CN101763450A - Titanium alloy component quantifying design method - Google Patents

Titanium alloy component quantifying design method Download PDF

Info

Publication number
CN101763450A
CN101763450A CN200910248943A CN200910248943A CN101763450A CN 101763450 A CN101763450 A CN 101763450A CN 200910248943 A CN200910248943 A CN 200910248943A CN 200910248943 A CN200910248943 A CN 200910248943A CN 101763450 A CN101763450 A CN 101763450A
Authority
CN
China
Prior art keywords
phase
interface
mutually
structure unit
primary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN200910248943A
Other languages
Chinese (zh)
Other versions
CN101763450B (en
Inventor
林成
赵永庆
刘志林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Liaoning University of Technology
Northwest Institute for Non Ferrous Metal Research
Original Assignee
Liaoning University of Technology
Northwest Institute for Non Ferrous Metal Research
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Liaoning University of Technology, Northwest Institute for Non Ferrous Metal Research filed Critical Liaoning University of Technology
Priority to CN 200910248943 priority Critical patent/CN101763450B/en
Publication of CN101763450A publication Critical patent/CN101763450A/en
Application granted granted Critical
Publication of CN101763450B publication Critical patent/CN101763450B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Catalysts (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

The invention relates to a titanium alloy component quantifying design method, which comprises the following steps: proceeding from the practical phase change process of the titanium alloy and establishing a mathematical model of a strengthening weight and a strengthening factor of the titanium alloy under different heat treatment conditions on the electronic structure level, then taking a tensile strength and a tensile stretch value of alpha-Ti and beta-Ti as basic values, and utilizing the strengthening weight and the strengthening factor to calculate a strength increment and a reduction of the tensile stretch under different heat treatment conditions so as to calculate values of the tensile strength and the tensile stretch of the titanium alloy under different heat treatment conditions; and programming a calculation formula into a calculation software, observing the variation quantities of the tensile stretch and the tensile stretch of alloying elements under different heat treatment conditions on the computer, and repeatedly adjusting the chemical components of the alloy to make relative errors of theoretical calculated values and technical requirement values of the tensile strength and the tensile stretch of the designed alloy in the range of 10 percent so as to determine the components of the titanium alloy. The invention has rapid and economy design process and high accuracy of the design result, and provides the reference value for the component design of other alloy systems.

Description

Titanium alloy component quantifying design method
Technical field
The present invention relates to titanium alloy component quantifying design method, specifically, relate to from chemical constitution, utilize alloy the electronic structure parameter, in conjunction with the titanium alloy phase transformation titanium alloy component is optimized method for designing.
Background technology
Titanium alloy is used widely in industries such as Aero-Space, chemical industry, naval vessels because of having excellent properties such as intensity height, corrosion-resistant, nonmagnetic, weldability.Nowadays, the trade mark of titanium alloy has surpassed kind more than 70 in the world, but these alloying components almost are experience or " cooking method " design entirely.At present, the alloy design method that is applied to the titanium alloy field mainly contains d-electron theory design method and based on alloy design method such as fuzzy logic, nerual network technique and expert databases.For polynary titanium alloy system, often relate to the interaction of complicated multiple alloying component and show complicated polyphase microstructure structure, make d-electron theory design method be difficult to quantitatively to determine the relation between the performance-microstructure-composition of alloy.And fuzzy logic, nerual network technique and expert database simulation precision height, but physical significance is indeterminate, is difficult to be deep into microscopic nature.The possessor once utilized the alloy valence electron structure to calculate the yield strength of TiAl-Nb alloy to the greatest extent, but because of not taking into full account the actual transformation process of titanium alloy, Theoretical Calculation and actual conditions deviation are bigger, can't carry out the quantitative design that TiAl-Nb is an alloying component, let alone carry out the component quantifying design of polynary titanium alloy system.
Summary of the invention
The object of the present invention is to provide a kind of titanium alloy component quantifying design method, this method operates and calculates easy, design result accuracy height.
Technical scheme provided by the invention is:
A kind of titanium alloy component quantifying design method, its special character is:
Calculate phase structure unit and phase interface electronic structure parameter n in the titanium alloy 1.1 utilize " solid and molecule experience electron theory " A', σ N, Δ ρ ', Δ ρ Max, σ, and set up database as table 1~table 8;
Table 1 β is the electronic structure parameter (900 ℃) of middle phase structure unit mutually
The phase structure unit ??n A The phase structure unit ??n A
??β-Ti ??0.28626
??β-Ti-Al ??0.2640 ??β-Ti-Al* ??0.25094
??β-Ti-Zr ??0.3098 ??β-Ti-Zr-Al ??0.28808
??β-Ti-Sn ??0.31022 ??β-Ti-Sn-Al ??0.28877
??β-Ti-Mo ??0.32364 ??β-Ti-Mo-Al ??0.30370
The phase structure unit ??n A The phase structure unit ??n A
??β-Ti-V ??0.30213 ??β-Ti-V-Al ??0.30351
??β-Ti-Nb ??0.32011 ??β-Ti-Nb-Al ??0.29655
??β-Ti-Fe ??0.29870 ??β-Ti-Fe-Al ??0.26655
??β-Ti-Cr ??0.29088 ??β-Ti-Cr-Al ??0.26905
??β-Ti-Mn ??0.32738 ??β-Ti-Mn-Al ??0.28578
??β-Ti-Hf ??0.30708 ??β-Ti-Hf-Al ??0.28437
??β-Ti-Co ??0.32458 ??β-Ti-Co-Al ??0.29295
??β-Ti-Si ??0.29232 ??β-Ti-Si-Al ??0.26637
??β-Ti-Cu ??0.31789 ??β-Ti-Cu-Al ??0.29298
??β-Ti-Ni ??0.34389 ??β-Ti-Ni-Al ??0.31127
??β-Ti-W ??0.29826 ??β-Ti-W-Al ??0.27736
Annotate: " * " represents Al element wt percentage more than or equal to 6%; Down together.
Table 2 β is the electronic structure parameter (25 ℃) of middle structural unit mutually
The phase structure unit ??n A ??σ N The phase structure unit ??n A ??σ N
??β-Ti ??0.29889 ??2
??β-Ti-Al ??0.27321 ??13 ??β-Ti-Al* ??0.24761 ??22
??β-Ti-Zr ??0.31605 ??44 ??β-Ti-Zr-Al ??0.29209 ??361
??β-Ti-Sn ??0.32279 ??15 ??β-Ti-Sn-Al ??0.29731 ??128
??β-Ti-Mo ??0.33544 ??41 ??β-Ti-Mo-Al ??0.27904 ??309
??β-Ti-V ??0.30768 ??55 ??β-Ti-V-Al ??0.31071 ??487
The phase structure unit ??n A ??σ N The phase structure unit ??n A ??σ N
??β-Ti-Nb ??0.33326 ??44 ??β-Ti-Nb-Al ??0.30050 ??587
??β-Ti-Fe ??0.3026 ??69 ??β-Ti-Fe-Al ??0.27305 ??457
??β-Ti-Cr ??0.29556 ??50 ??β-Ti-Cr-Al ??0.27236 ??551
??β-Ti-Mn ??0.33147 ??78 ??β-Ti-Mn-Al ??0.29378 ??477
??β-Ti-Hf ??0.31238 ??41 ??β-Ti-Hf-Al ??0.28914 ??380
??β-Ti-Co ??0.32893 ??71 ??β-Ti-Co-Al ??0.30317 ??544
??β-Ti-Si ??0.28859 ??17 ??β-Ti-Si-Al ??0.30084 ??690
??β-Ti-Cu ??0.32317 ??54 ??β-Ti-Cu-Al ??0.27341 ??159
??β-Ti-Ni ??0.34503 ??56 ??β-Ti-Ni-Al ??0.32378 ??698
??β-Ti-W ??0.30752 ??28 ??β-Ti-W-Al ??0.28209 ??339
The electronic structure parameter (25 ℃) of table 3 β-Ti-M/ β-Ti phase interface
Phase interface ??Δρ′ ??σ Phase interface ??Δρ′ ??σ
??β-Ti-Al/β-Ti ??9.56 ??26 ??β-Ti-Al/β-Ti* ??19.7 ??44
??β-Ti-Zr/β-Ti ??5.56 ??88 ??β-Ti-Zr-Al/β-Ti ??6.08 ??722
??β-Ti-Sn/β-Ti ??7.79 ??30 ??β-Ti-Sn-Al/β-Ti ??6.98 ??256
??β-Ti-Mo/β-Ti ??6.06 ??68 ??β-Ti-Mo-Al/β-Ti ??9.57 ??618
??β-Ti-V/β-Ti ??3.49 ??110 ??β-Ti-V-Al/β-Ti ??6.90 ??984
??β-Ti-Nb/β-Ti ??8.54 ??92 ??β-Ti-Nb-Al/β-Ti ??6.45 ??1174
??β-Ti-Fe/β-Ti ??4.81 ??138 ??β-Ti-Fe-Al/β-Ti ??9.74 ??914
Phase interface ??Δρ′ ??σ Phase interface ??Δρ′ ??σ
??β-Ti-Cr/β-Ti ??2.61 ??100 ??β-Ti-Cr-Al/β-Ti ??9.67 ??1102
??β-Ti-Mn/β-Ti ??10.2 ??156 ??β-Ti-Mn-Al/β-Ti ??5.79 ??954
??β-Ti-Hf/β-Ti ??4.47 ??82 ??β-Ti-Hf-Al/β-Ti ??6.39 ??760
??β-Ti-Co/β-Ti ??9.45 ??142 ??β-Ti-Co-Al/β-Ti ??5.59 ??1088
??β-Ti-Si/β-Ti ??5.17 ??34 ??β-Ti-Si-Al/β-Ti ??10.1 ??318
??β-Ti-Cu/β-Ti ??7.67 ??108 ??β-Ti-Cu-Al/β-Ti ??6.11 ??1380
??β-Ti-Ni/β-Ti ??14.3 ??112 ??β-Ti-Ni-Al/β-Ti ??8.70 ??1396
??β-Ti-W/β-Ti ??4.17 ??56 ??β-Ti-W-Al/β-Ti ??8.41 ??678
The electronic structure parameter (25 ℃) of table 4 β-Ti-Al (Al-M)/β-Ti-Al (Al-M) phase interface
Phase interface ??Δρ′ ??σ Phase interface ??Δρ′ ??σ
??β-Ti-Al/β-Ti-Al ??7.56 ??91 ??β-Ti-Al/β-Ti-Al* ??15.91 ??143
??β-Ti-Zr/β-Ti-Zr ??2.71 ??990 ??β-Ti-Zr-Al/β-Ti-Zr-Al ??7.61 ??65341
??β-Ti-Sn/β-Ti-Sn ??5.34 ??120 ??β-Ti-Sn-Al/β-Ti-Sn-Al ??9.68 ??8260
??β-Ti-Mo/β-Ti-Mo ??4.05 ??1021 ??β-Ti-Mo-Al/β-Ti-Mo-Al ??10.8 ??48403
??β-Ti-V/β-Ti-V ??2.73 ??1275 ??β-Ti-V-Al/β-Ti-V-Al ??8.25 ??121278
??β-Ti-Nb/β-Ti-Nb ??2.90 ??1081 ??β-Ti-Nb-Al/β-Ti-Nb-Al/ ??8.08 ??172578
??β-Ti-Fe/β-Ti-Fe ??6.16 ??2415 ??β-Ti-Fe-Al/β-Ti-Fe-Al ??8.08 ??104653
??β-Ti-Cr/β-Ti-Cr ??3.15 ??1275 ??β-Ti-Cr-Al/β-Ti-Cr-Al ??8.34 ??152076
??β-Ti-Mn/β-Ti-Mn ??6.01 ??3081 ??β-Ti-Mn-Al/β-Ti-Mn-Al ??7.70 ??114003
??β-Ti-Hf/β-Ti-Hf ??2.67 ??861 ??β-Ti-Hf-Al/β-Ti-Hf-Al ??7.80 ??72390
??β-Ti-Co/β-Ti-Co ??5.72 ??2556 ??β-Ti-Co-Al/β-Ti-Co-Al ??7.69 ??148240
Phase interface ??Δρ′ ??σ Phase interface ??Δρ′ ??σ
??β-Ti-Si/β-Ti-Si ??5.86 ??153 ??β-Ti-Si-Al/β-Ti-Si-Al ??10.4 ??12723
??β-Ti-Cu/β-Ti-Cu ??6.27 ??1485 ??β-Ti-Cu-Al/β-Ti-Cu-Al ??8.87 ??238402
??β-Ti-Ni/β-Ti-Ni ??4.16 ??1596 ??β-Ti-Ni-Al/β-Ti-Ni-Al ??8.18 ??243958
??β-Ti-W/-Ti-W ??4.69 ??464 ??β-Ti-W-Al/β-Ti-W-Al ??10.1 ??58284
Table 5 α is the electronic structure parameter (25 ℃) of middle phase structure unit mutually
The phase structure unit ??n A ??σ N The phase structure unit ??n A ??σ N
??α-Ti ??0.24902 ??2
??α-Ti-Al ??0.23685 ??14 ??α-Ti-Zr-Al ??0.25051 ??292
??α-Ti-Zr ??0.2631 ??39 ??α-Ti-Sn-Al ??0.25318 ??88
??α-Ti-Sn ??0.26739 ??11 ??α-Ti-Mo-Al ??0.261 ??275
??α-Ti-Mo ??0.27184 ??33 ??α-Ti-V-Al ??0.26025 ??298
??α-Ti-V ??0.27330 ??43 ??α-Ti-Nb-Al ??0.2601 ??282
??α-Ti-Nb ??0.27293 ??36 ??α-Ti-Fe-Al ??0.24349 ??330
??α-Ti-Fe ??0.25488 ??40 ??α-Ti-Cr-Al ??0.2408 ??288
??α-Ti-Cr ??0.25308 ??32 ??α-Ti-M?n-Al ??0.25719 ??357
??α-Ti-Mn ??0.26948 ??41 ??α-Ti-Hf-Al ??0.24976 ??276
??α-Ti-Hf ??0.26095 ??34 ??α-Ti-Co-Al ??0.25789 ??321
??α-Ti-Co ??0.26939 ??48 ??α-Ti-Si-Al ??0.23554 ??101
??α-Ti-Si ??0.25163 ??15 ??α-Ti-Cu-Al ??0.25261 ??318
??α-Ti-Cu ??0.26576 ??35 ??α-Ti-Ni-Al ??0.26616 ??322
The phase structure unit ??n A ??σ N The phase structure unit ??n A ??σ N
??α-Ti-Ni ??0.27959 ??37 ??α-Ti-W-Al ??0.24623 ??161
??α-Ti-W ??0.26019 ??20 ??α-Ti-O ??0.62095 ??8
??α-Ti-N ??0.74635 ??8 ??α-Ti-C ??0.70486 ??10
The electronic structure parameter of table 6 α-Ti-Al (Al-M)/α-Ti phase interface (25 ℃)
Phase interface ??Δρ′ ??σ Phase interface ??Δρ′ ??σ
??α-Ti-Al/α-Ti ??5.78 ??28 ??α-Ti-Zr-Al/α-Ti ??3.97 ??584
??α-Ti-Zr/α-Ti ??5.46 ??78 ??α-Ti-Sn-Al/α-Ti ??5.18 ??176
??α-Ti-Sn/α-Ti ??7.05 ??22 ??α-Ti-Mo-Al/α-Ti ??5.59 ??332
??α-Ti-Mo/α-Ti ??4.68 ??46 ??α-Ti-V-Al/α-Ti ??4.04 ??588
??α-Ti-V/α-Ti ??4.13 ??84 ??α-Ti-Nb-Al/α-Ti ??5.34 ??564
??α-Ti-Nb/α-Ti ??9.13 ??72 ??α-Ti-Fe-Al/α-Ti ??4.44 ??660
??α-Ti-Fe/α-Ti ??3.44 ??80 ??α-Ti-Cr-Al/α-Ti ??13.0 ??576
??α-Ti-Cr/α-Ti ??5.46 ??64 ??α-Ti-Mn-Al/α-Ti ??4.49 ??606
??α-Ti-Mn/α-Ti ??2.94 ??86 ??α-Ti-Hf-Al/α-Ti ??3.94 ??552
??α-Ti-Hf/α-Ti ??4.65 ??68 ??α-Ti-Co-Al/α-Ti ??5.16 ??642
??α-Ti-Co/α-Ti ??7.80 ??96 ??α-Ti-Si-Al/α-Ti ??7.03 ??202
??α-Ti-Si/α-Ti ??4.25 ??30 ??α-Ti-Cu-Al/α-Ti ??4.13 ??636
??α-Ti-Cu/α-Ti ??6.45 ??70 ??α-Ti-Ni-Al/α-Ti ??6.84 ??644
??α-Ti-Ni/α-Ti ??11.5 ??74 ??α-Ti-W-Al/α-Ti ??4.83 ??322
??α-Ti-W/α-Ti ??5.19 ??40 ??α-Ti-O/α-Ti ??36.8 ??16
Phase interface ??Δρ′ ??σ Phase interface ??Δρ′ ??σ
??α-Ti-C/α-Ti ??27.8 ??20 ??α-Ti-N/α-Ti ??29.0 ??16
The electronic structure parameter (25 ℃) of table 7 α-Ti-Al (Al-M)/α-Ti-Al (Al-M) phase interface
Phase interface ??Δρ′ ?Δρ max ??σ Phase interface ??Δρ′ ??Δρ max ??σ
??α-Ti-Al/α-Ti-Al ??5.46 ??13.9 ??105 ??α-Ti-Zr-Al/α-Ti-Zr-Al ??5.34 ??17.2 ??42778
??α-Ti-Zr/α-Ti-Zr ??2.99 ??7.80 ??780 ??α-Ti-Sn-Al/α-Ti-Sn-Al ??6.74 ??23.6 ??3917
??α-Ti-Sn/α-Ti-Sn ??3.73 ??11.1 ??66 ??α-Ti-Mo-Al/α-Ti-Mo-Al ??6.31 ??21.6 ??44850
??α-Ti-Mo/α-Ti-Mo ??4.23 ??13.1 ??703 ??α-Ti-V-Al/α-Ti-V-Al ??5.51 ??20.9 ??43365
??α-Ti-V/α-Ti-V ??3.23 ??10.4 ??903 ??α-Ti-Nb-Al/α-Ti-Nb-Al ??5.55 ??20.9 ??39903
??α-Ti-Nb/α-Ti-Nb ??2.81 ??9.98 ??666 ??α-Ti-Fe-Al/α-Ti-Fe-Al ??5.70 ??23.3 ??54615
??α-Ti-Fe/α-Ti-Fe ??3.69 ??12.1 ??820 ??α-Ti-Cr-Al/α-Ti-Cr-Al ??5.06 ??17.4 ??41616
??α-Ti-Cr/α-Ti-Cr ??2.03 ??7.69 ??528 ??α-Ti-Mn-Al/α-Ti-Mn-Al ??5.57 ??17.4 ??46056
??α-Ti-Mn/α-Ti-Mn ??2.54 ??8.30 ??946 ??α-Ti-Hf-Al/α-Ti-Hf-Al ??5.27 ??17.1 ??38226
??α-Ti-Hf/α-Ti-Hf ??2.63 ??8.20 ??595 ??α-Ti-Co-Al/α-Ti-Co-Al ??6.19 ??24.4 ??51681
??α-Ti-Co/α-Ti-Co ??3.94 ??15.1 ??1176 ??α-Ti-Si-Al/α-Ti-Si-Al ??7.03 ??24.5 ??5154
??α-Ti-Si/α-Ti-Si ??4.95 ??13.1 ??120 ??α-Ti-Cu-Al/α-Ti-Cu-Al ??5.85 ??23.2 ??50724
??α-Ti-Cu/α-Ti-Cu ??3.83 ??11.3 ??630 ??α-Ti-Ni-Al/α-Ti-Ni-Al ??5.40 ??19.6 ??52006
Phase interface ??Δρ′ ?Δρ max ??σ Phase interface ??Δρ′ ??Δρ max ??σ
??α-Ti-Ni/α-Ti-Ni ??3.20 ??10.7 ??703 ??α-Ti-W-Al/α-Ti-W-Al ??6.42 ??26.5 ??13403
??α-Ti-W/α-Ti-W ??3.76 ??17.4 ??250 ??α-Ti-O/α-Ti-O ??4.21 ??— ??36
??α-Ti-N/α-Ti-N ??2.83 ??— ??36 ??α-Ti-C/α-Ti-C ??2.05 ??— ??55
The electronic structure parameter (25 ℃) of table 8 α-Ti-Al (Al-M)/β-Ti-Al (Al-M) phase interface
Phase interface ??Δρ′ ??Δρ max ??σ Phase interface ??Δρ′ ??Δρ max ??σ
??α-Ti/β-Ti ??9.21 ??10.7 ??4
??α-Ti-Al/β-Ti-Al ??8.59 ??22.6 ??182 ??α-Ti-Al/β-Ti-Al* ??14.1 ??31.6 ??308
??α-Ti-Zr/β-Ti-Zr ??9.3 ??16.9 ??1716 ??α-Ti-Zr-Al/β-Ti-Zr-Al ??7.46 ??23.3 ??124100
??α-Ti-Sn/β-Ti-Sn ??10.0 ??22.9 ??165 ??α-Ti-Sn-Al/β-Ti-Sn-Al ??9.40 ??32.3 ??10472
??α-Ti-Mo/β-Ti-Mo ??8.58 ??29.1 ??782 ??α-Ti-Mo-Al/β-Ti-Mo-Al ??9.67 ??35.1 ??44156
??α-Ti-V/β-Ti-V ??8.15 ??19.5 ??2310 ??α-Ti-V-Al/β-Ti-V-Al ??7.58 ??26.9 ??139650
??α-Ti-Nb/β-Ti-Nb ??10.9 ??22.3 ??1584 ??α-Ti-Nb-Al/β-Ti-Nb-Al ??8.10 ??30.0 ??137052
??α-Ti-Fe/β-Ti-Fe ??8.57 ??23.4 ??2760 ??α-Ti-Fe-Al/β-Ti-Fe-Al ??7.52 ??27.7 ??148830
??α-Ti-Cr/β-Ti-Cr ??6.48 ??15.1 ??1600 ??α-Ti-Cr-Al/β-Ti-Cr-Al ??7.53 ??21.2 ??179136
??α-Ti-Mn/β-Ti-Mn ??11.8 ??26.0 ??3198 ??α-Ti-Mn-Al/β-Ti-Mn-Al ??8.14 ??26.1 ??153510
??α-Ti-Hf/β-Ti-Hf ??8.94 ??17.3 ??1394 ??α-Ti-Hf-Al/β-Ti-Hf-Al ??7.21 ??23.4 ??109848
??α-Ti-Co/β-Ti-Co ??11.0 ??26.6 ??3408 ??α-Ti-Co-Al/β-Ti-Co-Al ??7.33 ??28.0 ??164673
??α-Ti-Si/β-Ti-Si ??7.05 ??19.5 ??255 ??α-Ti-Si-Al/β-Ti-Si-Al ??9.42 ??33.6 ??19998
Phase interface ??Δρ′ ??Δρ max ??σ Phase interface ??Δρ′ ??Δρ max ??σ
??α-Ti-Cu/β-Ti-Cu ??10.5 ??25.6 ??1890 ??α-Ti-Cu-Al/β-Ti-Cu-Al ??8.87 ??31.0 ??219102
??α-Ti-Ni/β-Ti-Ni ??11.9 ??25.7 ??2072 ??α-Ti-Ni-Al/β-Ti-Ni-Al ??8.57 ??28.4 ??201894
??α-Ti-W/β-Ti-W ??8.31 ??29.1 ??560 ??α-Ti-W-Al/β-Ti-W-Al ??9.28 ??35.1 ??51198
1.2 calculate the reinforcement weight of each phase structure unit under the titanium alloy Different Heat Treatment Conditions and the interface enhancing coefficient of solution strengthening coefficient and phase interface;
At first utilize the atomic percentage of alloying component when calculating the reinforcement weight of each phase structure unit under the titanium alloy Different Heat Treatment Conditions and characterize make a concerted effort in the phase structure unit of the size statistical value n of the shared electron logarithm on the strong covalent bond of atomic link A' calculating titanium alloy forms the reinforcement weight of each phase structure unit in the single β phase solid solution after the solution treatment+shrend of β phase region;
Utilize the β phase conditional stability COEFFICIENT K in the titanium alloy β,
Figure G2009102489435D00061
Figure G2009102489435D00062
Calculating from β separate out mutually primary mutually in the reinforcement weight of each phase structure unit;
Utilize the β phase conditional stability COEFFICIENT K in the titanium alloy β',
Figure G2009102489435D00063
And
Figure G2009102489435D00064
Calculating from β separate out mutually secondary α mutually in the reinforcement weight of each phase structure unit, the mathematical model of weight calculation is strengthened in each phase structure unit of titanium alloy:
β mutually in the reinforcement weight of each phase structure unit:
Figure G2009102489435D00071
In the following formula x Al = n A ′ β - Ti - AL n A ′ β - Ti - Al + Σ i = 1 z n A ′ β - Ti - Al - M i , y Al = C Al C Al + Σ i = 1 z C M i
x i = n A ′ β - Ti - Al - M i n A ′ β - Ti - Al + Σ i = 1 z n A ′ β - Ti - Al - M i , y i = C M i C Al + Σ i = 1 z C M i
W wherein β-Ti-Al, W β-Ti-Al-M, W β-Ti-MReinforcement weight for β-Ti-Al, β-Ti-Al-M, β-Ti-M phase structure unit; C AlAtomic percentage for Al; C MFor not comprising the alloy atom percentage of Al element; Z is the alloying element species number, and i represents the sequence number of alloying element M;
The reinforcement weight of the phase structure unit that impurity element forms:
Figure G2009102489435D00076
W wherein α-Ti-O, W α-Ti-N, W α-Ti-CBe impurity element O, N, α-Ti-O, the α-Ti-N of C formation, the solution strengthening weight of α-Ti-C phase structure unit; C ' O, C ' N, C ' CThe nominal atomic percentage of representing O, N, C has respectively promptly deducted the content of corresponding impurity in the iodide-process titanium, and corresponding impurity content is got middle limit in the iodide-process titanium;
Primary mutually in the reinforcement weight of each phase structure unit:
Figure G2009102489435D00081
W wherein p α-Ti-Al, W p α-Ti-Al-M, W p α-Ti-MReinforcement weight for α-Ti-Al, α-Ti-Al-M, α-Ti-M phase structure unit in the primary phase solid solution; K ββ phase conditional stability coefficient in the expression titanium alloy, promptly K β = C 1 C K 1 + C 2 C K 2 + C 3 C K 3 + · · · + C n C K n ; Be illustrated in β under a certain solid solubility temperature → α and change alloy when beginning
The corresponding K of β β MoValue, K β MoBe β phase conditional stability coefficient in the Ti-Mo bianry alloy,
Figure G2009102489435D00084
Rising with solid solubility temperature reduces gradually, and value is 0.3~2.3;
Figure G2009102489435D00085
Be illustrated in β under a certain solid solubility temperature → α and change the corresponding K of alloy β when stopping β MoValue,
Figure G2009102489435D00086
Less with the solid solubility temperature variation, value is 0.07;
Primary is separated out the reinforcement weights W of back β middle mutually β-Ti-Al, β-Ti-Al-M, β-Ti-M phase structure unit mutually p β-Ti-Al, W p β-Ti-Al-M, W p β-Ti-MFor
Figure G2009102489435D00087
The weights W of the middle mutually α of primary-Ti phase structure unit p α-TiFor
Figure G2009102489435D00088
Primary is the atomic fraction C of middle Ti mutually α p TiFor
Figure G2009102489435D00091
Primary is separated out the back mutually and is not had secondary α when separating out, and β is the atomic fraction C of middle Ti mutually β TiFor
C β Ti = C Ti - C αp Ti . . . ( 7 )
Secondary α mutually in the reinforcement weight of each phase structure unit:
Figure G2009102489435D00093
W wherein s α-Ti-Al, W s α-Ti-Al-M, W s α-Ti-MReinforcement weight for secondary α-Ti-Al, α-Ti-Al-M, α-Ti-M phase structure unit; K β' separate out β phase conditional stability coefficient in the titanium alloy of back mutually for primary, with primary separate out back β mutually in the atomic percentage of alloying element be converted into percent by weight, press K then βComputing formula is calculated and is got final product;
Figure G2009102489435D00094
Be illustrated in β under a certain aging temp → α and change the corresponding K of alloy β when beginning β MoValue,
Figure G2009102489435D00095
Rising with the timeliness temperature reduces gradually, and value is 0.5~2.8;
Figure G2009102489435D00096
Be illustrated in β under a certain aging temp → α and change the corresponding K of alloy β when stopping β MoValue,
Figure G2009102489435D00097
Less with the timeliness temperature variation, value is 0.07;
Secondary α separates out the reinforcement weights W of back β middle mutually β-Ti-Al, β-Ti-Al-M, β-Ti-M phase structure unit mutually s β-Ti-Al, W s β-Ti-Al-M, W s β-Ti-MFor
Figure G2009102489435D00098
The weight of the middle mutually α of secondary α-Ti phase structure unit:
Figure G2009102489435D00101
The middle mutually Ti atomic percentage C of secondary α α s TiFor
Figure G2009102489435D00102
Secondary α separates out the middle mutually Ti atomic percentage of back β mutually:
C β Ti = C Ti - C αp Ti - C αs Ti . . . ( 12 )
When calculating the interface enhancing coefficient of the solution strengthening coefficient of phase structure unit in the titanium alloy and phase interface, at first utilize to characterize make a concerted effort in the phase structure unit of the size statistical value n of the shared electron logarithm on the strong covalent bond of interatomic bond A' characterize β phase, primary phase, secondary α mutually in the solution strengthening coefficient of each phase structure unit; With the interface electron density difference Δ ρ ', the Δ ρ that are complementary with interfacial stress MaxCharacterize β phase, primary phase, secondary α mutually in the interface enhancing coefficient of each phase interface;
The mathematical model of solution strengthening coefficient and interface enhancing coefficient calculations in the titanium alloy:
β mutually in the solution strengthening coefficient of each phase structure unit:
S wherein β-Ti-Al, S β-Ti-Al-M, S β-Ti-MThe solution strengthening coefficient of representing β-Ti-Al, β-Ti-Al-M, β-Ti-M phase structure unit respectively; n A' β-Ti-Al, n A' β-Ti-Al-M, n A' β-Ti-M, n A' β-TiBe respectively the assembly average of the shared electron logarithm on β-Ti-Al, β-Ti-Al-M, the strong bond in β-Ti-M, β-Ti phase structure unit;
β is the interface enhancing coefficient at middle out-phase interface mutually:
Figure G2009102489435D00111
S wherein β-Ti-Al/ β-Ti, S β-Ti-Al-M/ β-Ti, S β-Ti-M/ β-TiThe interface enhancing coefficient of expression phase interface β-Ti-Al/ β-Ti, β-Ti-Al-M/ β-Ti, β-Ti-M/ β-Ti; Δ ρ ' β-Ti-Al/ β-Ti, Δ ρ ' β-Ti-Al-M/ β-Ti, Δ ρ ' β-Ti-M/ β-TiBe respectively the assembly average of the electron density difference of β-Ti-Al/ β-Ti, β-Ti-Al-M/ β-Ti, β-Ti-M/ β-Ti phase interface;
β mutually in the interface enhancing coefficient of phase interface:
Figure G2009102489435D00112
S wherein β-Ti-Al/ β-Ti-Al, S β-Ti-Al-M/ β-Ti-Al-M, S β-Ti-M/ β-Ti-MThe interface enhancing coefficient of expression phase interface β-Ti-Al/ β-Ti-Al, β-Ti-Al-M/ β-Ti-Al-M, β-Ti-M/ β-Ti-M; Δ ρ ' β-Ti-Al/ β-Ti-Al, Δ ρ ' β-Ti-Al-M/ β-Ti-Al-M, Δ ρ ' β-Ti-M/ β-Ti-MBe respectively the assembly average of β-Ti-Al/ β-Ti-Al, β-Ti-Al-M/ β-Ti-Al-M, β-Ti-M/ β-Ti-M phase interface electron density difference;
Primary phase, secondary α be the solution strengthening coefficient of middle phase structure unit mutually:
Figure G2009102489435D00113
S wherein α-Ti-Al, S α-Ti-Al-M, S α-Ti-MThe solution strengthening coefficient of representing α-Ti-Al, α-Ti-Al-M during primary, secondary α are mutually, α-Ti-M respectively; n A' α-Ti-Al, n A' α-Ti-Al-M, n A' α-Ti-M, n A' α-TiBe respectively the assembly average of the shared electron logarithm on α-Ti-Al, α-Ti-Al-M, the strong bond in α-Ti-M, α-Ti phase structure unit;
Primary is the interface enhancing coefficient at middle out-phase interface mutually:
Figure G2009102489435D00121
S wherein α-Ti-Al/ α-Ti, S α-Ti-Al-M/ α-Ti, S α-Ti-M/ α-TiThe interface enhancing coefficient of representing phase interface α-Ti-Al/ α-Ti, α-Ti-Al-M/ α-Ti, α-Ti-M/ α-Ti during primary mutually respectively; Δ ρ ' α-Ti-Al/ α-Ti, Δ ρ ' α-Ti-Al-M/ α-Ti, Δ ρ ' α-Ti-M/ α-TiThe assembly average of the interface electron density difference of expression α-Ti-Al/ α-Ti, α-Ti-Al-M/ α-Ti, α-Ti-M/ α-Ti phase interface;
Primary mutually in the interface enhancing coefficient of phase interface:
Figure G2009102489435D00122
S wherein α-Ti-Al/ α-Ti-Al, S α-Ti-Al-M/ α-Ti-Al-M, S α-Ti-M/ α-Ti-MThe interface enhancing coefficient of representing α-Ti-Al/ α-Ti-Al, α-Ti-Al-M/ α-Ti-Al-M, α-Ti-M/ α-Ti-M phase interface during primary mutually respectively; Δ ρ ' α-Ti-Al/ α-Ti-Al, Δ ρ ' α-Ti-Al-M/ α-Ti-Al-M, Δ ρ ' α-Ti-M/ α-Ti-MThe assembly average of the interface electron density difference of expression α-Ti-Al/ α-Ti-Al, α-Ti-Al-M/ α-Ti-Al-M, α-Ti-M/ α-Ti-M phase interface;
Primary and β form the interface enhancing coefficient at out-phase interface mutually:
S wherein α-Ti-Al/ β-Ti-Al, S α-Ti-Al-M/ β-Ti-Al-M, S α-Ti-M/ β-Ti-M, S α-Ti/ β-TiRepresent that respectively primary and β form the interface enhancing coefficient of out-phase interface α-Ti-Al/ β-Ti-Al, α-Ti-Al-M/ β-Ti-Al-M, α-Ti-M/ β-Ti-M, α-Ti/ β-Ti mutually; Δ ρ ' α-Ti-Al/ β-Ti-Al, Δ ρ ' α-Ti-Al-M/ β-Ti-Al-M, Δ ρ ' α-Ti-M/ β-Ti-M, Δ ρ ' α-Ti/ β-TiThe assembly average of the interface electron density difference of expression α-Ti-Al/ β-Ti-Al, α-Ti-Al-M/ β-Ti-Al-M, α-Ti-M/ β-Ti-M, α-Ti/ β-Ti phase interface;
Secondary α mutually in the interface enhancing coefficient of phase interface:
Figure G2009102489435D00131
S wherein s α-Ti-Al/ α-Ti-Al, S s α-Ti-Al-M/ α-Ti-Al-M, S s α-Ti-M/ α-Ti-M, S s α-Ti/ α-TiThe interface enhancing coefficient of representing α-Ti-Al/ α-Ti-Al, α-Ti-Al-M/ α-Ti-Al-M, α in the secondary α phase solid solution-Ti-M/ α-Ti-M phase interface respectively; Δ ρ Max α-Ti-Al/ α-Ti-Al, Δ ρ Max α-Ti-Al-M/ α-Ti-Al-M, Δ ρ Max α-Ti-M/ α-Ti-MBe respectively the maximal value of the interface electron density difference of α-Ti-Al/ α-Ti-Al, α-Ti-Al-M/ α-Ti-Al-M, α-Ti-M/ α-Ti-M phase interface;
Secondary α and parent phase β form the interface enhancing coefficient at out-phase interface:
S wherein s α-Ti-Al/ β-Ti-Al, S s α-Ti-Al-M/ β-Ti-Al-M, S s α-Ti-M/ β-Ti-M, S s α-Ti/ β-TiRepresent that respectively secondary α and parent phase β form the interface enhancing coefficient at out-phase interface; Δ ρ Max α-Ti-Al/ β-Ti-Al, Δ ρ Max α-Ti-Al-M/ β-Ti-Al-M, Δ ρ Max α-Ti-M/ β-Ti-M, Δ ρ Max α-Ti/ β-TiThe maximal value of the interface electron density difference of expression α-Ti-Al/ β-Ti-Al, α-Ti-Al-M/ β-Ti-Al-M, α-Ti-M/ β-Ti-M, α-Ti/ β-Ti phase interface;
Impurity element forms the solution strengthening coefficient of phase structure unit:
Figure G2009102489435D00133
S wherein α-Ti-O, S α-Ti-N, S α-Ti-CRepresent impurity element O, N, C solution strengthening coefficient respectively in the α phase; n A' α-Ti-O, n A' α-Ti-N, n A' α-Ti-CAssembly average for shared electron logarithm on α-Ti-O, α-Ti-N, the strong covalent bond in α-Ti-C phase structure unit.
Impurity element forms the interface enhancing coefficient at out-phase interface:
Figure G2009102489435D00141
S wherein α-Ti-O/ α-Ti, S α-Ti-N/ α-Ti, S α-Ti-C/ α-TiThe interface enhancing coefficient of representing α-Ti-O/ α-Ti, α-Ti-N/ α-Ti, α-Ti-C/ α-Ti phase interface respectively; Δ ρ ' α-Ti-O/ α-Ti, Δ ρ ' α-Ti-N/ α-Ti, Δ ρ ' α-Ti-C/ α-TiAssembly average for α-Ti-O/ α-Ti, α-Ti-N/ α-Ti, α-Ti-C/ α-Ti phase interface electron density difference;
Impurity element forms the interface enhancing coefficient with phase interface:
Figure G2009102489435D00142
S wherein α-Ti-O/ α-Ti-O, S α-Ti-N/ α-Ti-N, S α-Ti-C/ α-Ti-CThe interface enhancing coefficient of representing α-Ti-O/ α-Ti-O, α-Ti-N/ α-Ti-N, α-Ti-C/ α-Ti-C phase interface respectively; Δ ρ ' α-Ti-Al/ α-Ti-O, Δ ρ ' α-Ti-N/ α-Ti-N, Δ ρ ' α-Ti-C/ α-Ti-CAssembly average for α-Ti-O/ α-Ti-O, α-Ti-N/ α-Ti-N, α-Ti-C/ α-Ti-C phase interface electron density difference.
1.3 calculate titanium alloy tensile strength, intensity with matrix α-Ti, β-Ti is base value, utilizes coefficient of intensification, strengthens the titanium alloy tensile strength increment under the weight calculation Different Heat Treatment Conditions, with the titanium alloy tensile strength increment summation that calculates, draw the titanium alloy tensile strength values
The mathematical model of titanium alloy calculation of Tensile Strength:
β mutually in the solution strengthening intensity increment of each phase structure unit:
Figure G2009102489435D00143
Δ σ wherein b β-Ti-Al, Δ σ b β-Ti-Al-M, Δ σ b β-Ti-MThe solution strengthening intensity increment of β-Ti-Al, β-Ti-Al-M, β-Ti-M phase structure unit in the expression β phase solid solution; σ b β-TiBe the tensile strength values of matrix β-Ti, σ b β - Ti = 200 MPa .
β is the interface enhancing intensity increment at middle out-phase interface mutually:
Δ σ wherein b β-Ti-Al/-Ti, Δ σ b β-Ti-Al-M/ β-Ti, Δ σ b β-Ti-M/ β-TiThe reinforcement intensity increment of β-Ti-Al/ β-Ti, β-Ti-Al-M/ β-Ti, β-Ti-M/ β-Ti phase interface in the expression β phase solid solution;
β mutually in the interface enhancing intensity increment of phase interface:
Figure G2009102489435D00154
Δ σ wherein b β-Ti-Al/ β-Ti-Al, Δ σ b β-Ti-Al-M/ β-Ti-Al-M, Δ σ b β-Ti-M/ β-Ti-Mβ-Ti-Al/ β-Ti-Al, β-Ti-Al-M/ β-Ti-Al-M, β-Ti-M/ β-Ti-M is with the reinforcement intensity increment of phase interface in the expression β phase solid solution.
Primary mutually in the solution strengthening intensity increment of each phase structure unit:
Figure G2009102489435D00155
Δ σ wherein Bp α-Ti-Al, Δ σ Bp α-Ti-Al-M, Δ σ Bp α-Ti-MThe solution strengthening intensity increment of α-Ti-Al, α-Ti-Al-M, α-Ti-M phase structure unit in the expression primary phase solid solution; σ b α-TiBe the tensile strength values of matrix α-Ti, σ b α - Ti = 275 MPa ;
Primary is the interface enhancing intensity increment at middle out-phase interface mutually:
Figure G2009102489435D00161
Δ σ wherein Bp α-Ti-Al/ α-Ti, Δ σ Bp α-Ti-Al-M/ α-Ti, Δ σ Bp α-Ti-M/ α-Tiα-Ti-Al/ α-Ti, α-Ti-Al-M/ α-Ti, α-Ti-M/ α-Ti phase interface is strengthened intensity increment in the expression primary phase solid solution;
In the primary with the interface enhancing intensity increment of phase interface:
Δ σ wherein Bp α-Ti-Al/ α Ti-Al, Δ σ Bp α-Ti-Al-M/ α-Ti-Al-M, Δ σ Bp α-Ti-M/ α-Ti-MThe interface enhancing intensity increment of α-Ti-Al/ α-Ti-Al, α-Ti-Al-M/ α-Ti-Al-M, α-Ti-M/ α-Ti-M phase interface in the expression primary phase solid solution.
The interface enhancing intensity increment at the out-phase interface that primary and β form mutually:
Δ σ wherein Bp Alpha-beta-Ti-Al, Δ σ Bp α-Ti-Al-M/ β-Ti-Al-M, Δ σ Bp α-Ti-M/ β-Ti-M, Δ σ Bp α-Ti/ β-TiThe interface enhancing intensity increment of representing α-Ti-Al/ β-Ti-Al, α-Ti-Al-M/ β-Ti-Al-M, α-Ti-M/ β-Ti-M, α-Ti/ β-Ti phase interface that primary and β form mutually;
Secondary α mutually in the solution strengthening intensity increment of each phase structure unit:
Figure G2009102489435D00164
Δ σ wherein Bs α-Ti-Al, Δ σ Bs α-Ti-Al-M, Δ σ Bs α-Ti-MThe solution strengthening intensity increment of representing α-Ti-Al, α-Ti-Al-M in the secondary α phase solid solution, α-Ti-M phase structure unit;
Secondary α mutually in the interface enhancing intensity increment of phase interface:
Figure G2009102489435D00171
Δ σ wherein Bs α-Ti-Al/ α-Ti-Al, Δ σ Bs α-Ti-Al-M/ α-Ti-Al-M, Δ σ Bs α-Ti-M/ α-Ti-MThe interface enhancing intensity increment of representing α-Ti-Al/ α-Ti-Al, α-Ti-Al-M/ α-Ti-Al-M, α in the secondary α phase solid solution-Ti-M/ α-Ti-M phase interface;
Secondary α and parent phase β form the interface enhancing intensity increment at out-phase interface:
Figure G2009102489435D00172
Δ σ wherein Bs α-Ti-Al/ β-Ti-Al, Δ σ Bs α-Ti-Al-M/ β-Ti-Al-M, Δ σ Bs α-Ti-M/ β-Ti-M, Δ σ Bs α-Ti/ β-TiThe interface enhancing intensity increment of representing α-Ti-Al/ β-Ti-Al, α-Ti-Al-M/ β-Ti-Al-M, α-Ti-M/ β-Ti-M phase interface that secondary α phase solid solution and parent phase β solid solution form;
The solution strengthening intensity increment of each phase structure unit that impurity element forms:
Figure G2009102489435D00173
Δ σ wherein b α-Ti-O, Δ σ b α-Ti-N, Δ σ b α-Ti-CExpression impurity element O, N, C form the solution strengthening intensity increment of α-Ti-O, α-Ti-N, α-Ti-C phase structure unit in α phase solid solution;
The interface enhancing intensity increment at the out-phase interface that impurity element forms:
Figure G2009102489435D00174
Δ σ wherein b α-Ti-O/ α-Ti, Δ σ b α-Ti-N/ α-Ti, Δ σ b α-Ti-C/ α-TiExpression impurity element O, N, C form the solution strengthening intensity increment of α-Ti-O/ α-Ti, α-Ti-N/ α-Ti, α-Ti-C/ α-Ti phase structure unit in α phase solid solution; The interface enhancing intensity increment of the same phase interface that impurity element forms:
Figure G2009102489435D00181
Δ σ wherein b α-Ti-O/ α-Ti-O, △ σ b α-Ti-N/ α-Ti-N, Δ σ b α-Ti-C/ α-Ti-CExpression impurity element O, N, C form the reinforcement intensity increment of α-Ti-O/ α-Ti-O, α-Ti-N/ α-Ti-N, α-Ti-C/ α-Ti-C phase interface in α phase solid solution;
The computing formula of titanium alloy tensile strength:
Figure G2009102489435D00182
1.4. calculate the titanium alloy length growth rate, length growth rate with α-Ti, β-Ti is a base value, utilizes coefficient of intensification, strengthens the titanium alloy length growth rate reduction amount under the weight calculation Different Heat Treatment Conditions, with the titanium alloy length growth rate reduction amount summation that calculates, draw the titanium alloy length growth rate
Titanium alloy length growth rate calculation mathematic model:
β mutually in the solution strengthening length growth rate reduction amount of each phase structure unit:
Figure G2009102489435D00183
Δ δ wherein β-Ti-Al, Δ δ β-Ti-Al-M, Δ δ β-Ti-MThe solution strengthening length growth rate reduction amount of β-Ti-Al, β-Ti-Al-M, β-Ti-M phase structure unit in the expression β phase solid solution; σ N β-Ti-Al, σ N β-Ti-Al-M, σ N β-Ti-MBe the state of atom group number that may exist in β-Ti-Al, β-Ti-Al-M, the β-Ti-M phase structure unit; δ β-TiBe the elongation values of matrix β-Ti, δ β-Ti=75%;
β is the interface enhancing length growth rate reduction amount at middle out-phase interface mutually:
Figure G2009102489435D00191
Δ δ wherein β-Ti-Al/ β-Ti, Δ δ β-Ti-Al-M/ β-Ti, Δ δ β-Ti-M/ β-TiThe interface enhancing length growth rate reduction amount of β-Ti-Al/ β-Ti, β-Ti-Al-M/ β-Ti, β-Ti-M/ β-Ti phase interface in the expression β phase solid solution; σ β-Ti-Al/ β-Ti, σ β-Ti-Al-M/ β-Ti, σ β-Ti-M/ β-TiBe the state of atom group number that may exist in β-Ti-Al/ β-Ti, β-Ti-Al-M/ β-Ti, β-Ti-M/ β-Ti phase interface;
β mutually in the interface enhancing length growth rate reduction amount of phase interface:
Figure G2009102489435D00192
Δ δ wherein β-Ti-Al/ β-Ti-Al, Δ δ β-Ti-Al-M/ β-Ti-Al-M, Δ δ β-Ti-M/ β-Ti-MThe interface enhancing length growth rate reduction amount of β-Ti-Al/ β-Ti-Al, β-Ti-Al-M/ β-Ti-Al-M, β-Ti-M/ β-Ti-M phase interface in the expression β phase solid solution; σ β-Ti-Al/ β-Ti-Al, σ β-Ti-Al-M/ β-Ti-Al-M, σ β-Ti-M/ β-Ti-MBe the state of atom group number that may exist in β-Ti-Al/ β-Ti-Al, β-Ti-Al-M/ β-Ti-Al-M, β-Ti-M/ β-Ti-M phase interface;
Primary mutually in the solution strengthening length growth rate reduction amount of each phase structure unit:
Figure G2009102489435D00201
Δ δ wherein p α-Ti-Al, Δ δ p α-Ti-Al-M, Δ δ p α-Ti-MThe solution strengthening length growth rate reduction amount of α-Ti-Al, α-Ti-Al-M, α-Ti-M phase structure unit in the expression primary phase solid solution; σ N α-Ti-Al, σ N α-Ti-Al-M, σ N α-Ti-MBe the state of atom group number that may exist in α-Ti-Al, α-Ti-Al-M, the α-Ti-M phase structure unit; δ α-TiBe the elongation values of matrix α-Ti, δ α-Ti=49%;
Primary is the interface enhancing length growth rate reduction amount at middle out-phase interface mutually:
Figure G2009102489435D00202
Δ δ wherein p α-Ti-Al/ α-Ti, Δ δ p α-Ti-Al-M/ α-Ti, Δ δ p α-Ti-M/ α-TiThe interface enhancing length growth rate reduction amount of α-Ti-Al/ α-Ti, α-Ti-Al-M/ α-Ti, α-Ti-M/ α-Ti phase interface in the expression primary phase solid solution; σ α-Ti-Al/ α-Ti, σ α-Ti-Al-M/ α-Ti, σ α-Ti-M/ α-TiBe the state of atom group number that may exist in α-Ti-Al/ α-Ti, α-Ti-Al-M/ α-Ti, α-Ti-M/ α-Ti phase interface;
Primary mutually in the interface enhancing length growth rate reduction amount of phase interface:
Figure G2009102489435D00203
Δ δ wherein p α-Ti-Al/ α-Ti-Al, Δ δ p α-Ti-Al-M/ α-Ti-Al-M, Δ δ p α-Ti-M/ α-Ti-MThe interface enhancing length growth rate reduction amount of α-Ti-Al/ α-Ti-Al, α-Ti-Al-M/ α-Ti-Al-M, α-Ti-M/ α-Ti-M phase interface in the expression primary phase solid solution; σ α-Ti-Al/ α-Ti-Al, σ α-Ti-Al-M/ α-Ti-Al-M, σ α-Ti-M/ α-Ti-MBe the state of atom group number that may exist in α-Ti-Al/ α-Ti-Al, α-Ti-Al-M/ α-Ti-Al-M, α-Ti-M/ α-Ti-M phase interface;
Primary and β form the interface enhancing length growth rate reduction amount at out-phase interface mutually:
Figure G2009102489435D00211
Δ δ wherein p α-Ti-Al/ β-Ti-Al, Δ δ p α-Ti-Al-M/ β-Ti-Al-M, Δ δ p α-Ti-M/ β-Ti-M, Δ δ p α-Ti/ β-TiRepresent that primary and β form the interface enhancing length growth rate reduction amount of α-Ti-Al/ β-Ti-Al, α-Ti-Al-M/ β-Ti-Al-M, α-Ti-M/ β-Ti-M phase interface mutually; σ α-Ti-Al/ β-Ti-Al, σ α-Ti-Al-M/ β-Ti-Al-M, σ α-Ti-M/ β-Ti-M, σ α-Ti/ β-TiBe the state of atom group number that may exist in α-Ti-Al/ β-Ti-Al, α-Ti-Al-M/ β-Ti-Al-M, α-Ti-M/ β-Ti-M, α-Ti/ β-Ti phase interface;
Secondary α mutually in the solution strengthening length growth rate reduction amount of each phase structure unit:
Figure G2009102489435D00212
Δ δ wherein s α-Ti-Al, Δ δ s α-Ti-Al-M, Δ δ s α-Ti-MThe solution strengthening length growth rate reduction amount of representing α-Ti-Al, α-Ti-Al-M in the secondary α phase solid solution, α-Ti-M phase structure unit; δ when primary is separated out Matrixα-Ti, otherwise δ Matrixβ-Ti
Secondary α mutually in the interface enhancing length growth rate reduction amount of phase interface:
Figure G2009102489435D00213
Δ δ wherein s α-Ti-Al/ α-Ti-Al, Δ δ s α-Ti-Al-M/ α-Ti-Al-M, Δ δ s α-Ti-M/ α-Ti-MThe interface enhancing length growth rate reduction amount of representing α-Ti-Al/ α-Ti-Al, α-Ti-Al-M/ α-Ti-Al-M, α in the secondary α phase solid solution-Ti-M/ α-Ti-M phase interface;
Secondary α and β form the interface enhancing length growth rate reduction amount at out-phase interface mutually:
Δ δ wherein s α-Ti-Al/ β-Ti-Al, Δ δ s α-Ti-Al-M/ β-Ti-Al-M, Δ δ s α-Ti-M/ β-Ti-M, Δ δ s α-Ti/ β-TiRepresent that secondary α and β form the interface enhancing length growth rate reduction amount of α-Ti-Al/ β-Ti-Al, α-Ti-Al-M/ β-Ti-Al-M, α-Ti-M/ β-Ti-M, α-Ti/ β-Ti phase interface mutually; σ α-Ti/ β-TiThe state of atom group number that may exist for α-Ti/ β-Ti phase interface;
Impurity element forms the solution strengthening length growth rate reduction amount of phase structure unit:
Figure G2009102489435D00222
Δ δ wherein α-Ti-O, Δ δ α-Ti-N, Δ δ α-Ti-CSolution strengthening length growth rate reduction amount for α-Ti-O, α-Ti-N, α-Ti-C structural unit;
Impurity element forms the interface enhancing length growth rate reduction amount at out-phase interface:
Figure G2009102489435D00223
Δ δ wherein α-Ti-O/ α-Ti, Δ δ α-Ti-N/ α-Ti, Δ δ α-Ti-C/ α-TiInterface enhancing length growth rate reduction amount for α-Ti-O/ α-Ti, α-Ti-N/ α-Ti, α-Ti-C/ α-Ti phase interface;
Impurity element forms the interface enhancing length growth rate reduction amount with phase interface:
Figure G2009102489435D00231
Δ δ wherein α-Ti-O/ α-Ti, Δ δ α-Ti-N/ α-Ti, Δ δ α-Ti-C/ α-TiInterface enhancing length growth rate reduction amount for α-Ti-O/ α-Ti-O, α-Ti-N/ α-Ti-N, α-Ti-C/ α-Ti-C phase interface;
Titanium alloy length growth rate computing formula:
Figure G2009102489435D00232
Figure G2009102489435D00233
Figure G2009102489435D00234
Figure G2009102489435D00235
Figure G2009102489435D00236
Figure G2009102489435D00237
Figure G2009102489435D00238
Figure G2009102489435D002310
Figure G2009102489435D002311
Figure G2009102489435D002312
Figure G2009102489435D002314
Figure G2009102489435D002315
Aforementioned calculation formula (1)~formula (52) is compiled into software for calculation, carry out after the alloying component of the choosing of input examination on computers and the corresponding Technology for Heating Processing and calculate, by observing alloying element tensile strength under Different Heat Treatment Conditions, the change amount of length growth rate, adjust alloy composition repeatedly and make the design tensile strength of alloys, the relative error of the calculated value of length growth rate and technical requirement value so just can be determined through the solution treatment+shrend of β phase region in 10%, the chemical constitution of titanium alloy under the solution treatment+shrend of alpha+beta phase region and the solution treatment+aging condition.
Above-mentioned titanium alloy component quantifying design method, can carry out on computers adjusting alloy composition for 5~10 times, and the pairing alloying component of minimum value of the calculated value of getting design tensile strength of alloys, length growth rate and the relative error of technical requirement value is as designing the optimized chemical constitution of alloy.
The performance that calculates alloy is to calculate the important content of materialogy from the chemical constitution of alloy, in conjunction with preparation technology, theoretically, also is alloy designs truly.For this reason, the lot of domestic and foreign scholar is just from different levels, approach to accurate quantitative Analysis from approximate with different modes.The present invention is based on " solid and molecule experience electron theory ", utilize alloy electronic structure parameter,, propose quantitative Analysis titanium alloy tensile strength sigma in conjunction with the phase transformation of titanium alloy b, length growth rate δ mathematical model, with tensile strength sigma b, length growth rate δ calculated value be the quantitative design that condition is carried out titanium alloy component.Although, the same electronic structure parameter that is adopted separately with d-electron theory design method of the present invention all can reflect the characteristic of alloy atom outer-shell electron, but the present invention but can solve the problem that d-electron theory design method is difficult to quantitative Analysis strength of alloy, length growth rate at an easy rate.Compare with fuzzy logic, nerual network technique, expert database, input was not the sample data of gathering and simulating in producing when the present invention calculated, but had the electronic structure characteristic parameter of the alloy system self of clear and definite physical significance.
The present invention is from the actual transformation process of titanium alloy, on the electronic structure level, set up the reinforcement weight of titanium alloy, the mathematical model of coefficient of intensification under the Different Heat Treatment Conditions, tensile strength, elongation values with α-Ti, β-Ti is base value then, the intensity increment under utilization reinforcement weight, the coefficient of intensification calculating Different Heat Treatment Conditions and the reduction amount of length growth rate, thus the tensile strength of titanium alloy under Different Heat Treatment Conditions, the calculated value of length growth rate provided.Computing formula is compiled into software for calculation, observe the change amount of alloying element tensile strength, length growth rate under Different Heat Treatment Conditions on computers, adjust relative error that alloy composition makes the calculated value of design tensile strength of alloys, length growth rate and technical requirement value repeatedly in 10%, so just can determine titanium alloy component.Its principal feature is, design based on the electronic structure parameter derive from the atom outer-shell electron number that can characterize the alloy atom characteristic, have clear physical meaning; The mathematical model that β phase solid solution, primary reach the reinforcement weight of secondary α phase solid solution has mutually embodied the phase transition process under the titanium alloy Different Heat Treatment Conditions; The mathematical model of solution strengthening coefficient has embodied under the Different Heat Treatment Conditions size of alloy atom adhesion in the titanium alloy, can be with solution strengthening coefficient sign so make a concerted effort relevant titanium alloy solution strengthening mechanism with atomic link; The mathematical model of interface enhancing coefficient has embodied under the Different Heat Treatment Conditions in the titanium alloy interface stress level between phase interface, so ageing strengthening mechanism, dislocation strengthening mechanism can characterize with the interface enhancing coefficient in the titanium alloy relevant with interfacial stress.Design based on mathematical model advanced person, simple, design process is quick and economical, design result accuracy height, application prospect is very wide, not only reduced the alloy designs cost, also enrich titanium alloy component design theory system, also be simultaneously the composition design of other alloy system value of offering reference.
Embodiment
Example 1
The quantitative design of metastable beta-titanium alloy composition during β phase region solution treatment+shrend.Metastable beta-titanium alloy is organized as single β phase after the solution treatment+shrend of β phase region, promptly the reinforcement weight of primary, secondary α phase is zero, and correspondingly the intensity increment of phase structure unit and phase interface and length growth rate reduction amount also are zero among primary, the secondary α.Software for calculation is when executing the task in this example, although need to carry out all calculation procedures of formula (1)~formula (52), the result of calculation of the intensity increment of phase structure unit and phase interface and length growth rate reduction amount is zero among primary, the secondary α.So only handed in the argumentation of specific implementation process below and the reinforcement non-vanishing relevant phase structure unit of weight and the calculation procedure of phase interface, concrete steps are as follows:
1. utilize " solid and molecule experience electron theory " to calculate middle mutually phase structure unit of β and phase interface electronic structure parameter n A', σ N, Δ ρ ', Δ ρ Max, σ, and set up database as table 1~table 4.
2. utilize the statistical value n of the shared electron logarithm on the strong covalent bond in the atomic percentage of alloy composition, the phase structure unit in the table 1 A' and formula (1) calculate β mutually in the reinforcement weight of each phase structure unit, utilize the atomic percentage of impurity element and formula (2) to calculate the reinforcement weight of the phase structure unit that impurity element forms, utilize formula (6) to calculate impurity element and be solid-solubilized in the atomic percentage C that occupy Ti of α in mutually α p TiAnd utilize formula (7) to calculate the β atomic percentage C of middle Ti mutually β Ti
Utilize table 2 and formula (13) calculate β mutually in the solution strengthening coefficient of each phase structure unit, utilize table 3 and formula (14) to calculate the β interface enhancing coefficient at middle out-phase interface mutually, utilize table 4 and formula (15) calculate β mutually in the interface enhancing coefficient of phase interface, utilize in α-Ti-O in the table 5, α-Ti-N, the α-Ti-C phase structure unit statistical value n of shared electron logarithm on the strong covalent bond A' reach formula (22) to calculate the solution strengthening coefficient that impurity element forms the phase structure unit, utilize the statistical value Δ ρ ' of α in the table 6-Ti-O/ α-Ti, α-Ti-N/ α-Ti, α-Ti-C/ α-Ti phase interface electron density difference and formula (23) to calculate the interface enhancing coefficient that impurity element forms the out-phase interface, utilize the statistical value Δ ρ ' of α in the table 7-Ti-O/ α-Ti-O, α-Ti-N/ α-Ti-N, α-Ti-C/ α-Ti-C phase interface electron density difference and formula (24) to calculate impurity element and form interface enhancing coefficient with phase interface.
3. with the β that calculates mutually in solution strengthening weight, the solution strengthening coefficient substitution formula (25) of each phase structure unit calculate β mutually in the solution strengthening intensity increment of each phase structure unit; With the β that calculates mutually in each phase structure unit solution strengthening weight, β mutually in the interface enhancing coefficient substitution formula (26) at out-phase interface calculate β mutually in the interface enhancing intensity increment at out-phase interface; With the β that calculates mutually in the solution strengthening weight of each phase structure unit and β mutually in the interface enhancing coefficient substitution formula (27) of phase interface calculate β mutually in the interface enhancing intensity increment of phase interface; The reinforcement weight and the solution strengthening coefficient substitution formula (35) of the phase structure unit that the impurity element that calculates is formed calculate the solution strengthening intensity increment that impurity element forms the phase structure unit; The reinforcement weight of the phase structure unit that the impurity element that calculates is formed and the interface enhancing coefficient substitution formula (36) that impurity element forms the out-phase interface calculate the interface enhancing intensity increment that impurity element forms the out-phase interface; The reinforcement weight of the phase structure unit that the impurity element that calculates is formed and impurity element form interface enhancing coefficient substitution formula (37) with phase interface and calculate impurity element and form interface enhancing intensity increment with phase interface.C with aforementioned calculation α p Ti, C β Ti, C αs Ti = 0 And the tensile strength of metastable beta-titanium alloy when respectively strengthening intensity increment substitution formula (38) and calculating β phase region solution treatment+shrend.
4. the state of atom group that the β that calculates may be existed in the phase structure unit in the solution strengthening weight, solution strengthening coefficient, interface enhancing coefficient, table 2 of each phase structure unit in is mutually counted σ N, the state of atom group that may exist on the phase interface in table 3~table 4 count σ respectively substitution formula (39-41) calculate each phase structure unit and phase interface length growth rate reduction amount in the β phase solid solution; The state of atom group that may exist in the phase structure unit of impurity element in the reinforcement weight of the phase structure unit that the impurity element that calculates is formed, solution strengthening coefficient, interface enhancing coefficient, the table 5 is counted σ N, the state of atom group that may exist on the phase interface of impurity element in the table 6-table 7 count σ respectively substitution formula (49-51) calculate the length growth rate reduction amount that impurity element forms phase structure unit and phase interface; The length growth rate of metastable beta-titanium alloy when utilizing formula (52) to calculate β phase region solution treatment+shrend at last.
Computing formula (1)~formula (52) is compiled into software for calculation, carry out after the heat-treat condition of the alloying component of the choosing of input examination on computers and the solution treatment+shrend of selection β phase region and calculate, by observing the change amount of alloying element tensile strength, length growth rate under Different Heat Treatment Conditions, adjust relative error that alloy composition makes design tensile strength of alloys, elongation values and technical requirement value repeatedly within 10%, the chemical constitution of metastable beta-titanium alloy in the time of so just can having determined β phase region solution treatment+shrend.Be not more than under 10% the precondition satisfying relative error, can carry out 5-10 time adjustment alloy composition on computers, and the optimized design mix of the relative error of getting the calculated value of tensile strength, length growth rate and technical requirement value metastable beta-titanium alloy when hour pairing alloying component is as β phase region solution treatment+shrend.
In order to verify the reliability of formula, table 9 has provided β-21, BT-22, Ti-B20 titanium alloy tensile strength ρ when β phase region solution treatment+shrend b, the measured value of length growth rate δ and the contrast of calculated value, the relative error of the two is all within 10%.From result of calculation, the theoretical model of quantitative design has higher reliability.
The contrast of calculated value and experiment value during the solution treatment of table 9 β phase region
Figure G2009102489435D00281
Annotate: 1) β-21 alloy: chemical constitution (wt%) is Al=3.0, Mo=15.0, Nb=2.7, Si=0.20, Fe=0.08, N=0.011, O=0.08, C=0.04, H=0.001; Transformation temperature is about 815 ℃.2) BT-22 alloy: chemical constitution (wt%) is Al=5.0, Mo=5.0, V=5.0, Cr=1.0, Fe=1.0, N=0.011, O=0.085, C=0.04, H=0.001; Transformation temperature is about 830 ℃.3) Ti-B20 alloy: chemical constitution (wt%) is Al=3.7, Mo=4.7, V=4.0, Cr=1.9, Fe=1.0, Zr=2.1, Sn=1.9, N=0.027, O=0.08, C=0.03, H=0.001; Transformation temperature is about 810 ℃.
Example 2
The quantitative design of titanium alloy component during alpha+beta phase region solution treatment+shrend.Titanium alloy is organized as nascent alpha+beta phase after the solution treatment+shrend of alpha+beta phase region, the reinforcement weight of promptly secondary α phase is zero, and the intensity increment of phase structure unit and phase interface and length growth rate reduction amount also are zero among the correspondingly secondary α.Software for calculation is when executing the task in this example, although need to carry out all calculation procedures of formula (1)~formula (52), the result of calculation of the intensity increment of phase structure unit and phase interface and length growth rate reduction amount is zero among the secondary α.So only handed in the argumentation of specific implementation process below and the reinforcement non-vanishing relevant phase structure unit of weight and the calculation procedure of phase interface, concrete steps are as follows:
1. utilize " solid and molecule experience electron theory " calculate β mutually, the middle mutually phase structure unit of primary and phase interface electronic structure parameter n A', σ N, Δ ρ ', Δ ρ Max, σ, and set up database as table 1~table 8.
2. utilize the statistical value n of the shared electron logarithm on the strong covalent bond in the atomic percentage of alloy composition, the phase structure unit in the table 1 A' and formula (1) calculate β mutually in the reinforcement weight of each phase structure unit, utilize the atomic percentage of impurity element and the reinforcement weight that formula (2) calculates impurity element phase structure unit, utilize formula (3) calculate primary mutually in the reinforcement weight of each phase structure unit, utilize formula (4) calculate primary separate out mutually back β mutually in the reinforcement weight of each phase structure unit; Utilize formula (5) to calculate the weight of the middle mutually α of primary-Ti structural unit, utilize formula (6) to calculate the primary atomic percentage C of middle Ti mutually α p TiAnd utilize formula (7) to calculate the β atomic percentage C of middle Ti mutually β Ti
Utilize table 2 and formula (13) calculate β mutually in the solution strengthening coefficient of each phase structure unit, utilize table 3 and formula (14) to calculate the β interface enhancing coefficient at middle out-phase interface mutually, utilize table 4 and formula (15) calculate β mutually in the interface enhancing coefficient of phase interface, utilize table 5 and formula (16) to calculate the solution strengthening coefficient of phase structure unit in the primary, utilize table 6 and formula (17) to calculate the interface enhancing coefficient at out-phase interface in the primary, utilize in table 7 and formula (18) primary interface enhancing coefficient with phase interface, utilize table 8 and formula (19) calculating primary and β to form the interface enhancing coefficient at out-phase interface mutually, utilize α-Ti-O in the table 5, α-Ti-N, the statistical value n of the shared electron logarithm in α-Ti-C phase structure unit on the strong covalent bond A' reach formula (22) to calculate the solution strengthening coefficient that impurity element forms the phase structure unit, utilize the statistical value Δ ρ ' of α in the table 6-Ti-O/ α-Ti, α-Ti-N/ α-Ti, α-Ti-C/ α-Ti phase interface electron density difference and formula (23) to calculate the interface enhancing coefficient that impurity element forms the out-phase interface, utilize the statistical value Δ ρ ' of α in the table 7-Ti-O/ α-Ti-O, α-Ti-N/ α-Ti-N, α-Ti-C/ α-Ti-C phase interface electron density difference and formula (24) to calculate impurity element and form interface enhancing coefficient with phase interface.
3. the primary that calculates is separated out mutually back β mutually in reinforcement weight, the solution strengthening coefficient substitution formula (25) of each phase structure unit calculate β mutually in the solution strengthening intensity increment of each phase structure unit; With the primary that calculates separate out mutually back β mutually in each phase structure unit reinforcement weight, β mutually in the interface enhancing coefficient substitution formula (26) at out-phase interface calculate β mutually in the interface enhancing intensity increment at out-phase interface; With the primary that calculates separate out mutually back β mutually in each phase structure unit reinforcement weight, β mutually in the interface enhancing coefficient substitution formula (27) of phase interface calculate β mutually in the interface enhancing intensity increment of phase interface; With the primary that calculates mutually in the solution strengthening weight of phase structure unit, solution strengthening coefficient substitution formula (28) calculate primary mutually in the solution strengthening intensity increment of each phase structure unit, with the primary that calculates mutually in the solution strengthening weight of phase structure unit, the primary interface enhancing coefficient substitution formula (29) at middle out-phase interface mutually calculates the primary interface enhancing intensity increment at middle out-phase interface mutually, with the primary that calculates mutually in the solution strengthening weight of phase structure unit, primary mutually in the interface enhancing coefficient substitution formula (30) of phase interface calculate primary mutually in the interface enhancing intensity increment of phase interface, with the primary that calculates mutually in the solution strengthening weight of phase structure unit, the interface enhancing coefficient substitution formula (31) at the out-phase interface that primary and β form mutually calculates the interface enhancing intensity increment at the out-phase interface that primary and β form mutually, the reinforcement weight of the phase structure unit that the impurity element that calculates is formed and the solution strengthening intensity increment that solution strengthening coefficient substitution formula (35) calculates impurity element formation phase structure unit; The reinforcement weight of the phase structure unit that the impurity element that calculates is formed and the interface enhancing coefficient substitution formula (36) that impurity element forms the out-phase interface calculate the interface enhancing intensity increment that impurity element forms the out-phase interface; The reinforcement weight of the phase structure unit that the impurity element that calculates is formed and impurity element form interface enhancing coefficient substitution formula (37) with phase interface and calculate impurity element and form interface enhancing intensity increment with phase interface.C with aforementioned calculation α p Ti, C β Ti, C αs Ti = 0 And the tensile strength of titanium alloy when respectively strengthening intensity increment substitution formula (38) and calculating alpha+beta phase region solution treatment+shrend.
4. the primary that calculates is separated out mutually the state of atom group that back β may exist in the interface enhancing coefficient, the phase structure unit in the table 2 of reinforcement weight, solution strengthening coefficient and phase interface of each phase structure unit in mutually and count σ N, the state of atom group that may exist on the phase interface in the table 3-table 4 count σ respectively substitution formula (39-41) calculate each phase structure unit and phase interface length growth rate reduction amount in the β phase solid solution; The state of atom group that the primary that calculates may exist in the interface enhancing coefficient, phase structure unit in the table 5 of reinforcement weight, solution strengthening coefficient and phase interface of each phase structure unit in is mutually counted σ N, the state of atom group that may exist on the phase interface in the table 6-table 7 count σ respectively substitution formula (42-45) calculate the length growth rate reduction amount of primary phase structure unit and phase interface; The state of atom group that may exist in the phase structure unit of impurity element in the reinforcement weight of the phase structure unit that the impurity element that calculates is formed, solution strengthening coefficient, interface enhancing coefficient, the table 5 is counted σ N, the state of atom group that may exist on the phase interface of impurity element in the table 6-table 7 count σ respectively substitution formula (49-51) calculate the length growth rate reduction amount that impurity element forms phase structure unit and phase interface; The length growth rate of titanium alloy when utilizing formula (52) to calculate alpha+beta phase region solution treatment+shrend at last.
Computing formula (1)~formula (52) is compiled into software for calculation, carry out after the heat-treat condition of the alloying component of the choosing of input examination on computers and the solution treatment+shrend of selection alpha+beta phase region and calculate, by observing the change amount of alloying element tensile strength, length growth rate under Different Heat Treatment Conditions, adjust relative error that alloy composition makes design tensile strength of alloys, elongation values and technical requirement value repeatedly within 10%, the chemical constitution of titanium alloy in the time of so just can having determined alpha+beta phase region solution treatment+shrend.Be not more than under 10% the precondition satisfying relative error, can carry out 5-10 time adjustment alloy composition on computers, and the optimal design composition of the relative error of getting the calculated value of tensile strength, length growth rate and technical requirement value titanium alloy when hour pairing alloying component is as alpha+beta phase region solution treatment+shrend.
In order to verify the reliability of formula, table 10 has provided the contrast of existing β-21, Ti-B20, TC21 titanium alloy calculated value and experiment value when alpha+beta phase region solution treatment+shrend, and the relative error of the two is all within 10%.From result of calculation, the theoretical model of quantitative design has higher reliability.
The contrast of calculated value and experiment value during table 10 alpha+beta phase region solution treatment+shrend
Annotate: the composition of alloy is identical with table 9; Ti-B20 alloy error is by mean value calculation
Example 3
The quantitative design of titanium alloy component during solution treatment+timeliness.Titanium alloy is organized as matrix β phase+primary phase+secondary α phase after solution treatment+timeliness.Specific implementation process is as follows:
1. utilize " solid and molecule experience electron theory " calculate β mutually, primary phase, the middle mutually phase structure unit of secondary α and phase interface electronic structure parameter n A', σ N, Δ ρ ', Δ ρ Max, σ, and set up database as table 1~table 8.
2. utilize in the atomic percentage, table 1 of alloy composition the phase structure unit in the statistical value n of shared electron logarithm on the strong covalent bond A' and formula (1) calculate β mutually in the reinforcement weight of each phase structure unit, utilize the atomic percentage of impurity element and the reinforcement weight that formula (2) calculates impurity element phase structure unit, utilize formula (3) calculate primary mutually in the reinforcement weight of each phase structure unit, utilize formula (4) calculate primary separate out mutually back β mutually in the reinforcement weight of each phase structure unit; Utilize formula (5) to calculate the weight of the middle mutually α of primary-Ti structural unit, utilize formula (6) to calculate the primary atomic percentage C of middle Ti mutually α p TiUtilize formula (8) calculate secondary α mutually in the reinforcement weight of each phase structure unit, utilize formula (9) to calculate secondary α and separate out the back β reinforcement weight of middle phase structure unit mutually mutually, utilize formula (10) to calculate the weight of the middle mutually α of secondary α-Ti phase structure unit, utilize formula (11) to calculate the middle mutually Ti atomic percentage C of secondary α α s Ti, utilize formula (12) to calculate secondary α and separate out the middle mutually Ti atomic percentage C of back β mutually β Ti
Utilize table 2 and formula (13) calculate β mutually in the solution strengthening coefficient of each phase structure unit, utilize table 3 and formula (14) to calculate the β interface enhancing coefficient at middle out-phase interface mutually, utilize table 4 and formula (15) calculate β mutually in the interface enhancing coefficient of phase interface, utilize table 5 and formula (16) to calculate primary, secondary α is the solution strengthening coefficient of middle phase structure unit mutually, utilize table 6 and formula (17) to calculate the interface enhancing coefficient at out-phase interface in the primary, utilize in table 7 and formula (18) primary interface enhancing coefficient with phase interface, utilize table 8 and formula (19) primary and β to form the interface enhancing coefficient of phase interface mutually, utilize table 7 and formula (20) calculate secondary α mutually in the interface enhancing coefficient of phase interface, utilize table 8 and formula (21) to calculate the interface enhancing coefficient at secondary α and parent phase β formation out-phase interface, calculate and utilize α-Ti-O in the table 5, α-Ti-N, the statistical value n of the shared electron logarithm in α-Ti-C phase structure unit on the strong covalent bond A' reach formula (22) to calculate the solution strengthening coefficient that impurity element forms the phase structure unit, utilize the statistical value Δ ρ ' of interface electron density difference and the formula (23) of α in the table 6-Ti-O/ α-Ti, α-Ti-N/ α-Ti, α-Ti-C/ α-Ti phase interface to calculate the interface enhancing coefficient that impurity element forms the out-phase interface, utilize the statistical value Δ ρ ' of interface electron density difference of α in the table 7-Ti-O/ α-Ti-O, α-Ti-N/ α-Ti-N, α-Ti-C/ α-Ti-C phase interface and formula (24) to calculate impurity element and form interface enhancing coefficient with phase interface.
The secondary α that 3. will calculate separate out mutually back β mutually in the reinforcement weight, solution strengthening coefficient substitution formula (25) of phase structure unit calculate β mutually in the solution strengthening intensity increment of each phase structure unit; With the secondary α that calculates separate out mutually back β mutually in the phase structure unit reinforcement weight, β mutually in the interface enhancing coefficient substitution formula (26) at out-phase interface calculate β mutually in the interface enhancing intensity increment at out-phase interface; With the secondary α that calculates separate out mutually back β mutually in the phase structure unit reinforcement weight, β mutually in the interface enhancing coefficient substitution formula (27) of phase interface calculate β mutually in the interface enhancing intensity increment of phase interface; With the primary that calculates mutually in the solution strengthening weight of phase structure unit, solution strengthening coefficient substitution formula (28) calculate primary mutually in the solution strengthening intensity increment of each phase structure unit, with the primary that calculates mutually in the solution strengthening weight of phase structure unit, the primary interface enhancing coefficient substitution formula (29) at middle out-phase interface mutually calculates the primary interface enhancing intensity increment at middle out-phase interface mutually, with the primary that calculates mutually in the solution strengthening weight of phase structure unit, primary mutually in the interface enhancing coefficient substitution formula (30) of phase interface calculate primary mutually in the interface enhancing intensity increment of phase interface, with the primary that calculates mutually in the solution strengthening weight of phase structure unit, the interface enhancing coefficient substitution formula (31) at the out-phase interface that primary and β form mutually calculates the interface enhancing intensity increment at the out-phase interface that primary and β form mutually, with the secondary α that calculates mutually in the reinforcement weight of each phase structure unit, solution strengthening coefficient substitution formula (32) calculate secondary α mutually in the solution strengthening intensity increment of each phase structure unit, with the secondary α that calculates mutually in the reinforcement weight of each phase structure unit, secondary α mutually in the interface enhancing coefficient substitution formula (33) of phase interface calculate secondary α mutually in the interface enhancing intensity increment of phase interface, with the secondary α that calculates mutually in the reinforcement weight of each phase structure unit, the interface enhancing coefficient substitution formula (34) that secondary α and parent phase β form the out-phase interface calculates the interface enhancing intensity increment that secondary α and parent phase β form the out-phase interface, the reinforcement weight of the phase structure unit that the impurity element that calculates is formed and the solution strengthening intensity increment that solution strengthening coefficient substitution formula (35) calculates impurity element formation phase structure unit; The reinforcement weight of the phase structure unit that the impurity element that calculates is formed and the interface enhancing coefficient substitution formula (36) that impurity element forms the out-phase interface calculate the interface enhancing intensity increment that impurity element forms the out-phase interface; The reinforcement weight of the phase structure unit that the impurity element that calculates is formed and impurity element form interface enhancing coefficient substitution formula (37) with phase interface and calculate impurity element and form interface enhancing intensity increment with phase interface.C with aforementioned calculation α p Ti, C β Ti, C α s TiAnd the tensile strength of titanium alloy when respectively strengthening intensity increment substitution formula (38) and calculating solution treatment+timeliness.
The secondary α that 4. will calculate separates out the state of atom group that back β may exist in the interface enhancing coefficient, the phase structure unit in the table 2 of reinforcement weight, solution strengthening coefficient and phase interface of phase structure unit in mutually mutually and counts σ N, the state of atom group that may exist on the phase interface in the table 3-table 4 count σ respectively substitution formula (39-41) calculate each phase structure unit and phase interface length growth rate reduction amount in the β phase solid solution; The state of atom group that the primary that calculates may exist in the interface enhancing coefficient, phase structure unit in the table 5 of reinforcement weight, solution strengthening coefficient and phase interface of each phase structure unit in is mutually counted σ N, the state of atom group that may exist on the phase interface in the table 6-table 7 count σ respectively substitution formula (42-45) calculate the length growth rate reduction amount of primary phase structure unit and phase interface; The state of atom group that the secondary α that calculates may exist in the interface enhancing coefficient, phase structure unit in the table 5 of reinforcement weight, solution strengthening coefficient and phase interface of each phase structure unit in is mutually counted σ N, the state of atom group that may exist on the phase interface in the table 6-table 7 count σ respectively substitution formula (46-48) calculate secondary α mutually in the length growth rate reduction amount of phase structure unit and phase interface, the state of atom group that may exist in the phase structure unit of impurity element in the reinforcement weight of the phase structure unit that the impurity element that calculates is formed, solution strengthening coefficient, interface enhancing coefficient, the table 5 is counted σ N, the state of atom group that may exist on the phase interface of impurity element in the table 6-table 7 count σ respectively substitution formula (49-51) calculate the length growth rate reduction amount that impurity element forms phase structure unit and phase interface; The length growth rate of titanium alloy when utilizing formula (52) to calculate solution treatment+timeliness at last.
Computing formula (1)~formula (52) is compiled into software for calculation, carry out after the alloying component of the choosing of input examination on computers and the heat-treat condition of selection solution treatment+timeliness and calculate, by observing the change amount of alloying element tensile strength, length growth rate under Different Heat Treatment Conditions, adjust relative error that alloy composition makes design tensile strength of alloys, elongation values and technical requirement value repeatedly within 10%, the chemical constitution of titanium alloy in the time of so just can having determined solution treatment+timeliness.Be not more than under 10% the precondition satisfying relative error, can carry out 5-10 time adjustment alloy composition on computers, and the optimal design composition of the relative error of getting the calculated value of tensile strength, length growth rate and technical requirement value titanium alloy when hour pairing alloying component is done solution treatment+timeliness.
In order to verify the reliability of formula, table 11~table 13 has provided the contrast of existing β-21, Ti-B20, TC21 titanium alloy calculated value and experiment value when solution treatment+timeliness.From result of calculation, except that the relative error of indivedual length growth rates exceeds 10%, calculated value and experiment test value meet also fine.Show that through existing alloy checking theoretical calculation model of the present invention has higher reliability, can carry out the quantitative design of titanium alloy component.
The contrast of calculated value and experiment value during table 11 β-21 bar solid solution aging
Figure G2009102489435D00361
Annotate: the composition of alloy is identical with table 9
The contrast of table 12 Ti-B20 calculated value and experiment value when solid solution aging
Figure G2009102489435D00362
Annotate: the composition of alloy is identical with table 9
The contrast of table 13 TC21 alloy theory calculated value and experiment value
Figure G2009102489435D00363
Figure G2009102489435D00371
Annotate: alloy composition (wt%): 1# is Al=6.1, Sn=2.05, Zr=1.60, Mo=2.65, Cr=1.50, Nb=1.85, Si=0.07, Fe=0.07, C=0.01, N=0.02, H=0.001, O=0.10; 2# is Al=5.5, Sn=2.0, Zr=1.65, Mo=3.1, Cr=1.60, Nb=1.95, Si=0.03, Fe=0.09, C=0.02, N=0.017, H=0.001, O=0.10; 3# is Al=6.25, Sn=2.05, Zr=1.70, Mo=2.59, Cr=1.60, Nb=1.98, Si=0.13, Fe=0.03, C=0.03, N=0.014, H=0.001, O=0.090.

Claims (2)

1. titanium alloy component quantifying design method is characterized in that:
Calculate phase structure unit and phase interface electronic structure parameter n in the titanium alloy 1.1 utilize " solid and molecule experience electron theory " A', σ N, Δ ρ ', Δ ρ Max, σ, and set up database as table 1~table 8;
Table 1 β is the electronic structure parameter (900 ℃) of middle phase structure unit mutually
The phase structure unit ????n A The phase structure unit ????n A ????β-Ti ????0.28626 ????β-Ti-Al ????0.2640 ????β-Ti-Al* ????0.25094 ????β-Ti-Zr ????0.3098 ????β-Ti-Zr-Al ????0.28808 ????β-Ti-Sn ????0.31022 ????β-Ti-Sn-Al ????0.28877 ????β-Ti-Mo ????0.32364 ????β-Ti-Mo-Al ????0.30370 ????β-Ti-V ????0.30213 ????β-Ti-V-Al ????0.30351 ????β-Ti-Nb ????0.32011 ????β-Ti-Nb-Al ????0.29655 ????β-Ti-Fe ????0.29870 ????β-Ti-Fe-Al ????0.26655 ????β-Ti-Cr ????0.29088 ????β-Ti-Cr-Al ????0.26905 ????β-Ti-Mn ????0.32738 ????β-Ti-Mn-Al ????0.28578 ????β-Ti-Hf ????0.30708 ????β-Ti-Hf-Al ????0.28437 ????β-Ti-Co ????0.32458 ????β-Ti-Co-Al ????0.29295 ????β-Ti-Si ????0.29232 ????β-Ti-Si-Al ????0.26637 ????β-Ti-Cu ????0.31789 ????β-Ti-Cu-Al ????0.29298 ????β-Ti-Ni ????0.34389 ????β-Ti-Ni-Al ????0.31127 ????β-Ti-W ????0.29826 ????β-Ti-W-Al ????0.27736
Annotate: " * " represents Al element wt percentage more than or equal to 6%; Down together.
Table 2 β is the electronic structure parameter (25 ℃) of middle structural unit mutually
The phase structure unit ????n A ????σ N The phase structure unit ????n A ????σ N ????β-Ti ????0.29889 ????2 ????β-Ti-Al ????0.27321 ????13 ????β-Ti-Al* ????0.24761 ????22 ????β-Ti-Zr ????0.31605 ????44 ????β-Ti-Zr-Al ????0.29209 ????361 ????β-Ti-Sn ????0.32279 ????15 ????β-Ti-Sn-Al ????0.29731 ????128 ????β-Ti-Mo ????0.33544 ????41 ????β-Ti-Mo-Al ????0.27904 ????309 ????β-Ti-V ????0.30768 ????55 ????β-Ti-V-Al ????0.31071 ????487 ????β-Ti-Nb ????0.33326 ????44 ????β-Ti-Nb-Al ????0.30050 ????587 ????β-Ti-Fe ????0.3026 ????69 ????β-Ti-Fe-Al ????0.27305 ????457 ??β-Ti-Cr ??0.29556 ??50 ??β-Ti-Cr-Al ??0.27236 ??551 ??β-Ti-Mn ??0.33147 ??78 ??β-Ti-Mn-Al ??0.29378 ??477 ??β-Ti-Hf ??0.31238 ??41 ??β-Ti-Hf-Al ??0.28914 ??380 ??β-Ti-Co ??0.32893 ??71 ??β-Ti-Co-Al ??0.30317 ??544 ??β-Ti-Si ??0.28859 ??17 ??β-Ti-Si-Al ??0.30084 ??690 ??β-Ti-Cu ??0.32317 ??54 ??β-Ti-Cu-Al ??0.27341 ??159 ??β-Ti-Ni ??0.34503 ??56 ??β-Ti-Ni-Al ??0.32378 ??698 ??β-Ti-W ??0.30752 ??28 ??β-Ti-W-Al ??0.28209 ??339
The electronic structure parameter (25 ℃) of table 3 β-Ti-M/ β-Ti phase interface
Phase interface ??Δρ′ ??σ Phase interface ??Δρ′ ??σ ??β-Ti-Al/β-Ti ??9.56 ??26 ??β-Ti-Al/β-Ti* ??19.7 ??44 ??β-Ti-Zr/β-Ti ??5.56 ??88 ??β-Ti-Zr-Al/β-Ti ??6.08 ??722
Phase interface ??Δρ′ ??σ Phase interface ??Δρ′ ??σ ??β-Ti-Sn/β-Ti ??7.79 ??30 ??β-Ti-Sn-Al/β-Ti ??6.98 ??256 ??β-Ti-Mo/β-Ti ??6.06 ??68 ??β-Ti-Mo-Al/β-Ti ??9.57 ??618 ??β-Ti-V/β-Ti ??3.49 ??110 ??β-Ti-V-Al/β-Ti ??6.90 ??984 ??β-Ti-Nb/β-Ti ??8.54 ??92 ??β-Ti-Nb-Al/β-Ti ??6.45 ??1174 ??β-Ti-Fe/β-Ti ??4.81 ??138 ??β-Ti-Fe-Al/β-Ti ??9.74 ??914 ??β-Ti-Cr/β-Ti ??2.61 ??100 ??β-Ti-Cr-Al/β-Ti ??9.67 ??1102 ??β-Ti-Mn/β-Ti ??10.2 ??156 ??β-Ti-Mn-Al/β-Ti ??5.79 ??954 ??β-Ti-Hf/β-Ti ??4.47 ??82 ??β-Ti-Hf-Al/β-Ti ??6.39 ??760 ??β-Ti-Co/β-Ti ??9.45 ??142 ??β-Ti-Co-Al/β-Ti ??5.59 ??1088 ??β-Ti-Si/β-Ti ??5.17 ??34 ??β-Ti-Si-Al/β-Ti ??10.1 ??318 ??β-Ti-Cu/β-Ti ??7.67 ??108 ??β-Ti-Cu-Al/β-Ti ??6.11 ??1380 ??β-Ti-Ni/β-Ti ??14.3 ??112 ??β-Ti-Ni-Al/β-Ti ??8.70 ??1396 ??β-Ti-W/β-Ti ??4.17 ??56 ??β-Ti-W-Al/β-Ti ??8.41 ??678
The electronic structure parameter (25 ℃) of table 4 β-Ti-Al (Al-M)/β-Ti-Al (Al-M) phase interface
Phase interface ??Δρ′ ??σ Phase interface ??Δρ′ ??σ ??β-Ti-Al/β-Ti-Al ??7.56 ??91 ??β-Ti-Al/β-Ti-Al* ??15.91 ??143 ??β-Ti-Zr/β-Ti-Zr ??2.71 ??990 ??β-Ti-Zr-Al/β-Ti-Zr-Al ??7.61 ??65341 ??β-Ti-Sn/β-Ti-Sn ??5.34 ??120 ??β-Ti-Sn-Al/β-Ti-Sn-Al ??9.68 ??8260 ??β-Ti-Mo/β-Ti-Mo ??4.05 ??1021 ??β-Ti-Mo-Al/β-Ti-Mo-Al ??10.8 ??48403 ??β-Ti-V/β-Ti-V ??2.73 ??1275 ??β-Ti-V-Al/β-Ti-V-Al ??8.25 ??121278 ??β-Ti-Nb/β-Ti-Nb ??2.90 ??1081 ??β-Ti-Nb-Al/β-Ti-Nb-Al/ ??8.08 ??172578
Phase interface ??Δρ′ ??σ Phase interface ??Δρ′ ??σ ??β-Ti-Fe/β-Ti-Fe ??6.16 ??2415 ??β-Ti-Fe-Al/β-Ti-Fe-Al ??8.08 ??104653 ??β-Ti-Cr/β-Ti-Cr ??3.15 ??1275 ??β-Ti-Cr-Al/β-Ti-Cr-Al ??8.34 ??152076 ??β-Ti-Mn/β-Ti-Mn ??6.01 ??3081 ??β-Ti-Mn-Al/β-Ti-Mn-Al ??7.70 ??114003 ??β-Ti-Hf/β-Ti-Hf ??2.67 ??861 ??β-Ti-Hf-Al/β-Ti-Hf-Al ??7.80 ??72390 ??β-Ti-Co/β-Ti-Co ??5.72 ??2556 ??β-Ti-Co-Al/β-Ti-Co-Al ??7.69 ??148240 ??β-Ti-Si/β-Ti-Si ??5.86 ??153 ??β-Ti-Si-Al/β-Ti-Si-Al ??10.4 ??12723 ??β-Ti-Cu/β-Ti-Cu ??6.27 ??1485 ??β-Ti-Cu-Al/β-Ti-Cu-Al ??8.87 ??238402 ??β-Ti-Ni/β-Ti-Ni ??4.16 ??1596 ??β-Ti-Ni-Al/β-Ti-Ni-Al ??8.18 ??243958 ??β-Ti-W/β-Ti-W ??4.69 ??464 ??β-Ti-W-Al/β-Ti-W-Al ??10.1 ??58284
Table 5 α is the electronic structure parameter (25 ℃) of middle phase structure unit mutually
The phase structure unit ??n A ??σ N The phase structure unit ??n A ??σ N ??α-Ti ??0.24902 ??2 ??α-Ti-Al ??0.23685 ??14 ??α-Ti-Zr-Al ??0.25051 ??292 ??α-Ti-Zr ??0.2631 ??39 ??α-Ti-Sn-Al ??0.25318 ??88 ??α-Ti-Sn ??0.26739 ??11 ??α-Ti-Mo-Al ??0.261 ??275 ??α-Ti-Mo ??0.27184 ??33 ??α-Ti-V-Al ??0.26025 ??298 ??α-Ti-V ??0.27330 ??43 ??α-Ti-Nb-Al ??0.2601 ??282 ??α-Ti-Nb ??0.27293 ??36 ??α-Ti-Fe-Al ??0.24349 ??330 ??α-Ti-Fe ??0.25488 ??40 ??α-Ti-Cr-Al ??0.2408 ??288 ??α-Ti-Cr ??0.25308 ??32 ??α-Ti-Mn-Al ??0.25719 ??357 ??α-Ti-Mn ??0.26948 ??41 ??α-Ti-Hf-Al ??0.24976 ??276
The phase structure unit ??n A ??σ N The phase structure unit ??n A ??σ N ??α-Ti-Hf ??0.26095 ??34 ??α-Ti-Co-Al ??0.25789 ??321 ??α-Ti-Co ??0.26939 ??48 ??α-Ti-Si-Al ??0.23554 ??101 ??α-Ti-Si ??0.25163 ??15 ??α-Ti-Cu-Al ??0.25261 ??318 ??α-Ti-Cu ??0.26576 ??35 ??α-Ti-Ni-Al ??0.26616 ??322 ??α-Ti-Ni ??0.27959 ??37 ??α-Ti-W-Al ??0.24623 ??161 ??α-Ti-W ??0.26019 ??20 ??α-Ti-O ??0.62095 ??8 ??α-Ti-N ??0.74635 ??8 ??α-Ti-C ??0.70486 ??10
The electronic structure parameter of table 6 α-Ti-Al (Al-M)/α-Ti phase interface (25 ℃)
Phase interface ??Δρ′ ??σ Phase interface ??Δρ′ ??σ ??α-Ti-Al/α-Ti ??5.78 ??28 ??α-Ti-Zr-Al/α-Ti ??3.97 ??584 ??α-Ti-Zr/α-Ti ??5.46 ??78 ??α-Ti-Sn-Al/α-Ti ??5.18 ??176 ??α-Ti-Sn/α-Ti ??7.05 ??22 ??α-Ti-Mo-Al/α-Ti ??5.59 ??332 ??α-Ti-Mo/α-Ti ??4.68 ??46 ??α-Ti-V-Al/α-Ti ??4.04 ??588 ??α-Ti-V/α-Ti ??4.13 ??84 ??α-Ti-Nb-Al/α-Ti ??5.34 ??564 ??α-Ti-Nb/α-Ti ??9.13 ??72 ??α-Ti-Fe-Al/α-Ti ??4.44 ??660 ??α-Ti-Fe/α-Ti ??3.44 ??80 ??α-Ti-Cr-Al/α-Ti ??13.0 ??576 ??α-Ti-Cr/α-Ti ??5.46 ??64 ??α-Ti-Mn-Al/α-Ti ??4.49 ??606 ??α-Ti-Mn/α-Ti ??2.94 ??86 ??α-Ti-Hf-Al/α-Ti ??3.94 ??552 ??α-Ti-Hf/α-Ti ??4.65 ??68 ??α-Ti-Co-Al/α-Ti ??5.16 ??642 ??α-Ti-Co/α-Ti ??7.80 ??96 ??α-Ti-Si-Al/α-Ti ??7.03 ??202
Phase interface ??Δρ′ ??σ Phase interface ??Δρ′ ??σ ??α-Ti-Si/α-Ti ??4.25 ??30 ??α-Ti-Cu-Al/α-Ti ??4.13 ??636 ??α-Ti-Cu/α-Ti ??6.45 ??70 ??α-Ti-Ni-Al/α-Ti ??6.84 ??644 ??α-Ti-Ni/α-Ti ??11.5 ??74 ??α-Ti-W-Al/α-Ti ??4.83 ??322 ??α-Ti-W/α-Ti ??5.19 ??40 ??α-Ti-O/α-Ti ??36.8 ??16 ??α-Ti-C/α-Ti ??27.8 ??20 ??α-Ti-N/α-Ti ??29.0 ??16
The electronic structure parameter (25 ℃) of table 7 α-Ti-Al (Al-M)/α-Ti-Al (Al-M) phase interface
Phase interface ??Δρ′ ??Δρ max ??σ Phase interface ??Δρ′ ??Δρ max ??σ ??α-Ti-Al/α-Ti-Al ??5.46 ??13.9 ??105 ??α-Ti-Zr-Al/α-Ti-Zr-Al ??5.34 ??17.2 ??42778 ??α-Ti-Zr/α-Ti-Zr ??2.99 ??7.80 ??780 ??α-Ti-Sn-Al/α-Ti-Sn-Al ??6.74 ??23.6 ??3917 ??α-Ti-Sn/α-Ti-Sn ??3.73 ??11.1 ??66 ??α-Ti-Mo-Al/α-Ti-Mo-Al ??6.31 ??21.6 ??44850 ??α-Ti-Mo/α-Ti-Mo ??4.23 ??13.1 ??703 ??α-Ti-V-Al/α-Ti-V-Al ??5.51 ??20.9 ??43365 ??α-Ti-V/α-Ti-V ??3.23 ??10.4 ??903 ??α-Ti-Nb-Al/α-Ti-Nb-Al ??5.55 ??20.9 ??39903 ??α-Ti-Nb/α-Ti-Nb ??2.81 ??9.98 ??666 ??α-Ti-Fe-Al/α-Ti-Fe-Al ??5.70 ??23.3 ??54615 ??α-Ti-Fe/α-Ti-Fe ??3.69 ??12.1 ??820 ??α-Ti-Cr-Al/α-Ti-Cr-Al ??5.06 ??17.4 ??41616 ??α-Ti-Cr/α-Ti-Cr ??2.03 ??7.69 ??528 ??α-Ti-Mn-Al/α-Ti-Mn-Al ??5.57 ??17.4 ??46056 ??α-Ti-Mn/α-Ti-Mn ??2.54 ??8.30 ??946 ??α-Ti-Hf-Al/α-Ti-Hf-Al ??5.27 ??17.1 ??38226 ??α-Ti-Hf/α-Ti-Hf ??2.63 ??8.20 ??595 ??α-Ti-Co-Al/α-Ti-Co-Al ??6.19 ??24.4 ??51681 ??α-Ti-Co/α-Ti-Co ??3.94 ??15.1 ??1176 ??α-Ti-Si-Al/α-Ti-Si-Al ??7.03 ??24.5 ??5154 ??α-Ti-Si/α-Ti-Si ??4.95 ??13.1 ??120 ??α-Ti-Cu-Al/α-Ti-Cu-Al ??5.85 ??23.2 ??50724 ??α-Ti-Cu/α-Ti-Cu ??3.83 ??11.3 ??630 ??α-Ti-Ni-Al/α-Ti-Ni-Al ??5.40 ??19.6 ??52006 ??α-Ti-Ni/α-Ti-Ni ??3.20 ??10.7 ??703 ??α-Ti-W-Al/α-Ti-W-Al ??6.42 ??26.5 ??13403 ??α-Ti-W/α-Ti-W ??3.76 ??17.4 ??250 ??α-Ti-O/α-Ti-O ??4.21 ??- ??36
Phase interface ??Δρ′ ??Δρ max ??σ Phase interface ??Δρ′ ??Δρ max ??σ ??α-Ti-N/α-Ti-N ??2.83 ??- ??36 ??α-Ti-C/α-Ti-C ??2.05 ??- ??55
The electronic structure parameter (25 ℃) of table 8 α-Ti-Al (Al-M)/β-Ti-Al (Al-M) phase interface
Phase interface ??Δρ′ ??Δρ max ??σ Phase interface ??Δρ′ ??Δρ max ??σ ??α-Ti/β-Ti ??9.21 ??10.7 ??4 ??α-Ti-Al/β-Ti-Al ??8.59 ??22.6 ??182 ??α-Ti-Al/β-Ti-Al* ??14.1 ??31.6 ??308 ??α-Ti-Zr/β-Ti-Zr ??9.3 ??16.9 ??1716 ??α-Ti-Zr-Al/β-Ti-Zr-Al ??7.46 ??23.3 ??124100 ??α-Ti-Sn/β-Ti-Sn ??10.0 ??22.9 ??165 ??α-Ti-Sn-Al/β-Ti-Sn-Al ??9.40 ??32.3 ??10472 ??α-Ti-Mo/β-Ti-Mo ??8.58 ??29.1 ??782 ??α-Ti-Mo-Al/β-Ti-Mo-Al ??9.67 ??35.1 ??44156 ??α-Ti-V/β-Ti-V ??8.15 ??19.5 ??2310 ??α-Ti-V-Al/β-Ti-V-Al ??7.58 ??26.9 ??139650 ??α-Ti-Nb/β-Ti-Nb ??10.9 ??22.3 ??1584 ??α-Ti-Nb-Al/β-Ti-Nb-Al ??8.10 ??30.0 ??137052 ??α-Ti-Fe/β-Ti-Fe ??8.57 ??23.4 ??2760 ??α-Ti-Fe-Al/β-Ti-Fe-Al ??7.52 ??27.7 ??148830 ??α-Ti-Cr/β-Ti-Cr ??6.48 ??15.1 ??1600 ??α-Ti-Cr-Al/β-Ti-Cr-Al ??7.53 ??21.2 ??179136 ??α-Ti-Mn/β-Ti-Mn ??11.8 ??26.0 ??3198 ??α-Ti-Mn-Al/β-Ti-Mn-Al ??8.14 ??26.1 ??153510 ??α-Ti-Hf/β-Ti-Hf ??8.94 ??17.3 ??1394 ??α-Ti-Hf-Al/β-Ti-Hf-Al ??7.21 ??23.4 ??109848 ??α-Ti-Co/β-Ti-Co ??11.0 ??26.6 ??3408 ??α-Ti-Co-Al/β-Ti-Co-Al ??7.33 ??28.0 ??164673 ??α-Ti-Si/β-Ti-Si ??7.05 ??19.5 ??255 ??α-Ti-Si-Al/β-Ti-Si-Al ??9.42 ??33.6 ??19998 ??α-Ti-Cu/β-Ti-Cu ??10.5 ??25.6 ??1890 ??α-Ti-Cu-Al/β-Ti-Cu-Al ??8.87 ??31.0 ??219102 ??α-Ti-Ni/β-Ti-Ni ??11.9 ??25.7 ??2072 ??α-Ti-Ni-Al/β-Ti-Ni-Al ??8.57 ??28.4 ??201894 ??α-Ti-W/β-Ti-W ??8.31 ??29.1 ??560 ??α-Ti-W-Al/β-Ti-W-Al ??9.28 ??35.1 ??51198
1.2 calculate the reinforcement weight of each phase structure unit under the titanium alloy Different Heat Treatment Conditions and the interface enhancing coefficient of solution strengthening coefficient and phase interface;
At first utilize the atomic percentage of alloying component when calculating the reinforcement weight of each phase structure unit under the titanium alloy Different Heat Treatment Conditions and characterize make a concerted effort in the phase structure unit of the size statistical value n of the shared electron logarithm on the strong covalent bond of atomic link A' calculating titanium alloy forms the reinforcement weight of each phase structure unit in the single β phase solid solution after the solution treatment+shrend of β phase region;
Utilize the β phase conditional stability COEFFICIENT K in the titanium alloy β,
Figure F2009102489435C00051
Calculating from β separate out mutually primary mutually in the reinforcement weight of each phase structure unit;
Utilize the β phase conditional stability COEFFICIENT K in the titanium alloy β',
Figure F2009102489435C00052
And Calculating from β separate out mutually secondary α mutually in the reinforcement weight of each phase structure unit,
The mathematical model of weight calculation is strengthened in each phase structure unit of titanium alloy:
β mutually in the reinforcement weight of each phase structure unit:
Figure F2009102489435C00061
In the following formula x Al = n A ′ β - Ti - Al n A ′ β - Ti - Al + Σ i = 1 z n A ′ β - Ti - Al - M i , y Al = C Al C Al + Σ i = 1 z C M i
x i = n A ′ β - Ti - Al - M i n A ′ β - Ti - Al + Σ i = 1 z n A ′ β - Ti - Al - M i , y i = C M i C Al + Σ i = 1 z C M i
W wherein β-Ti-Al, W β-Ti-Al-M, W β-Ti-MReinforcement weight for β-Ti-Al, β-Ti-Al-M, β-Ti-M phase structure unit; C AlAtomic percentage for Al; C MFor not comprising the alloy atom percentage of Al element; Z is the alloying element species number, and i represents the sequence number of alloying element M;
The reinforcement weight of the phase structure unit that impurity element forms:
Figure F2009102489435C00066
W wherein α-Ti-O, W α-Ti-N, W α-Ti-CBe impurity element O, N, α-Ti-O, the α-Ti-N of C formation, the solution strengthening weight of α-Ti-C phase structure unit; C ' O, C ' N, C ' CThe nominal atomic percentage of representing O, N, C has respectively promptly deducted the content of corresponding impurity in the iodide-process titanium, and corresponding impurity content is got middle limit in the iodide-process titanium;
Primary mutually in the reinforcement weight of each phase structure unit:
Figure F2009102489435C00071
W wherein p α-Ti-Al, W p α-Ti-Al-M, W p α-Ti-MReinforcement weight for α-Ti-Al, α-Ti-Al-M, α-Ti-M phase structure unit in the primary phase solid solution; K ββ phase conditional stability coefficient in the expression titanium alloy, promptly K β = C 1 C K 1 + C 2 C K 2 + C 3 C K 3 + · · · + C n C K n ;
Figure F2009102489435C00073
Be illustrated in β under a certain solid solubility temperature → α and change the corresponding K of alloy β when beginning β MoValue, K β MoBe β phase conditional stability coefficient in the Ti-Mo bianry alloy,
Figure F2009102489435C00074
Rising with solid solubility temperature reduces gradually, and value is 0.3~2.3; Be illustrated in β under a certain solid solubility temperature → α and change the corresponding K of alloy β when stopping β MoValue,
Figure F2009102489435C00076
Less with the solid solubility temperature variation, value is 0.07;
Primary is separated out the reinforcement weights W of back β middle mutually β-Ti-Al, β-Ti-Al-M, β-Ti-M phase structure unit mutually p β-Ti-Al, W p β-Ti-Al-M, W p β-Ti-MFor
Figure F2009102489435C00077
The weights W of the middle mutually α of primary-Ti phase structure unit p α-TiFor
Primary is the atomic fraction C of middle Ti mutually α p TiFor
C αp Ti = ( 4 Σ W p α - Ti - Al - M + 5 W p α - Ti - Al + 5 Σ W p α - Ti - M + 6 ( W α - Ti - O + W α - Ti - N + W α - Ti - C ) ) 100 + 6 W p α - Ti . . . ( 6 )
Primary is separated out the back mutually and is not had secondary α when separating out, and β is the atomic fraction C of middle Ti mutually β TiFor
C β Ti = C Ti - C αp Ti . . . ( 7 )
Secondary α mutually in the reinforcement weight of each phase structure unit:
Figure F2009102489435C00083
W wherein s α-Ti-Al, W s α-Ti-Al-M, W s α-Ti-MReinforcement weight for secondary α-Ti-Al, α-Ti-Al-M, α-Ti-M phase structure unit; K β' separate out β phase conditional stability coefficient in the titanium alloy of back mutually for primary, with primary separate out back β mutually in the atomic percentage of alloying element be converted into percent by weight, press K then βComputing formula is calculated and is got final product;
Figure F2009102489435C00084
Be illustrated in β under a certain aging temp → α and change the corresponding K of alloy β when beginning β MoValue,
Figure F2009102489435C00085
Rising with the timeliness temperature reduces gradually, and value is 0.5~2.8;
Figure F2009102489435C00086
Be illustrated in β under a certain aging temp → α and change the corresponding K of alloy β when stopping β MoValue,
Figure F2009102489435C00087
Less with the timeliness temperature variation, value is 0.07;
Secondary α separates out the reinforcement weights W of back β middle mutually β-Ti-Al, β-Ti-Al-M, β-Ti-M phase structure unit mutually s β-Ti-Al, W s β-Ti-Al-M, W s β-Ti-MFor
Figure F2009102489435C00088
The weight of the middle mutually α of secondary α-Ti phase structure unit:
The middle mutually Ti atomic percentage C of secondary α α s TiFor
C αs Ti = ( 4 Σ W s α - Ti - Al - M + 5 W s α - Ti - Al + 5 Σ W s α - Ti - M ) 100 + 6 W s α - Ti . . . ( 11 )
Secondary α separates out the middle mutually Ti atomic percentage of back β mutually:
C β Ti = C Ti - C αp Ti - C αs Ti . . . ( 12 )
When calculating the interface enhancing coefficient of the solution strengthening coefficient of phase structure unit in the titanium alloy and phase interface, at first utilize to characterize make a concerted effort in the phase structure unit of the size statistical value n of the shared electron logarithm on the strong covalent bond of interatomic bond A' characterize β phase, primary phase, secondary α mutually in the solution strengthening coefficient of each phase structure unit; With the interface electron density difference Δ ρ ', the Δ ρ that are complementary with interfacial stress MaxCharacterize β phase, primary phase, secondary α mutually in the interface enhancing coefficient of each phase interface;
The mathematical model of solution strengthening coefficient and interface enhancing coefficient calculations in the titanium alloy:
β mutually in the solution strengthening coefficient of each phase structure unit:
Figure F2009102489435C00094
S wherein β-Ti-Al, S β-Ti-Al-M, S β-Ti-MThe solution strengthening coefficient of representing β-Ti-Al, β-Ti-Al-M, β-Ti-M phase structure unit respectively; n A' β-Ti-Al, n A' β-Ti-Al-M, n A' β-Ti-M, n A' β-TiBe respectively the assembly average of the shared electron logarithm on β-Ti-Al, β-Ti-Al-M, the strong bond in β-Ti-M, β-Ti phase structure unit;
β is the interface enhancing coefficient at middle out-phase interface mutually:
Figure F2009102489435C00101
S wherein β-Ti-Al/ β-Ti, S β-Ti-Al-M/ β-Ti, S β-Ti-M/ β-TiThe interface enhancing coefficient of expression phase interface β-Ti-Al/ β-Ti, β-Ti-Al-M/ β-Ti, β-Ti-M/ β-Ti; Δ ρ ' β-Ti-Al/ β-Ti, Δ ρ ' β-Ti-Al-M/ β-Ti, Δ ρ ' β-Ti-M/ β-TiBe respectively the assembly average of the electron density difference of β-Ti-Al/ β-Ti, β-Ti-Al-M/ β-Ti, β-Ti-M/ β-Ti phase interface;
β mutually in the interface enhancing coefficient of phase interface:
S wherein β-Ti-Al/ β-Ti-Al, S β-Ti-Al-M/ β-Ti-Al-M, S β-Ti-M/ β-Ti-MThe interface enhancing coefficient of expression phase interface β-Ti-Al/ β-Ti-Al, β-Ti-Al-M/ β-Ti-Al-M, β-Ti-M/ β-Ti-M; Δ ρ ' β-Ti-Al/ β-Ti-Al, Δ ρ ' β-Ti-Al-M/ β-Ti-Al-M, Δ ρ ' β-Ti-M/ β-Ti-MBe respectively the assembly average of β-Ti-Al/ β-Ti-Al, β-Ti-Al-M/ β-Ti-Al-M, β-Ti-M/ β-Ti-M phase interface electron density difference;
Primary phase, secondary α be the solution strengthening coefficient of middle phase structure unit mutually:
Figure F2009102489435C00103
S wherein α-Ti-Al, S α-Ti-Al-M, S α-Ti-MThe solution strengthening coefficient of representing α-Ti-Al, α-Ti-Al-M during primary, secondary α are mutually, α-Ti-M respectively; n A' α-Ti-Al, n A' α-Ti-Al-M, n A' α-Ti-M, α A' α-TiBe respectively the assembly average of the shared electron logarithm on α-Ti-Al, α-Ti-Al-M, the strong bond in α-Ti-M, α-Ti phase structure unit;
Primary is the interface enhancing coefficient at middle out-phase interface mutually:
Figure F2009102489435C00111
S wherein α-Ti-Al/ α-Ti, S α-Ti-Al-M/ α-Ti, S α-Ti-M/ α-TiThe interface enhancing coefficient of representing phase interface α-Ti-Al/ α-Ti, α-Ti-Al-M/ α-Ti, α-Ti-M/ α-Ti during primary mutually respectively; Δ ρ ' α-Ti-Al/ α-Ti, Δ ρ ' α-Ti-Al-M/ α-Ti, Δ ρ ' α-Ti-M/ α-TiThe assembly average of the interface electron density difference of expression α-Ti-Al/ α-Ti, α-Ti-Al-M/ α-Ti, α-Ti-M/ α-Ti phase interface;
Primary mutually in the interface enhancing coefficient of phase interface:
S wherein α-Ti-Al/ α-Ti-Al, S α-Ti-Al-M/ α-Ti-Al-M, S α-Ti-M/ α-Ti-MThe interface enhancing coefficient of representing α-Ti-Al/ α-Ti-Al, α-Ti-Al-M/ α-Ti-Al-M, α-Ti-M/ α-Ti-M phase interface during primary mutually respectively; Δ ρ ' α-Ti-Al/ α-Ti-Al, Δ ρ ' α-Ti-Al-M/ α-Ti-Al-M, Δ ρ ' α-Ti-M/ α-Ti-MThe assembly average of the interface electron density difference of expression α-Ti-Al/ α-Ti-Al, α-Ti-Al-M/ α-Ti-Al-M, α-Ti-M/ α-Ti-M phase interface;
Primary and β form the interface enhancing coefficient at out-phase interface mutually:
Figure F2009102489435C00113
S wherein α-Ti-Al/ β-Ti-Al, S α-Ti-Al-M/ β-Ti-Al-M, S α-Ti-M/ β-Ti-M, S α-Ti/ β-TiRepresent that respectively primary and β form the interface enhancing coefficient of out-phase interface α-Ti-Al/ β-Ti-Al, α-Ti-Al-M/ β-Ti-Al-M, α-Ti-M/ β-Ti-M, α-Ti/ β-Ti mutually; Δ ρ ' α-Ti-Al/ β-Ti-Al, Δ ρ ' α-Ti-Al-M/ β-Ti-Al-M, Δ ρ ' α-Ti-M/ β-Ti-M, Δ ρ ' α-Ti/ β-TiThe assembly average of the interface electron density difference of expression α-Ti-Al/ β-Ti-Al, α-Ti-Al-M/ β-Ti-Al-M, α-Ti-M/ β-Ti-M, α-Ti/ β-Ti phase interface;
Secondary α mutually in the interface enhancing coefficient of phase interface:
Figure F2009102489435C00121
S wherein s α-Ti-Al/ α-Ti-Al, S s α-Ti-Al-M/ α-Ti-Al-M, S s α-Ti-M/ α-Ti-M, S s α-Ti/ α-TiThe interface enhancing coefficient of representing α-Ti-Al/ α-Ti-Al, α-Ti-Al-M/ α-Ti-Al-M, α in the secondary α phase solid solution-Ti-M/ α-Ti-M phase interface respectively; Δ ρ Max α-Ti-Al/ α-Ti-Al, Δ ρ Max α-Ti-Al-M/ α-Ti-Al-M, Δ ρ Max α-Ti-M/ α-Ti-MBe respectively the maximal value of the interface electron density difference of α-Ti-Al/ α-Ti-Al, α-Ti-Al-M/ α-Ti-Al-M, α-Ti-M/ α-Ti-M phase interface;
Secondary α and parent phase β form the interface enhancing coefficient at out-phase interface:
Figure F2009102489435C00122
S wherein s α-Ti-Al/ β-Ti-Al, S s α-Ti-Al-M/ β-Ti-Al-M, S s α-Ti-M/ β-Ti-M, S s α-Ti/ β-TiRepresent that respectively secondary α and parent phase β form the interface enhancing coefficient at out-phase interface; Δ ρ Max α-Ti-Al/ β-Ti-Al, Δ ρ Max α-Ti-Al-M/ β-Ti-Al-M, Δ ρ Max α-Ti-M/ β-Ti-M, Δ ρ Max α-Ti/ β-TiThe maximal value of the interface electron density difference of expression α-Ti-Al/ β-Ti-Al, α-Ti-Al-M/ β-Ti-Al-M, α-Ti-M/ β-Ti-M, α-Ti/ β-Ti phase interface;
Impurity element forms the solution strengthening coefficient of phase structure unit:
Figure F2009102489435C00123
S wherein α-Ti-O, S α-Ti-N, S α-Ti-CRepresent impurity element O, N, C solution strengthening coefficient respectively in the α phase; n A' α-Ti-O, n A' α-Ti-N, n A' α-Ti-CAssembly average for shared electron logarithm on α-Ti-O, α-Ti-N, the strong covalent bond in α-Ti-C phase structure unit.
Impurity element forms the interface enhancing coefficient at out-phase interface:
Figure F2009102489435C00132
S wherein α-Ti-O/ α-Ti, S α-Ti-N/ α-Ti, S α-Ti-C/ α-TiThe interface enhancing coefficient of representing α-Ti-O/ α-Ti, α-Ti-N/ α-Ti, α-Ti-C/ α-Ti phase interface respectively; Δ ρ ' α-Ti-O/ α-Ti, Δ ρ ' α-Ti-N/ α-Ti, Δ ρ ' α-Ti-C/ α-TiAssembly average for α-Ti-O/ α-Ti, α-Ti-N/ α-Ti, α-Ti-C/ α-Ti phase interface electron density difference;
Impurity element forms the interface enhancing coefficient with phase interface:
S wherein α-Ti-O/ α-Ti-O, S α-Ti-N/ α-Ti-N, S α-Ti-C/ α-Ti-CThe interface enhancing coefficient of representing α-Ti-O/ α-Ti-O, α-Ti-N/ α-Ti-N, α-Ti-C/ α-Ti-C phase interface respectively; Δ ρ ' α-Ti-Al/ α-Ti-O, Δ ρ ' α-Ti-N/ α-Ti-N, Δ ρ ' α-Ti-C/ α-Ti-CAssembly average for α-Ti-O/ α-Ti-O, α-Ti-N/ α-Ti-N, α-Ti-C/ α-Ti-C phase interface electron density difference.
1.3 calculate titanium alloy tensile strength, intensity with matrix α-Ti, β-Ti is base value, utilizes coefficient of intensification, strengthens the titanium alloy tensile strength increment under the weight calculation Different Heat Treatment Conditions, with the titanium alloy tensile strength increment summation that calculates, draw the titanium alloy tensile strength values
The mathematical model of titanium alloy calculation of Tensile Strength:
β mutually in the solution strengthening intensity increment of each phase structure unit:
Figure F2009102489435C00134
Δ σ wherein b β-Ti-Al, Δ σ b β-Ti-Al-M, Δ σ b β-Ti-MThe solution strengthening intensity increment of β-Ti-Al, β-Ti-Al-M, β-Ti-M phase structure unit in order solid solution during expression; σ b β-TiBe the tensile strength values of matrix β-Ti, σ b β - Ti = 200 MPa .
β is the interface enhancing intensity increment at middle out-phase interface mutually:
Δ σ wherein b β-Ti-Al/ β-Ti, Δ σ b β-Ti-Al-M/ β-Ti, Δ σ b β-Ti-M/ β-TiThe reinforcement intensity increment of β-Ti-Al/ β-Ti, β-Ti-Al-M/ β-Ti, β-Ti-M/ β-Ti phase interface in the expression β phase solid solution;
β mutually in the interface enhancing intensity increment of phase interface:
Figure F2009102489435C00144
Δ σ wherein b β-Ti-Al/ β-Ti-Al, Δ σ b β-Ti-Al-M/ β-Ti-Al-M, Δ σ b β-Ti-M/ β-Ti-Mβ-Ti-Al/ β-Ti-Al, β-Ti-Al-M/ β-Ti-Al-M, β-Ti-M/ β-Ti-M is with the reinforcement intensity increment of phase interface in the expression β phase solid solution.
Primary mutually in the solution strengthening intensity increment of each phase structure unit:
Figure F2009102489435C00145
Δ σ wherein Bp α-Ti-Al, Δ σ Bp α-Ti-Al-M, Δ σ Bp α-Ti-MThe solution strengthening intensity increment of α-Ti-Al, α-Ti-Al-M, α-Ti-M phase structure unit in the expression primary phase solid solution; σ b α-TiBe the tensile strength values of matrix α-Ti, σ b α - Ti = 275 MPa ;
Primary is the interface enhancing intensity increment at middle out-phase interface mutually:
Figure F2009102489435C00151
Δ σ wherein Bp α-Ti-Al/ α-Ti, Δ σ Bp α-Ti-Al-M/ α-Ti, Δ σ Bp α-Ti-M/ α-Tiα-Ti-Al/ α-Ti, α-Ti-Al-M/ α-Ti, α-Ti-M/ α-Ti phase interface is strengthened intensity increment in the expression primary phase solid solution;
In the primary with the interface enhancing intensity increment of phase interface:
Δ σ wherein Bp α-Ti-Al/ α-Ti-Al, Δ σ Bp α-Ti-Al-M/ α-Ti-Al-M, Δ σ Bp α-Ti-M/ α-Ti-MThe interface enhancing intensity increment of α-Ti-Al/ α-Ti-Al, α-Ti-Al-M/ α-Ti-Al-M, α-Ti-M/ α-Ti-M phase interface in the expression primary phase solid solution.
The interface enhancing intensity increment at the out-phase interface that primary and β form mutually:
Figure F2009102489435C00153
Δ σ wherein Bp α-Ti-Al/ β-Ti-Al, Δ σ Bp α-Ti-Al-M/ β-Ti-Al-M, Δ σ Bp α-Ti-M/ β-Ti-M, Δ σ Bp α-Ti/ β-TiThe interface enhancing intensity increment of representing α-Ti-Al/ β-Ti-Al, α-Ti-Al-M/ β-Ti-Al-M, α-Ti-M/ β-Ti-M, α-Ti/ β-Ti phase interface that primary and β form mutually;
Secondary α mutually in the solution strengthening intensity increment of each phase structure unit:
Δ σ wherein Bs α-Ti-Al, Δ σ Bs α-Ti-Al-M, Δ σ Bs α-Ti-MThe solution strengthening intensity increment of representing α-Ti-Al, α-Ti-Al-M in the secondary α phase solid solution, α-Ti-M phase structure unit;
Secondary α mutually in the interface enhancing intensity increment of phase interface:
Δ σ wherein Bs α-Ti-Al/ α-Ti-Al, Δ σ Bs α-Ti-Al-M/ α-Ti-Al-M, Δ σ Bs α-Ti-M/ α-Ti-MThe interface enhancing intensity increment of representing α-Ti-Al/ α-Ti-Al, α-Ti-Al-M/ α-Ti-Al-M, α in the secondary α phase solid solution-Ti-M/ α-Ti-M phase interface;
Secondary α and parent phase β form the interface enhancing intensity increment at out-phase interface:
Figure F2009102489435C00162
Δ σ wherein Bs α-Ti-Al/ β-Ti-Al, Δ σ Bs α-Ti-Al-M/ β-Ti-Al-M, Δ σ Bs α-Ti-M/ β-Ti-M, Δ σ Bs α-Ti/ β-TiThe interface enhancing intensity increment of representing α-Ti-Al/ β-Ti-Al, α-Ti-Al-M/ β-Ti-Al-M, α-Ti-M/ β-Ti-M phase interface that secondary α phase solid solution and parent phase β solid solution form;
The solution strengthening intensity increment of each phase structure unit that impurity element forms:
Figure F2009102489435C00163
Δ σ wherein b α-Ti-O, Δ σ b α-Ti-N, Δ σ b α-Ti-CExpression impurity element O, N, C form the solution strengthening intensity increment of α-Ti-O, α-Ti-N, α-Ti-C phase structure unit in α phase solid solution;
The interface enhancing intensity increment at the out-phase interface that impurity element forms:
Figure F2009102489435C00164
Δ σ wherein b α-Ti-O/ α-Ti, Δ σ b α-Ti-N/ α-Ti, Δ σ b α-Ti-C/ α-TiExpression impurity element O, N, C form the solution strengthening intensity increment of α-Ti-O/ α-Ti, α-Ti-N/ α-Ti, α-Ti-C/ α-Ti phase structure unit in α phase solid solution;
The interface enhancing intensity increment of the same phase interface that impurity element forms:
Figure F2009102489435C00171
Δ σ wherein b α-Ti-O/ α-Ti-O, Δ σ b α-Ti-N/ α-Ti-N, Δ σ b α-Ti-C/ α-Ti-CExpression impurity element O, N, C form the reinforcement intensity increment of α-Ti-O/ α-Ti-O, α-Ti-N/ α-Ti-N, α-Ti-C/ α-Ti-C phase interface in α phase solid solution;
The computing formula of titanium alloy tensile strength:
Figure F2009102489435C00172
Figure F2009102489435C00173
Figure F2009102489435C00174
Figure F2009102489435C00175
Figure F2009102489435C00176
Figure F2009102489435C00177
Figure F2009102489435C00178
Figure F2009102489435C00179
Figure F2009102489435C001710
Figure F2009102489435C001711
Figure F2009102489435C001712
Figure F2009102489435C001713
Figure F2009102489435C001714
Figure F2009102489435C001716
1.4. calculate the titanium alloy length growth rate, length growth rate with α-Ti, β-Ti is a base value, utilizes coefficient of intensification, strengthens the titanium alloy length growth rate reduction amount under the weight calculation Different Heat Treatment Conditions, with the titanium alloy length growth rate reduction amount summation that calculates, draw the titanium alloy length growth rate
Titanium alloy length growth rate calculation mathematic model:
β mutually in the solution strengthening length growth rate reduction amount of each phase structure unit:
Figure F2009102489435C001717
Δ δ wherein β-Ti-Al, Δ δ β-Ti-Al-M, Δ δ β-Ti-MThe solution strengthening length growth rate reduction amount of β-Ti-Al, β-Ti-Al-M, β-Ti-M phase structure unit in the expression β phase solid solution; σ N β-Ti-Al, σ N β-Ti-Al-M, σ N β-Ti-MBe the state of atom group number that may exist in β-Ti-Al, β-Ti-Al-M, the β-Ti-M phase structure unit; δ β-TiBe the elongation values of matrix β-Ti, δ β-Ti=75%;
β is the interface enhancing length growth rate reduction amount at middle out-phase interface mutually:
Figure F2009102489435C00182
Δ δ wherein β-Ti-Al/ β-Ti, Δ δ β-Ti-Al-M/ β-Ti, Δ δ β-Ti-M/ β-TiThe interface enhancing length growth rate reduction amount of β-Ti-Al/ β-Ti, β-Ti-Al-M/ β-Ti, β-Ti-M/ β-Ti phase interface in the expression β phase solid solution; σ β-Ti-Al/ β-Ti, σ β-Ti-Al-M/ β-Ti, σ β-Ti-M/ β-TiBe the state of atom group number that may exist in β-Ti-Al/ β-Ti, β-Ti-Al-M/ β-Ti, β-Ti-M/ β-Ti phase interface;
β mutually in the interface enhancing length growth rate reduction amount of phase interface:
Figure F2009102489435C00183
Δ δ wherein β-Ti-Al/ β-Ti-Al, Δ δ β-Ti-Al-M/ β-Ti-Al-M, Δ δ β-Ti-M/ β-Ti-MThe interface enhancing length growth rate reduction amount of β-Ti-Al/ β-Ti-Al, β-Ti-Al-M/ β-Ti-Al-M, β-Ti-M/ β-Ti-M phase interface in the expression β phase solid solution; σ β-Ti-Al/ β-Ti-Al, σ β-Ti-Al-M/ β-Ti-Al-M, σ β-Ti-M/ β-Ti-MBe the state of atom group number that may exist in β-Ti-Al/ β-Ti-Al, β-Ti-Al-M/ β-Ti-Al-M, β-Ti-M/ β-Ti-M phase interface;
Primary mutually in the solution strengthening length growth rate reduction amount of each phase structure unit:
Figure F2009102489435C00191
Δ δ wherein p α-Ti-Al, Δ δ p α-Ti-Al-M, Δ δ p α-Ti-MThe solution strengthening length growth rate reduction amount of α-Ti-Al, α-Ti-Al-M, α-Ti-M phase structure unit in the expression primary phase solid solution; σ N α-Ti-Al, σ N α-Ti-Al-M, σ N α-Ti-MBe the state of atom group number that may exist in α-Ti-Al, α-Ti-Al-M, the α-Ti-M phase structure unit; δ α-TiBe the elongation values of matrix α-Ti, δ α-Ti=49%;
Primary is the interface enhancing length growth rate reduction amount at middle out-phase interface mutually:
Δ δ wherein p α-Ti-Al/ α-Ti, Δ δ p α-Ti-Al-M/ α-Ti, Δ δ p α-Ti-M/ α-TiThe interface enhancing length growth rate reduction amount of α-Ti-Al/ α-Ti, α-Ti-Al-M/ α-Ti, α-Ti-M/ α-Ti phase interface in the expression primary phase solid solution; σ α-Ti-Al/ α-Ti, σ α-Ti-Al-M/ α-Ti, σ α-Ti-M/ α-TiBe the state of atom group number that may exist in α-Ti-Al/ α-Ti, α-Ti-Al-M/ α-Ti, α-Ti-M/ α-Ti phase interface;
Primary mutually in the interface enhancing length growth rate reduction amount of phase interface:
Figure F2009102489435C00193
Δ δ wherein p α-Ti-Al/ α-Ti-Al, Δ δ p α-Ti-Al-M/ α-Ti-Al-M, Δ δ p α-Ti-M/ α-Ti-MThe interface enhancing length growth rate reduction amount of α-Ti-Al/ α-Ti-Al, α-Ti-Al-M/ α-Ti-Al-M, α-Ti-M/ α-Ti-M phase interface in the expression primary phase solid solution; σ α-Ti-Al/ α-Ti-Al, σ α-Ti-Al-M/ α-Ti-Al-M, σ α-Ti-M/ α-Ti-MBe the state of atom group number that may exist in α-Ti-Al/ α-Ti-Al, α-Ti-Al-M/ α-Ti-Al-M, α-Ti-M/ α-Ti-M phase interface;
Primary and β form the interface enhancing length growth rate reduction amount at out-phase interface mutually:
Figure F2009102489435C00201
Δ δ wherein p α-Ti-Al/ β-Ti-Al, Δ δ p α-Ti-Al-M/ β-Ti-Al-M, Δ δ p α-Ti-M/ β-Ti-M, Δ δ p α-Ti/ β-TiRepresent that primary and β form the interface enhancing length growth rate reduction amount of α-Ti-Al/ β-Ti-Al, α-Ti-Al-M/ β-Ti-Al-M, α-Ti-M/ β-Ti-M phase interface mutually; σ α-Ti-Al/ β-Ti-Al, σ α-Ti-Al-M/ β-Ti-Al-M, σ α-Ti-M/ β-Ti-M, σ α-Ti/ β-TiBe the state of atom group number that may exist in α-Ti-Al/ β-Ti-Al, α-Ti-Al-M/ β-Ti-Al-M, α-Ti-M/ β-Ti-M, α-Ti/ β-Ti phase interface;
Secondary α mutually in the solution strengthening length growth rate reduction amount of each phase structure unit:
Δ δ wherein s α-Ti-Al, Δ δ s α-Ti-Al-M, Δ δ s α-Ti-MThe solution strengthening length growth rate reduction amount of representing α-Ti-Al, α-Ti-Al-M in the secondary α phase solid solution, α-Ti-M phase structure unit; δ when primary is separated out Matrixα-Ti, otherwise δ Matrixβ-Ti
Secondary α mutually in the interface enhancing length growth rate reduction amount of phase interface:
Figure F2009102489435C00203
Δ δ wherein s α-Ti-Al/ α-Ti-Al, Δ δ s α-Ti-Al-M/ α-Ti-Al-M, Δ δ s α-Ti-M/ α-Ti-MThe interface enhancing length growth rate reduction amount of representing α-Ti-Al/ α-Ti-Al, α-Ti-Al-M/ α-Ti-Al-M, α in the secondary α phase solid solution-Ti-M/ α-Ti-M phase interface;
Secondary α and β form the interface enhancing length growth rate reduction amount at out-phase interface mutually:
Figure F2009102489435C00211
Δ δ wherein s α-Ti-Al/ β-Ti-Al, Δ δ s α-Ti-Al-M/ β-Ti-Al-M, Δ δ s α-Ti-M/ β-Ti-M, Δ δ s α-Ti/ β-TiRepresent that secondary α and β form the interface enhancing length growth rate reduction amount of α-Ti-Al/ β-Ti-Al, α-Ti-Al-M/ β-Ti-Al-M, α-Ti-M/ β-Ti-M, α-Ti/ β-Ti phase interface mutually; σ α-Ti/ β-TiThe state of atom group number that may exist for α-Ti/ β-Ti phase interface;
Impurity element forms the solution strengthening length growth rate reduction amount of phase structure unit:
Δ δ wherein α-Ti-O, Δ δ α-Ti-N, Δ δ α-Ti-CSolution strengthening length growth rate reduction amount for α-Ti-O, α-Ti-N, α-Ti-C structural unit;
Impurity element forms the interface enhancing length growth rate reduction amount at out-phase interface:
Figure F2009102489435C00213
Δ δ wherein α-Ti-O/ α-Ti, Δ δ α-Ti-N/ α-Ti, Δ δ α-Ti-C/ α-TiInterface enhancing length growth rate reduction amount for α-Ti-O/ α-Ti, α-Ti-N/ α-Ti, α-Ti-C/ α-Ti phase interface;
Impurity element forms the interface enhancing length growth rate reduction amount with phase interface:
Figure F2009102489435C00221
Δ δ wherein α-Ti-O/ α-Ti, Δ δ α-Ti-N/ α-Ti, δ α-Ti-C/ α-TiInterface enhancing length growth rate reduction amount for α-Ti-O/ α-Ti-O, α-Ti-N/ α-Ti-N, α-Ti-C/ α-Ti-C phase interface;
Titanium alloy length growth rate computing formula:
Figure F2009102489435C00222
Figure F2009102489435C00224
Figure F2009102489435C00225
Figure F2009102489435C00226
Figure F2009102489435C00227
Figure F2009102489435C00228
Figure F2009102489435C00229
Figure F2009102489435C002210
Figure F2009102489435C002211
Figure F2009102489435C002212
Figure F2009102489435C002213
Figure F2009102489435C002214
Figure F2009102489435C002215
Aforementioned calculation formula (1)~formula (52) is compiled into software for calculation, carry out after the alloying component of the choosing of input examination on computers and the corresponding Technology for Heating Processing and calculate, by observing alloying element tensile strength under Different Heat Treatment Conditions, the change amount of length growth rate, adjust alloy composition repeatedly and make the design tensile strength of alloys, the relative error of the calculated value of length growth rate and technical requirement value so just can be determined through the solution treatment+shrend of β phase region in 10%, the chemical constitution of titanium alloy under the solution treatment+shrend of alpha+beta phase region and the solution treatment+aging condition.
2. method according to claim 1, it is characterized in that: can carry out on computers adjusting alloy composition for five~ten times, and the pairing alloying component of minimum value of the calculated value of getting design tensile strength of alloys, length growth rate and the relative error of technical requirement value is as designing the optimized chemical constitution of alloy.
CN 200910248943 2009-12-31 2009-12-31 Titanium alloy component quantifying design method Expired - Fee Related CN101763450B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 200910248943 CN101763450B (en) 2009-12-31 2009-12-31 Titanium alloy component quantifying design method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 200910248943 CN101763450B (en) 2009-12-31 2009-12-31 Titanium alloy component quantifying design method

Publications (2)

Publication Number Publication Date
CN101763450A true CN101763450A (en) 2010-06-30
CN101763450B CN101763450B (en) 2012-04-04

Family

ID=42494612

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 200910248943 Expired - Fee Related CN101763450B (en) 2009-12-31 2009-12-31 Titanium alloy component quantifying design method

Country Status (1)

Country Link
CN (1) CN101763450B (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107463747A (en) * 2017-08-03 2017-12-12 重庆工业职业技术学院 The application of neural network model and construction method in the heat treatment of light-alloy parts
CN109763027A (en) * 2019-02-01 2019-05-17 中国兵器科学研究院宁波分院 A kind of low cost high-hardness titanium alloy and preparation method thereof
CN110387485A (en) * 2019-07-17 2019-10-29 西北工业大学 A kind of composition design method of metastable β Titanium-alloy
CN112222681A (en) * 2020-09-14 2021-01-15 中国航发北京航空材料研究院 Method for designing Ti-Zr-based brazing filler metal components based on thermodynamic factors and unit cell structural factors
CN112222680A (en) * 2020-09-14 2021-01-15 中国航发北京航空材料研究院 Method for designing multi-element brazing filler metal components based on valence bond theory
CN112528465A (en) * 2020-11-14 2021-03-19 辽宁石油化工大学 Near alpha titanium alloy performance optimization and component reverse design method based on Leeb's theory
CN112912884A (en) * 2018-10-30 2021-06-04 昭和电工株式会社 Material designing device, material designing method, and material designing program

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107463747A (en) * 2017-08-03 2017-12-12 重庆工业职业技术学院 The application of neural network model and construction method in the heat treatment of light-alloy parts
CN112912884A (en) * 2018-10-30 2021-06-04 昭和电工株式会社 Material designing device, material designing method, and material designing program
CN112912884B (en) * 2018-10-30 2023-11-21 株式会社力森诺科 Material designing apparatus, material designing method, and material designing program
CN109763027A (en) * 2019-02-01 2019-05-17 中国兵器科学研究院宁波分院 A kind of low cost high-hardness titanium alloy and preparation method thereof
CN110387485A (en) * 2019-07-17 2019-10-29 西北工业大学 A kind of composition design method of metastable β Titanium-alloy
CN112222681A (en) * 2020-09-14 2021-01-15 中国航发北京航空材料研究院 Method for designing Ti-Zr-based brazing filler metal components based on thermodynamic factors and unit cell structural factors
CN112222680A (en) * 2020-09-14 2021-01-15 中国航发北京航空材料研究院 Method for designing multi-element brazing filler metal components based on valence bond theory
CN112528465A (en) * 2020-11-14 2021-03-19 辽宁石油化工大学 Near alpha titanium alloy performance optimization and component reverse design method based on Leeb's theory

Also Published As

Publication number Publication date
CN101763450B (en) 2012-04-04

Similar Documents

Publication Publication Date Title
CN101763450B (en) Titanium alloy component quantifying design method
US11475317B2 (en) Microalloyed steel mechanical property prediction method based on globally additive model
CN106591625B (en) One kind has the matched titanium alloy of high-intensity and high-tenacity and its preparation process
EP3133179B1 (en) Austenitic stainless steel and method for producing same
Whittaker et al. Long-term creep data prediction for type 316H stainless steel
CN102224267B (en) Products made of an aluminium-copper-lithium alloy
WO1994008063A1 (en) Creep resistant, precipitation-dispersion-strengthened, martensitic stainless steel and method thereof
Wan et al. Dynamic softening behavior and microstructural characterization of TiAl-based alloy during hot deformation
CN105143482A (en) Nickel-cobalt alloy
RU2011153275A (en) ALLOY CLOSE TO BETA-TITANIUM, FOR APPLICATIONS REQUIRING HIGH STRENGTH, AND METHODS FOR PRODUCING IT
CN105980592B (en) Two phase stainless steel
Ghavam et al. Flow behavior modeling of IMI834 titanium alloy during hot tensile deformation
Zhao et al. Hot deformation behaviour of 40CrNi steel and evaluation of different processing map construction methods
EP3441495A1 (en) Austenitic stainless steel material
CN110387485A (en) A kind of composition design method of metastable β Titanium-alloy
CN101655490B (en) Prediction method of tensile strength of stainless steel wire rod and control method thereof
CN106636742A (en) ZSA-3 titanium alloy pipe, and preparation method and application thereof
CN111349815A (en) Ti-1300Z novel high-strength high-toughness titanium alloy and preparation method thereof
Semiatin et al. Effect of texture changes on flow softening during hot working of Ti-6Al-4V
CN107709594A (en) Bolt
CN106566952A (en) High temperature resistance forge piece with excellent nuclear power performance and production method thereof
CN110819872B (en) Fe-Mn-Al-Ni-Nb shape memory alloy and preparation method thereof
CN112528465B (en) Near alpha titanium alloy performance optimization and component reverse design method based on Lesion theory
CN106661704B (en) Two phase stainless steel
CN107779665B (en) A kind of titanium alloy and its processing method

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20120404

Termination date: 20161231

CF01 Termination of patent right due to non-payment of annual fee