CN101770132A - Visible light enhanced supercontinuum laser system with all-fiber structure - Google Patents

Visible light enhanced supercontinuum laser system with all-fiber structure Download PDF

Info

Publication number
CN101770132A
CN101770132A CN200810236572A CN200810236572A CN101770132A CN 101770132 A CN101770132 A CN 101770132A CN 200810236572 A CN200810236572 A CN 200810236572A CN 200810236572 A CN200810236572 A CN 200810236572A CN 101770132 A CN101770132 A CN 101770132A
Authority
CN
China
Prior art keywords
optical fiber
fiber
visible light
output
laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN200810236572A
Other languages
Chinese (zh)
Other versions
CN101770132B (en
Inventor
王屹山
赵卫
杨直
张伟
方平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
XiAn Institute of Optics and Precision Mechanics of CAS
Original Assignee
XiAn Institute of Optics and Precision Mechanics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by XiAn Institute of Optics and Precision Mechanics of CAS filed Critical XiAn Institute of Optics and Precision Mechanics of CAS
Priority to CN200810236572A priority Critical patent/CN101770132B/en
Publication of CN101770132A publication Critical patent/CN101770132A/en
Application granted granted Critical
Publication of CN101770132B publication Critical patent/CN101770132B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Lasers (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

The utility model provides a visible light reinforcing supercontinuum laser system of full fiber structure, includes optic fibre mode-locked laser, the single mode fiber amplifier through fiber connection with optic fibre mode-locked laser's output, the optical isolator through fiber connection with single mode fiber amplifier's output, the double-clad fiber amplifier through fiber connection with optical isolator's output, this system still includes nonlinear photonic crystal fiber, the output of double-clad fiber amplifier is connected through drawing the optic fibre with nonlinear photonic crystal fiber's input. The invention solves the technical problems of large volume, low coupling efficiency and limited spectral range of a high-power laser coupling device in the background technology. The coupling device has the advantages of simple structure, small volume, high coupling efficiency, reliable engineering, capability of covering visible light wave bands and the like.

Description

The visible light strengthened super continuous spectrum laser system of all optical fibre structure
Technical field
The present invention relates to laser field, be specifically related to a kind of visible light strengthened super continuous spectrum laser system of all optical fibre structure.
Background technology
When laser pulse transmits, various nonlinear effects can take place in the high non-linearity medium, make video stretching to hundreds of nanometer even wideer, this extreme video stretching phenomenon is called the generation of super continuous spectrums.Super continuum source is compared with other light source, has continuous spectrum bandwidth, reliable and stable, plurality of advantages such as the coherence is good.Super continuous spectrums laser shows and spectral analysis etc. all has very important using value aspect many in biomedicine, light metrology, optical communication, coherent measurement, optics.The super continuous spectrums of visible light wave range has inestimable value in fields such as laser display, biological spectrum analysis, photoelectronic warfares especially.With respect to other solid or liquid nonlinear medium, highly nonlinear optical fiber, is more suitable in being used in the super continuous spectrums generation system with practical value with the physical characteristics of its portable and stable as nonlinear medium.Existing how tame both at home and abroad at present research institution uses highly nonlinear optical fiber as super continuous spectrums generation medium, under laser pumping, produce super continuous spectrums, but owing to be subjected to the restriction of nonlinear optical fiber zero dispersion point, using under the situation of infrared laser as pumping source, the wave band that the general super continuous spectrums that produces covers concentrates on near-infrared band mostly, have only a small amount of spectrum to enter visible light wave range, this has just limited the application of super continuous spectrums at visible-range.And also be a key factor of restriction super continuous spectrums average power to the coupling of nonlinear optical fiber as the laser of pumping, existing high-power laser coupling device all adopts lens combination to do sky and asks coupling, the lens combination design is complicated, bulky, coupling efficiency also is difficult to improve, this coupling process is difficult to realize the requirement of Engineering Reliability also to the environmental requirement harshness.
Summary of the invention
The object of the present invention is to provide a kind of visible light strengthened super continuous spectrum laser system of all optical fibre structure, it has solved technical matterss such as the high-power laser coupling device volume is huge in the background technology, coupling efficiency is low, spectral range is limited.
Technical scheme of the present invention is:
A kind of system of visible light strengthened super continuous spectrum laser of all optical fibre structure, comprise optical fiber mode-locked laser 1, the single-mode fiber amplifier 2 that is connected through optical fiber with the output of optical fiber mode-locked laser 1, the optoisolator 3 that is connected through optical fiber with the output of single-mode fiber amplifier 2, the double-cladding fiber amplifier 4 that is connected through optical fiber with the output of optoisolator 3, this system also comprises non-linear photon crystal optical fiber 6, and the output terminal of double-cladding fiber amplifier 4 is connected by drawing dimension optical fiber 5 with the input end of non-linear photon crystal optical fiber 6.
The output terminal of above-mentioned tapered fiber 5 and double-cladding fiber amplifier 4 and the input end of non-linear photon crystal optical fiber 6 be connected to welding.
Above-mentioned non-linear photon crystal optical fiber 6 is two or more.
Be connected to welding between the above-mentioned non-linear photon crystal optical fiber 6.
The present invention has simple in structure, and volume is little, the coupling efficiency height, and engineering is reliable, can cover advantages such as visible light wave range.
Description of drawings:
Fig. 1 is the structural representation of the visible light strengthened super continuous spectrum laser system of all optical fibre structure of the present invention.
Reference numeral:
1-optical fiber mode-locked laser, 2-single-mode fiber amplifier, 3-optoisolator, 4-double-cladding fiber amplifier, 5-tapered fiber, 6-non-linear photon crystal optical fiber.
Embodiment:
Referring to Fig. 1,
A kind of system of visible light strengthened super continuous spectrum laser of all optical fibre structure, comprise optical fiber mode-locked laser 1, the single-mode fiber amplifier 2 that is connected through optical fiber with the output of optical fiber mode-locked laser 1, the optoisolator 3 that is connected through optical fiber with the output of single-mode fiber amplifier 2, the double-cladding fiber amplifier 4 that is connected through optical fiber with the output of optoisolator 3, this system also comprises non-linear photon crystal optical fiber 6, and the output terminal of double-cladding fiber amplifier 4 is tieed up optical fiber 5 welding mutually with the input end of non-linear photon crystal optical fiber 6 by drawing.Non-linear photon crystal optical fiber 6 is two or more, and it is welding each other, and reduces step by step along zero-dispersion wavelength.
Principle of work is as follows:
The seed light source of this system adopts homemade " 8 " font chamber mode locked fiber laser, this laser instrument output nJ level single pulse energy, spectral width 1.5nm, the about 500ps of pulse width; The short-pulse laser that produces by optical fiber mode-locked laser 1 carries out the energy amplification through optical fiber input single-mode ytterbium-doping fiber amplifier 2; Under the pumping of the 976nm semiconductor laser that is coupled by wavelength division multiplexer, the seed laser single pulse energy is amplified to tens nJ; Then single-mode fiber amplifier 2 amplifying signals are coupled into again the fibre core of double clad Yb dosed optical fiber through fused fiber splice by optoisolator 3; This doubly clad optical fiber is connected to 6 100um core optical fibers by the bundling device in the double-cladding fiber amplifier, and this six roots of sensation optical fiber is all connecting the output terminal of 976nm semiconductor laser, for the double clad Yb dosed optical fiber provides pump light.Such bundling device constitutes another level fiber amplifier together with semiconductor laser, double clad Yb dosed optical fiber, and under tens of watts of 976nm laser pump (ing) power, the pulsed laser energy that previous stage is come is amplified to the uJ magnitude.The tapered fiber 5 that forms through fused biconical taper is as pattern match optical fiber again, the mould field parameter of one end and doubly clad optical fiber coupling, the mould field parameter of the other end is with non-linear photon crystal optical fiber 6 couplings, with the nonlinear optical fiber input end of doubly clad optical fiber output terminal, different zero dispersion values respectively with the tapered fiber welding, just finished the low-loss coupling of amplifying laser, in nonlinear optical fiber 6, excited super continuous spectrums to carry out the transition to visible light wave range gradually to nonlinear optical fiber.Use similar fused biconical taper optical fiber as mould matching transition optical fiber, or directly use the method for welding, can be with the welding successively of two or more zero-dispersion wavelengths nonlinear optical fiber decrescence, just finished the cascade of nonlinear optical fiber, this zero dispersion values decrescence cascaded optical fiber can shift the super continuous spectrums energy in the laser pulse transmission course to shortwave, realize the enhancing of visible light wave range.

Claims (4)

1. the visible light strengthened super continuous spectrum laser system of an all optical fibre structure, comprise optical fiber mode-locked laser (1), the single-mode fiber amplifier (2) that is connected through optical fiber with the output of optical fiber mode-locked laser (1), the optoisolator (3) that is connected through optical fiber with the output of single-mode fiber amplifier (2), the double-cladding fiber amplifier (4) that is connected through optical fiber with the output of optoisolator (3), this system also comprises non-linear photon crystal optical fiber (6), it is characterized in that: the output terminal of described double-cladding fiber amplifier (4) is connected by drawing dimension optical fiber (5) with the input end of non-linear photon crystal optical fiber (6).
2. the visible light strengthened super continuous spectrum laser system of all optical fibre structure according to claim 1 is characterized in that: the output terminal of described tapered fiber (5) and double-cladding fiber amplifier (4) and the input end of non-linear photon crystal optical fiber (6) be connected to welding.
3. the visible light strengthened super continuous spectrum laser system of all optical fibre structure according to claim 1 and 2 is characterized in that: described non-linear photon crystal optical fiber (6) is two or more, and their zero-dispersion wavelength successively decreases.
4. the visible light strengthened super continuous spectrum laser system of all optical fibre structure according to claim 3 is characterized in that: be connected to welding between the described non-linear photon crystal optical fiber (6).
CN200810236572A 2008-12-31 2008-12-31 Visible light enhanced supercontinuum laser system with all-fiber structure Expired - Fee Related CN101770132B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN200810236572A CN101770132B (en) 2008-12-31 2008-12-31 Visible light enhanced supercontinuum laser system with all-fiber structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN200810236572A CN101770132B (en) 2008-12-31 2008-12-31 Visible light enhanced supercontinuum laser system with all-fiber structure

Publications (2)

Publication Number Publication Date
CN101770132A true CN101770132A (en) 2010-07-07
CN101770132B CN101770132B (en) 2012-09-05

Family

ID=42503074

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200810236572A Expired - Fee Related CN101770132B (en) 2008-12-31 2008-12-31 Visible light enhanced supercontinuum laser system with all-fiber structure

Country Status (1)

Country Link
CN (1) CN101770132B (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102593701A (en) * 2012-03-02 2012-07-18 陈抗抗 Optical fiber laser with super continuous spectrum
CN102967981A (en) * 2012-12-18 2013-03-13 中国人民解放军国防科学技术大学 Super-continuous spectrum light source based on multicore photonic crystal fiber
CN103022880A (en) * 2012-12-17 2013-04-03 中国联合网络通信集团有限公司 Device and method for adjusting spectral width of super-continuum spectrum
CN104300344A (en) * 2014-09-22 2015-01-21 深圳大学 High-power and tunable pulse fiber laser device
CN105071205A (en) * 2015-07-30 2015-11-18 复旦大学 Supercontinuum light source based on mode-locked fiber laser with adjustable pulse width
CN105301693A (en) * 2010-08-30 2016-02-03 Nkt光子学有限公司 Tapered optical fiber for supercontinuum generation
CN105846297A (en) * 2016-06-12 2016-08-10 中国工程物理研究院激光聚变研究中心 White light laser generating system
CN106785839A (en) * 2016-12-16 2017-05-31 中国电子科技集团公司电子科学研究院 A kind of optical fiber laser with super continuous spectrum
CN107069397A (en) * 2017-01-12 2017-08-18 北京工业大学 A kind of resonator super continuum source output device
CN110838670A (en) * 2019-11-22 2020-02-25 中国科学院物理研究所 Dispersion-controlled all-fiber supercontinuum generation device and application
CN112152056A (en) * 2019-06-28 2020-12-29 中国科学院上海光学精密机械研究所 Full-fiber large-energy supercontinuum laser
CN113659412A (en) * 2021-07-29 2021-11-16 中国科学院西安光学精密机械研究所 All-fiber supercontinuum light source based on graded-index optical fiber

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201147308Y (en) * 2008-02-02 2008-11-12 天津大学 Complete optical fiber structure ultra-continuous spectrum light source for optical coherent chromatography technique
CN201332211Y (en) * 2008-12-31 2009-10-21 中国科学院西安光学精密机械研究所 Visible light enhanced supercontinuum laser system with all-fiber structure

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105301693B (en) * 2010-08-30 2021-06-29 Nkt光子学有限公司 Tapered optical fiber for generating supercontinuum
CN105301693A (en) * 2010-08-30 2016-02-03 Nkt光子学有限公司 Tapered optical fiber for supercontinuum generation
CN102593701A (en) * 2012-03-02 2012-07-18 陈抗抗 Optical fiber laser with super continuous spectrum
CN103022880A (en) * 2012-12-17 2013-04-03 中国联合网络通信集团有限公司 Device and method for adjusting spectral width of super-continuum spectrum
CN102967981A (en) * 2012-12-18 2013-03-13 中国人民解放军国防科学技术大学 Super-continuous spectrum light source based on multicore photonic crystal fiber
CN104300344A (en) * 2014-09-22 2015-01-21 深圳大学 High-power and tunable pulse fiber laser device
WO2016045396A1 (en) * 2014-09-22 2016-03-31 深圳大学 Pumped supercontinuum light source based on tunable pulse optical fiber laser
CN105071205A (en) * 2015-07-30 2015-11-18 复旦大学 Supercontinuum light source based on mode-locked fiber laser with adjustable pulse width
CN105846297A (en) * 2016-06-12 2016-08-10 中国工程物理研究院激光聚变研究中心 White light laser generating system
CN106785839A (en) * 2016-12-16 2017-05-31 中国电子科技集团公司电子科学研究院 A kind of optical fiber laser with super continuous spectrum
CN107069397A (en) * 2017-01-12 2017-08-18 北京工业大学 A kind of resonator super continuum source output device
CN112152056A (en) * 2019-06-28 2020-12-29 中国科学院上海光学精密机械研究所 Full-fiber large-energy supercontinuum laser
CN112152056B (en) * 2019-06-28 2022-05-31 中国科学院上海光学精密机械研究所 Full-fiber large-energy supercontinuum laser
CN110838670A (en) * 2019-11-22 2020-02-25 中国科学院物理研究所 Dispersion-controlled all-fiber supercontinuum generation device and application
CN110838670B (en) * 2019-11-22 2021-07-20 中国科学院物理研究所 Dispersion-controlled all-fiber supercontinuum generation device and application
CN113659412A (en) * 2021-07-29 2021-11-16 中国科学院西安光学精密机械研究所 All-fiber supercontinuum light source based on graded-index optical fiber

Also Published As

Publication number Publication date
CN101770132B (en) 2012-09-05

Similar Documents

Publication Publication Date Title
CN101770132B (en) Visible light enhanced supercontinuum laser system with all-fiber structure
CN201332211Y (en) Visible light enhanced supercontinuum laser system with all-fiber structure
Hädrich et al. Nonlinear compression to sub-30-fs, 0.5 mJ pulses at 135 W of average power
CN104201545B (en) Based on the ultra broadband super continuum source of two waveband optical fiber laser
CN103151687B (en) A kind of directly produce in the amplifier in the method for infrared excess continuous spectrum
CN108512020B (en) Incoherent super-continuum spectrum light source with controllable spectrum and tunable output power
CN103995413B (en) A kind of ytterbium-doped all fibre optical frequency com system
CN103825164A (en) High average power full optical fiber intermediate infrared supercontinuum light source
CN106159664A (en) Full optical fiber high-energy ultra-short pulse laser system
CN104283097A (en) 780 nm high-power optical-fiber femtosecond laser device
CN209487930U (en) A kind of multi-wavelength Brillouin optical fiber laser based on New Resonance chamber
CN102012597B (en) Microstructural optical fiber-based dual-pumping optical fiber parametric amplifier
CN204067843U (en) A kind of ultra broadband super continuum source based on two waveband fiber laser
CN202995205U (en) Multicore photonic crystal fiber based supercontinuum source
Wang et al. 926 nm Yb-doped fiber femtosecond laser system for two-photon microscopy
CN101825826B (en) Device for generating super continuous spectrums
CN102841480A (en) All-optical wavelength converter based on photonic crystal optical fiber four-wave frequency mixing effect
CN104898198A (en) Optical fiber for generating ultra-wideband mid-infrared supercontinuum and manufacturing method thereof
CN108923234B (en) Supercontinuum generating device
CN101311811A (en) Full light analog-to-digital converter
CN104009377B (en) Blue-light and ultraviolet-light enhancing super-continuum spectrum laser device of full-fiber structure
CN113659412B (en) All-fiber supercontinuum light source based on graded-index optical fiber
CN103166093B (en) Multi-band nonlinear optical fiber amplification system
CN202720428U (en) Device for improving gain of fiber parameter amplifier by adopting phase-shifting grating
CN201689244U (en) Supercontinuum generating device

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20120905

Termination date: 20171231