying process
CN105063268A (en) Slag melting agent and preparation method thereof and semi-steel steelmaking method adopting slag melting agent
CN106480353A (en) A kind of method that utilization vanadium-bearing hot metal carries out alloying to HRB400 steel
CN103643056B (en) The smelting process of low carbon ferromanganese
CN103215408B (en) A kind ofly add the method that slag block carries out converter steelmaking
CN102560131B (en) Premelted refining slag and preparation method thereof
CN110283965A (en) A kind of Dephosphorising agent and its preparation and application for hot metal containing low silicon steel-making
CN103643094B (en) The smelting process of high carbon ferromanganese
CN101240360A (en) Oxide briquetting used for steelmaking alloy element and preparation method thereof
CN103014237B (en) Dephosphorization slag forming constituent and production method thereof
CN102146500A (en) Fluxing agent for smelting steel as well as preparation and use methods thereof
CN100572575C (en) Use artificial Mn 3O 4The method of smelting low carbon manganese-silicon in electric refining furnaces
CN103031409B (en) Novel process of steelmaking deoxidization by utilizing precipitator dust of refining furnace
CN103938043A (en) Technique for producing pure manganese-silicon-aluminum alloy from high-phosphorus manganese ores
CN101260455A (en) Preparation of calcium-iron alloy by using calcium carbide as raw material and calcium-containing composite desoxidant
CN102352421B (en) Process for smelting industrial pure iron with converter waste slag ball iron
CN106480312B (en) A method of mid-carbon fe-mn is produced using high carbon ferromanganese powder
CN104498743A (en) Low-cost production method of high-carbon 50 vanadium iron

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20120530

CF01 Termination of patent right due to non-payment of annual fee