CN101738203A - Optimal position calibration method of static drifting zero and primary acceleration related term error model of flexible gyroscope - Google Patents

Optimal position calibration method of static drifting zero and primary acceleration related term error model of flexible gyroscope Download PDF

Info

Publication number
CN101738203A
CN101738203A CN200910242137A CN200910242137A CN101738203A CN 101738203 A CN101738203 A CN 101738203A CN 200910242137 A CN200910242137 A CN 200910242137A CN 200910242137 A CN200910242137 A CN 200910242137A CN 101738203 A CN101738203 A CN 101738203A
Authority
CN
China
Prior art keywords
degrees
flexible gyroscope
optimal
test
gyroscope
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN200910242137A
Other languages
Chinese (zh)
Other versions
CN101738203B (en
Inventor
富立
王新玲
刘文丽
王玲玲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beihang University
Original Assignee
Beihang University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beihang University filed Critical Beihang University
Priority to CN2009102421377A priority Critical patent/CN101738203B/en
Publication of CN101738203A publication Critical patent/CN101738203A/en
Application granted granted Critical
Publication of CN101738203B publication Critical patent/CN101738203B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Gyroscopes (AREA)

Abstract

本发明公开了一种挠性陀螺仪静态漂移零次和一次加速度相关项误差模型最优位置标定方法,是采用D-最优试验设计方法获得最优的测试位置。本发明在最优空间正交十二位置下对获得的最优空间正交十二位置漂移系数与挠性陀螺静态误差补偿模型G0进行的测量值补偿有效地提高了挠性陀螺仪的输出。在惯导测试中心挠性陀螺测试过程中分别采用传统八位置方法、全空间正交二十四位置和最优空间正交十二位置方法得到的漂移系数。由陀螺测量值剩余平方和可见,利用挠性陀螺仪最优空间正交十二位置试验设计方法求解的漂移系数进行补偿后的结果较传统八位置方法提高了4~5倍,较全空间正交二十四位置试验方法精度有所提高并且测试时间缩短了一半。

The invention discloses a method for calibrating the optimal position of the error model of zero-order static drift and first-order acceleration related items of a flexible gyroscope, which uses a D-optimal test design method to obtain the optimal test position. In the present invention, under the optimal spatial orthogonal twelve positions, the measured value compensation of the obtained optimal spatial orthogonal twelve position drift coefficients and the static error compensation model G of the flexible gyroscope effectively improves the output of the flexible gyroscope . The drift coefficients obtained by using the traditional eight-position method, the full-space orthogonal twenty-four position method and the optimal space orthogonal twelve-position method during the flexible gyroscope test in the inertial navigation test center. It can be seen from the residual sum of squares of the measured values of the gyroscope that the compensation result of the drift coefficient solved by the optimal space orthogonal twelve-position experimental design method of the flexible gyroscope is 4 to 5 times higher than that of the traditional eight-position method, and compared with the full-space positive The accuracy of the twenty-four position test method is improved and the test time is shortened by half.

Description

挠性陀螺仪静态漂移零次和一次加速度相关项误差模型最优位置标定方法 Optimal Position Calibration Method for Zero-order and First-order Acceleration Dependent Term Error Models of Flexible Gyroscope Static Drift

技术领域technical field

本发明涉及一种对挠性陀螺仪静态漂移误差模型的标定方法,更特别地说,是指一种采用D-最优试验设计方法确定出DTGs-AID-ADD模型最优位置的标定方法。The invention relates to a calibration method for a static drift error model of a flexible gyroscope, more particularly, a calibration method for determining the optimal position of a DTGs-AID-ADD model by using a D-optimal test design method.

背景技术Background technique

陀螺技术不但在军事、航空、航天领域发挥着巨大作用,在国民经济的其他领域中也获得广泛应用,为国民经济的发展发挥着重要作用。陀螺测试是陀螺生产和应用中的保障措施,测试精度的高低直接影响到陀螺技术的发展速度。Gyro technology not only plays a huge role in the fields of military, aviation, and aerospace, but also is widely used in other fields of the national economy, playing an important role in the development of the national economy. Gyro testing is a guarantee measure in the production and application of gyroscopes, and the level of testing accuracy directly affects the development speed of gyroscope technology.

挠性陀螺仪是一种双自由度的陀螺仪,因其在精度、体积、成本和可靠性等方面的优势而广泛应用在各种导航、制导与控制系统中。然而在实际应用中,挠性陀螺仪的角速度测量值中存在着由于各种干扰力矩产生的漂移误差,这些漂移误差一般由静态漂移误差、动态漂移误差和随机漂移误差组成,其中由线运动引起的静态漂移误差是挠性陀螺漂移误差的主要部分,也是挠性惯导系统误差的主要因素。由于在挠性陀螺静态漂移误差模型中,与加速度零次和加速度一次方有关的漂移误差项为静态漂移误差的主要部分,一般可以忽略与加速度二次方有关的误差项而得到静态漂移零次和一次加速度相关项误差模型,该模型简称为DTGs-AID-ADD模型。在该DTGs-AID-ADD模型中与加速度无关的漂移系数称为加速度零次项漂移系数,与加速度有关的漂移系数称为加速度一次项漂移系数。The flexible gyroscope is a dual-degree-of-freedom gyroscope, which is widely used in various navigation, guidance and control systems because of its advantages in accuracy, volume, cost and reliability. However, in practical applications, there are drift errors caused by various disturbance torques in the angular velocity measurement value of the flexible gyroscope. These drift errors are generally composed of static drift errors, dynamic drift errors and random drift errors. The static drift error is the main part of the drift error of the flexible gyroscope, and it is also the main factor of the error of the flexible inertial navigation system. Since in the static drift error model of the flexible gyroscope, the drift error items related to the zero order of acceleration and the first power of acceleration are the main part of the static drift error, generally the error items related to the second power of acceleration can be ignored to obtain the zero order of static drift and an error model related to primary acceleration, which is referred to as the DTGs-AID-ADD model for short. In the DTGs-AID-ADD model, the drift coefficient that has nothing to do with acceleration is called the zero-order drift coefficient of acceleration, and the drift coefficient that is related to acceleration is called the first-order drift coefficient of acceleration.

目前,对DTGs-AID-ADD模型的测试方法主要有两种:1)采用IEEE Std813-1988或国军标中规定的传统八位置试验方法进行测试;2)采用全空间正交二十四位置试验方法进行测试。但是,上述两种方法存在以下问题:At present, there are two main test methods for the DTGs-AID-ADD model: 1) use the traditional eight-position test method specified in IEEE Std813-1988 or the national military standard for testing; 2) use the full-space orthogonal twenty-four position test method test method for testing. However, the above two methods have the following problems:

第一、传统八位置试验方法所得到的DTGs-AID-ADD模型中的一次项漂移系数准确度不高,从而使得用该方法估计得到的漂移系数进行挠性陀螺静态漂移误差补偿后,陀螺测量精度不能显著地提高。First, the accuracy of the first-order drift coefficient in the DTGs-AID-ADD model obtained by the traditional eight-position test method is not high, so that after the drift coefficient estimated by this method is used to compensate the static drift error of the flexible gyro, the gyro measurement Accuracy cannot be improved significantly.

第二、虽然采用全空间正交二十四位置试验方法估计所得到的DTGs-AID-ADD模型中的一次项漂移系数与传统八位置试验方法相比,其精度得到了提高,但此估计结果中的一次项漂移系数并不是最优的,此外,该方法的试验过程用时长、数据处理工作量较大,试验成本较高。Second, although the accuracy of the first-order drift coefficient in the DTGs-AID-ADD model estimated by the full-space orthogonal twenty-four-position test method is improved compared with the traditional eight-position test method, the estimation results The first-order drift coefficient in is not optimal. In addition, the test process of this method takes a long time, the workload of data processing is large, and the test cost is high.

第三、传统八位置和全空间正交二十四位置试验方法并不是最优的试验方法,从而得到的漂移系数也并非为最优的。随着对导航及制导系统精度要求和测试效率以及试验成本要求的不断提高,需要进一步研究DTGs-AID-ADD模型标定方法,以省时省力地得到精度更高的DTGs-AID-ADD模型,从而有效的提高导航精度。Third, the traditional eight-position and full-space orthogonal twenty-four-position test methods are not the optimal test methods, and the resulting drift coefficients are also not optimal. With the continuous improvement of navigation and guidance system accuracy requirements, test efficiency and test cost requirements, it is necessary to further study the DTGs-AID-ADD model calibration method to save time and effort to obtain a DTGs-AID-ADD model with higher accuracy, so that Effectively improve navigation accuracy.

发明内容Contents of the invention

为了能够高效且准确地得到用于挠性陀螺仪误差补偿,以及提高导航精度的DTGs-AID-ADD模型中的最优漂移系数,本发明提出了一种适用于DTGs-AID-ADD模型的最优位置标定方法。按照发明中提出的最优位置进行挠性陀螺位置实验可得到DTGs-AID-ADD模型中的最优漂移系数。In order to efficiently and accurately obtain the optimal drift coefficient in the DTGs-AID-ADD model for flexible gyroscope error compensation and improve navigation accuracy, the present invention proposes an optimal drift coefficient suitable for the DTGs-AID-ADD model Optimal position calibration method. The optimal drift coefficient in the DTGs-AID-ADD model can be obtained by performing the flexible gyro position experiment according to the optimal position proposed in the invention.

本发明根据最优试验理论,DTGs-AID-ADD模型的最优试验位置个数应在六个位置数到二十一个位置数之间。要通过陀螺仪位置实验得到DTGs-AID-ADD模型的准确度最好、最优的漂移系数,并不是用于测试的位置数越多所得的漂移系数准确度越高,更不是用于测试的位置数越少所得的漂移系数越优,而是根据一定的试验设计准侧在六个位置数和二十一个位置数之间确定一个最优的试验方法,本发明采用D-最优试验设计方法确定出了DTGs-AID-ADD模型的最优位置标定方法,通过该最优的试验位置进行测试,既减少了试验时间、降低了测试成本,又使得所得的漂移系数最接近真实值。According to the optimal test theory of the present invention, the number of optimal test positions of the DTGs-AID-ADD model should be between six positions and twenty-one positions. To obtain the best accuracy and optimal drift coefficient of the DTGs-AID-ADD model through the gyroscope position experiment, it is not that the more positions used for testing, the higher the accuracy of the drift coefficient is, and it is not used for testing. The less the number of positions, the better the drift coefficient, but according to a certain test design standard, an optimal test method is determined between six position numbers and twenty-one position numbers. The present invention adopts D-optimum test The design method determines the optimal position calibration method of the DTGs-AID-ADD model, and the test is carried out through the optimal test position, which not only reduces the test time and test cost, but also makes the obtained drift coefficient the closest to the real value.

本发明的一种挠性陀螺仪静态漂移零次和一次加速度相关项误差模型最优位置标定方法,是将挠性陀螺仪安装在三轴位置速率转台上,挠性陀螺仪与数据采集设备相连,数据采集设备与计算机相连;所述计算机内安装有位置测量软件;DTGs-AID-ADD最优位置的标定包括有下列标定执行步骤:A method for calibrating the optimal position of a flexible gyroscope static drift zero-order and first-order acceleration related item error model of the present invention is to install the flexible gyroscope on a three-axis position rate turntable, and connect the flexible gyroscope to a data acquisition device , the data acquisition device is connected to the computer; position measurement software is installed in the computer; the calibration of the optimal position of the DTGs-AID-ADD includes the following calibration steps:

第一步:确定最优位置Step 1: Determine the optimal location

DTGs-AID-ADD模型测试的最优试验位置采用D-最优试验设计方法获得;The optimal experimental location of DTGs-AID-ADD model test is obtained by D-optimal experimental design method;

D-最优试验设计方法是指用于DTGs-AID-ADD模型测试的最优试验位置由D-最优设计准则得到,所谓D-最优设计准则是指使试验点信息矩阵的行列式达到极大值;The D-optimal test design method means that the optimal test position for DTGs-AID-ADD model testing is obtained by the D-optimal design criterion, and the so-called D-optimal design criterion refers to making the determinant of the test point information matrix reach the extreme large value;

D-最优试验设计方法首先将DTGs-AID-ADD模型测试的试验位置个数初始化为6,根据D-最优设计准则进行6最优位置试验设计,得到并记录基于DTGs-AID-ADD模型的6最优位置和相应的信息阵行列式,然后依次增加测试的试验位置个数至24,确定出6~24位置个数下的信息阵行列式和相应的最优试验位置,最后获得试验位置个数n=6~24中信息矩阵行列式最大时所对应的试验位置根据D-最优准则该试验位置即为最优实验位置;通过D-最优试验设计方法确定出DTGs-AID-ADD模型的最优试验位置数为十二个位置,其对应的实验位置就是最优实验位置即空间正交十二个位置;The D-optimal experimental design method first initializes the number of test locations for the DTGs-AID-ADD model test to 6, and performs the 6 optimal location experimental design according to the D-optimal design criteria, and obtains and records the DTGs-AID-ADD model based on The 6 optimal positions and the corresponding information array determinant, and then increase the number of test test positions to 24 in turn, determine the information array determinant and the corresponding optimal test position under the number of 6 to 24 positions, and finally obtain the test The test position corresponding to the maximum determinant of the information matrix in the number of positions n=6~24 is the optimal test position according to the D-optimal criterion; the DTGs-AID- The optimal number of experimental positions of the ADD model is twelve positions, and the corresponding experimental positions are the optimal experimental positions, that is, twelve spatially orthogonal positions;

第二步:标定空间正交十二位置方位Step 2: Calibrate the orientation of the space orthogonal twelve positions

第一位置:挠性陀螺仪从初始安装坐标系(天北西)旋转角度θ为0度,γ为0度,φ为0度;First position: the rotation angle θ of the flexible gyroscope from the initial installation coordinate system (Tianbeixi) is 0 degrees, γ is 0 degrees, and φ is 0 degrees;

第二位置:挠性陀螺仪从初始安装坐标系(天北西)旋转角度θ为0度,γ为180度,φ为0度;Second position: the rotation angle θ of the flexible gyroscope from the initial installation coordinate system (North North West) is 0 degrees, γ is 180 degrees, and φ is 0 degrees;

第三位置:挠性陀螺仪从初始安装坐标系(天北西)旋转角度θ为180度,γ为0度,φ为-90度;The third position: the rotation angle θ of the flexible gyroscope from the initial installation coordinate system (Tianbeixi) is 180 degrees, γ is 0 degrees, and φ is -90 degrees;

第四位置:挠性陀螺仪从初始安装坐标系(天北西)旋转角度θ为0度,γ为0度,φ为90度;The fourth position: the rotation angle θ of the flexible gyroscope from the initial installation coordinate system (Tianbeixi) is 0 degrees, γ is 0 degrees, and φ is 90 degrees;

第五位置:挠性陀螺仪从初始安装坐标系(天北西)旋转角度θ为180度,γ为0度,φ为0度;Fifth position: the rotation angle θ of the flexible gyroscope from the initial installation coordinate system (Tianbeixi) is 180 degrees, γ is 0 degrees, and φ is 0 degrees;

第六位置:挠性陀螺仪从初始安装坐标系(天北西)旋转角度θ为0度,γ为0度,φ为180度;Sixth position: The flexible gyroscope rotates from the initial installation coordinate system (North North West) to 0 degrees, γ to 0 degrees, and φ to 180 degrees;

第七位置:挠性陀螺仪从初始安装坐标系(天北西)旋转角度θ为0度,γ为0度,φ为-90度;The seventh position: the rotation angle θ of the flexible gyroscope from the initial installation coordinate system (Tianbeixi) is 0 degrees, γ is 0 degrees, and φ is -90 degrees;

第八位置:挠性陀螺仪从初始安装坐标系(天北西)旋转角度θ为180度,γ为0度,φ为90度;The eighth position: the rotation angle of the flexible gyroscope from the initial installation coordinate system (Tianbeixi) is 180 degrees, γ is 0 degrees, and φ is 90 degrees;

第九位置:挠性陀螺仪从初始安装坐标系(天北西)旋转角度θ为180度,γ为-90度,φ为0度;Ninth position: the rotation angle θ of the flexible gyroscope from the initial installation coordinate system (Tianbeixi) is 180 degrees, γ is -90 degrees, and φ is 0 degrees;

第十位置:挠性陀螺仪从初始安装坐标系(天北西)旋转角度θ为0度,γ为-90度,φ为0度;Tenth position: the rotation angle of the flexible gyroscope from the initial installation coordinate system (North North West) is 0 degrees, γ is -90 degrees, and φ is 0 degrees;

第十一位置:挠性陀螺仪从初始安装坐标系(天北西)旋转角度θ为-90度,γ为90度,φ为0度;Eleventh position: the rotation angle θ of the flexible gyroscope from the initial installation coordinate system (North North West) is -90 degrees, γ is 90 degrees, and φ is 0 degrees;

第十二位置:挠性陀螺仪从初始安装坐标系(天北西)旋转角度θ为90度,γ为90度,φ为0度。The twelfth position: the rotation angle θ of the flexible gyroscope from the initial installation coordinate system (North North West) is 90 degrees, γ is 90 degrees, and φ is 0 degrees.

第三步:获取漂移系数Step 3: Obtain the drift coefficient

(A)对传统八位置下的数据进行DTGs-AID-ADD模型的基于最小二乘法解析获得传统八位置漂移系数;(A) Carry out DTGs-AID-ADD model analysis based on the least squares method on the data under the traditional eight positions to obtain the drift coefficient of the traditional eight positions;

(B)对全空间正交二十四位置下的数据进行DTGs-AID-ADD模型的基于最小二乘法解析获得全空间正交二十四位置漂移系数;(B) Carrying out the DTGs-AID-ADD model based on the least square method analysis on the data under the full-space orthogonal twenty-four positions to obtain the full-space orthogonal twenty-four position drift coefficients;

(C)对空间正交十二位置下的数据进行DTGs-AID-ADD模型的基于最小二乘法解析获得空间正交十二位置漂移系数;(C) Carry out DTGs-AID-ADD model analysis based on the least squares method to the data under the spatial orthogonal twelve positions to obtain the spatial orthogonal twelve position drift coefficients;

所述DTGs-AID-ADD模型为The DTGs-AID-ADD model is

DTGsDTGs -- AIDAID -- ADDADD == ii xx ii ythe y == Uu 00 VV 00 ++ Uu 11 Uu 22 VV 11 VV 22 ωω Xx ωω YY ++ Uu 33 Uu 44 VV 33 VV 44 aa Xx aa YY ++ Uu 55 VV 55 aa ZZ ,,

其中, U 1 = cos ( ϵ + ξ ) ( SF ) Y cos ξ , U 2 = sin ( ϵ + ξ ) ( SF ) Y cos ξ , in, u 1 = cos ( ϵ + ξ ) ( SF ) Y cos ξ , u 2 = sin ( ϵ + ξ ) ( SF ) Y cos ξ ,

VV 11 == -- sinsin ϵϵ (( SFSF )) Xx coscos ξξ ,, VV 22 == coscos ϵϵ (( SFSF )) Xx coscos ξξ ,,

U0=U1×D(X)F+U2×D(Y)F,V0=V1×D(X)F+V2×D(Y)FU 0 =U 1 ×D(X) F +U 2 ×D(Y) F , V 0 =V 1 ×D(X) F +V 2 ×D(Y) F ,

U3=U1×D(X)X+U2×D(Y)X,U4=U1×D(X)Y+U2×D(Y)YU 3 =U 1 ×D(X) X +U 2 ×D(Y) X , U 4 =U 1 ×D(X) Y +U 2 ×D(Y) Y ,

V3=V1×D(X)X+V2×D(Y)X,V4=V1×D(X)Y+V2×D(Y)YV 3 =V 1 ×D(X) X +V 2 ×D(Y) X , V 4 =V 1 ×D(X) Y +V 2 ×D(Y) Y ,

U5=U1×D(X)Z+U2×D(Y)Z,V5=V1×D(X)Z+V2×D(Y)ZU 5 =U 1 ×D(X) Z +U 2 ×D(Y) Z , V 5 =V 1 ×D(X) Z +V 2 ×D(Y) Z ,

第四步:对空间正交十二位置方位的测量值进行补偿Step 4: Compensate the measured values of spatially orthogonal 12-position azimuth

利用挠性陀螺静态误差补偿模型G0与空间正交十二位置漂移系数对挠性陀螺仪输出测量值进行补偿获得补偿后的测量值;Using the flexible gyroscope static error compensation model G 0 and space orthogonal twelve position drift coefficients to compensate the output measurement value of the flexible gyroscope to obtain the compensated measurement value;

所述挠性陀螺静态误差补偿模型为The static error compensation model of the flexible gyroscope is

GG 00 == DD. (( Xx )) == DD. (( Xx )) Ff ++ DD. (( Xx )) Xx aa Xx ++ DD. (( Xx )) YY aa YY ++ DD. (( Xx )) ZZ aa zz DD. (( YY )) == (( YY )) Ff ++ DD. (( YY )) Xx aa Xx ++ DD. (( YY )) YY aa YY ++ DD. (( YY )) ZZ aa zz ..

本发明挠性陀螺仪最优位置标定方法的优点在于:(1)目前IEEE Std 813-1988或国军标中规定的DTGs-AID-ADD模型试验方法得到的漂移误差估计结果并不是最优的,而最优位置试验设计方法是所有位置试验设计方法中最优的,通过该方法得到的漂移误差估计结果是最优的,最接近真值;(2)挠性陀螺仪最优位置试验设计方法与全空间正交位置陀螺测试方法相比较省时省力,大大降低了试验成本;(3)挠性陀螺仪最优位置试验设计方法能够准确的估计影响挠性陀螺精度的主要因素,即DTGs-AID-ADD模型中的一次项漂移系数,利用最优位置试验设计方法得到的最优漂移系数进行挠性陀螺误差补偿后,能够将挠性陀螺的精度提高4~5倍;(4)挠性陀螺仪最优位置试验设计方法也适用于标定求解其它类型陀螺静态漂移误差模型一次项漂移系数,具有较强的通用性。The advantage of flexible gyroscope optimal position calibration method of the present invention is: (1) the drift error estimation result obtained by the DTGs-AID-ADD model test method stipulated in the current IEEE Std 813-1988 or the national military standard is not optimal , and the optimal position test design method is the best among all position test design methods, and the drift error estimation result obtained by this method is the best, closest to the true value; (2) The optimal position test design of the flexible gyroscope Compared with the full-space orthogonal position gyro test method, the method saves time and effort, and greatly reduces the test cost; (3) The test design method for the optimal position of the flexible gyroscope can accurately estimate the main factors that affect the accuracy of the flexible gyroscope, that is, DTGs - The first-order drift coefficient in the AID-ADD model, after using the optimal drift coefficient obtained by the optimal position test design method to compensate the error of the flexible gyro, the accuracy of the flexible gyro can be increased by 4 to 5 times; (4) The experimental design method for the optimal position of the gyroscope is also suitable for calibrating and solving the first-order drift coefficient of other types of gyroscope static drift error models, which has strong versatility.

附图说明Description of drawings

图1是挠性陀螺仪试验装置结构示意图。Figure 1 is a schematic diagram of the structure of the flexible gyroscope test device.

图2是本发明进行D-最优试验设计的处理流程图。Fig. 2 is a flow chart of the process of performing D-optimal experimental design in the present invention.

图3是本发明空间正交十二位置的方位图。Fig. 3 is an azimuth diagram of space orthogonal twelve positions of the present invention.

图4是传统正交八位置的方位图。Figure 4 is an azimuth diagram of a traditional quadrature eight position.

图5是全空间正交二十四位置的方位图。Fig. 5 is an azimuth diagram of the full-space orthogonal twenty-four positions.

具体实施方式Detailed ways

下面将结合附图和实施例对本发明做进一步的详细说明。The present invention will be further described in detail below in conjunction with the accompanying drawings and embodiments.

如图1所示,挠性陀螺仪安装在三轴位置速率转台上,挠性陀螺仪与数据采集设备相连,数据采集设备与数据存储计算机相连,上述部件连接后便构成了DTGs-AID-ADD模型的求解系统。其中,数据存储计算机是基于PC机的装置,数据存储计算机内安装有操作系统软件(如windows XP)和挠性陀螺仪位置测量软件(该挠性陀螺仪位置测量软件是采用C语言编写的)。数据存储计算机用于构建挠性陀螺仪的各种属性,显示挠性陀螺仪的试验位置。挠性陀螺仪位置测量软件主要用于将采集到的位置数据保存为*.dat格式,以方便后期调用。位置数据包括挠性陀螺仪X轴脉冲数ix和Y轴脉冲数iyAs shown in Figure 1, the flexible gyroscope is installed on the three-axis position rate turntable, the flexible gyroscope is connected to the data acquisition equipment, and the data acquisition equipment is connected to the data storage computer. After the above components are connected, the DTGs-AID-ADD is formed The solution system for the model. Wherein, the data storage computer is a PC-based device, and the data storage computer is installed with operating system software (such as windows XP) and flexible gyroscope position measurement software (the flexible gyroscope position measurement software is written in C language) . The data storage computer is used to construct various properties of the flexible gyroscope, showing the test position of the flexible gyroscope. The flexible gyroscope position measurement software is mainly used to save the collected position data in *.dat format for later recall. The position data includes the X-axis pulse number i x and the Y-axis pulse number i y of the flexible gyroscope.

如图2所示,DTGs-AID-ADD模型测试的最优试验位置采用D-最优试验设计方法获得。D-最优试验设计方法是指:用于DTGs-AID-ADD模型测试的最优试验位置由D-最优设计准则得到,所谓D-最优设计准则是指使试验点信息矩阵(参见文献A.C.ATKINSON,A.N.DONEV.Optimum Experimentai Designs[M].95)的行列式达到极大值。D-最优试验设计方法首先将DTGs-AID-ADD模型测试的试验位置个数初始化为6,根据D-最优设计准则进行6最优位置试验设计,得到并记录基于DTGs-AID-ADD模型的6最优位置和相应的信息阵行列式,然后依次增加测试的试验位置个数至24,确定出6~24位置个数下的信息阵行列式(参见表1)和相应的最优试验位置,最后获得试验位置个数n=6~24中信息矩阵行列式最大时所对应的试验位置根据D-最优准则该试验位置即为最优实验位置。As shown in Fig. 2, the optimal test location for the DTGs-AID-ADD model test was obtained using the D-optimal test design method. The D-optimal experimental design method means that the optimal test location for DTGs-AID-ADD model testing is obtained by the D-optimal design criterion, and the so-called D-optimal design criterion refers to the experimental point information matrix (see literature A.C. ATKINSON, A.N.DONEV.Optimum Experimentai Designs[M].95) the determinant reaches the maximum value. The D-optimal experimental design method first initializes the number of test locations for the DTGs-AID-ADD model test to 6, and performs the 6 optimal location experimental design according to the D-optimal design criteria, and obtains and records the DTGs-AID-ADD model based on The 6 optimal positions and the corresponding information array determinant, and then increase the number of test test positions to 24 in turn, and determine the information array determinant (see Table 1) and the corresponding optimal test under the number of 6 to 24 positions Finally, obtain the test position corresponding to the maximum determinant of the information matrix among the number of test positions n = 6-24. According to the D-optimal criterion, the test position is the optimal test position.

表1位置个数及对应的D-最优信息阵行列式Table 1 Number of positions and corresponding D-optimal information array determinant

  位置个数Number of locations   66   77   8 8   9 9   1010   信息矩阵行列式Determinant of information matrix   97.250097.2500   115.6726115.6726   138.3909138.3909   127.8953127.8953   126.9742126.9742   位置个数Number of locations   1111   1212   1313   1414   1515

  位置个数Number of locations   66   77   8 8   9 9   1010   信息矩阵行列式Determinant of information matrix   133.0324133.0324   164.0319164.0319   152.1635152.1635   146.7139146.7139   144.1922144.1922   位置个数Number of locations   1616   1818   2020   22 twenty two   24 twenty four   信息矩阵行列式Determinant of information matrix   155.7064155.7064   158.3635158.3635   153.0492153.0492   155.4938155.4938   164.0319164.0319

由表1可见DTGs-AID-ADD模型的最优试验位置数为十二个位置,其对应的实验位置就是最优实验位置即空间正交十二个位置。It can be seen from Table 1 that the optimal number of test positions for the DTGs-AID-ADD model is twelve positions, and the corresponding test positions are the optimal test positions, that is, the twelve space orthogonal positions.

参见图3所示,空间正交十二个位置表述如下表:Referring to Figure 3, the twelve spatially orthogonal positions are expressed in the following table:

  第一位置first position   挠性陀螺仪从初始安装坐标系(天北西)旋转角度θ为0度,γ为0度,φ为0度。The rotation angle θ of the flexible gyroscope from the initial installation coordinate system (North West) is 0 degrees, γ is 0 degrees, and φ is 0 degrees.   第二位置second position   挠性陀螺仪从初始安装坐标系(天北西)旋转角度θ为0度,γ为180度,φ为0度。The rotation angle of the flexible gyroscope from the initial installation coordinate system (North West) is 0 degrees, γ is 180 degrees, and φ is 0 degrees.   第三位置third position   挠性陀螺仪从初始安装坐标系(天北西)旋转角度θ为180度,γ为0度,φ为-90度。The rotation angle of the flexible gyroscope from the initial installation coordinate system (North West) is 180 degrees, γ is 0 degrees, and φ is -90 degrees.   第四位置Fourth position   挠性陀螺仪从初始安装坐标系(天北西)旋转角度θ为0度,γ为0度,φ为90度。The rotation angle of the flexible gyroscope from the initial installation coordinate system (North West) is 0 degrees, γ is 0 degrees, and φ is 90 degrees.   第五位置Fifth position   挠性陀螺仪从初始安装坐标系(天北西)旋转角度θ为180度,γ为0度,φ为0度。The rotation angle of the flexible gyroscope from the initial installation coordinate system (North West) is 180 degrees, γ is 0 degrees, and φ is 0 degrees.   第六位置sixth position   挠性陀螺仪从初始安装坐标系(天北西)旋转角度θ为0度,γ为0度,φ为180度。The rotation angle of the flexible gyroscope from the initial installation coordinate system (North West) is 0 degrees, γ is 0 degrees, and φ is 180 degrees.   第七位置Seventh position   挠性陀螺仪从初始安装坐标系(天北西)旋转角度θ为0度,γ为0度,φ为-90度。The rotation angle of the flexible gyroscope from the initial installation coordinate system (North West) is 0 degrees, γ is 0 degrees, and φ is -90 degrees.   第八位置eighth position   挠性陀螺仪从初始安装坐标系(天北西)旋转角度θ为180度,γ为0度,φ为90度。The rotation angle of the flexible gyroscope from the initial installation coordinate system (North West) is 180 degrees, γ is 0 degrees, and φ is 90 degrees.   第九位置Ninth position   挠性陀螺仪从初始安装坐标系(天北西)旋转角度θ为180度,γ为-90度,φ为0度。The rotation angle of the flexible gyroscope from the initial installation coordinate system (North West) is 180 degrees, γ is -90 degrees, and φ is 0 degrees.   第十位置tenth position   挠性陀螺仪从初始安装坐标系(天北西)旋转角度θ为0度,γ为-90度,φ为0度。The rotation angle of the flexible gyroscope from the initial installation coordinate system (North West) is 0 degrees, γ is -90 degrees, and φ is 0 degrees.   第十一位置Eleventh position   挠性陀螺仪从初始安装坐标系(天北西)旋转角度θ为-90度,γ为90度,φ为0度。The rotation angle of the flexible gyroscope from the initial installation coordinate system (North West) is -90 degrees, γ is 90 degrees, and φ is 0 degrees.   第十二位置Twelfth position   挠性陀螺仪从初始安装坐标系(天北西)旋转角度θ为90度,γ为90度,φ为0度。The rotation angle of the flexible gyroscope from the initial installation coordinate system (North West) is 90 degrees, γ is 90 degrees, and φ is 0 degrees.

注:θ为X轴转动角,γ为Y轴转动角,φ为Z轴转动角。Note: θ is the rotation angle of the X axis, γ is the rotation angle of the Y axis, and φ is the rotation angle of the Z axis.

X、Y、Z分别是挠性陀螺仪的X测量轴、Y测量轴和Z自转轴;ωie是地球相对于惯性空间的自转角速度,ωN是不同位置下地球自转角速度ωie在挠性陀螺仪的北向的角速度分量(简称北向角速度),ωU是不同位置下地球自转角速度ωie在挠性陀螺仪的天向的角速度分量(简称天向角速度),Ω为地球自转角度,φ为当地纬度,g是单位质量物体所受的重力加速度,取向下为正。其中,北向角速度ωN与地球自转角度Ω、当地纬度φ满足ωN=Ωcosφ;天向角速度ωU与地球自转角度Ω、当地纬度φ满足ωU=Ωsinφ。 X , Y, Z are the X measurement axis, Y measurement axis and Z rotation axis of the flexible gyroscope respectively ; The northward angular velocity component of the gyroscope (abbreviated as the northward angular velocity), ω U is the angular velocity component of the earth's rotation angular velocity ω ie in the celestial direction of the flexible gyroscope (abbreviated as the celestial angular velocity) at different positions, Ω is the earth's rotation angle, and φ is The local latitude, g is the gravitational acceleration experienced by the unit mass object, and it is positive in the downward direction. Among them, the northward angular velocity ω N , the earth's rotation angle Ω, and the local latitude φ satisfy ω N = Ωcosφ; the celestial angular velocity ω U , the earth's rotation angle Ω, and the local latitude φ satisfy ω U = Ωsinφ.

表2空间正交十二位置的地球自转角速度和重力的分量Table 2 The components of the earth's rotation angular velocity and gravity at the twelve space-orthogonal positions

Figure G2009102421377D00061
Figure G2009102421377D00061

Figure G2009102421377D00071
Figure G2009102421377D00071

在本发明中,对空间正交十二位置的位置数据采集执行下列步骤:In the present invention, the following steps are performed on the position data acquisition of the spatially orthogonal twelve positions:

第一步,初始化DTGs-AID-ADD模型的求解系统The first step is to initialize the solution system of the DTGs-AID-ADD model

将挠性陀螺仪(型号:973-61334,精度:0.005度/小时)、三轴位置速率转台(航天一院102所生产的ATS5000高精度三轴速率位置测试台)、数据采集设备(分辨率:0.07角秒/脉冲,采集频率:200Hz)和计算机(该计算机内存储有位置测量软件,利用该软件获得各个试验位置下的测试数据)按照图1所示进行连接。The flexible gyroscope (model: 973-61334, accuracy: 0.005 degrees/hour), three-axis position rate turntable (ATS5000 high-precision three-axis rate position test bench produced by 102 of Aerospace First Academy), data acquisition equipment (resolution : 0.07 arc seconds/pulse, acquisition frequency: 200Hz) and a computer (position measurement software is stored in the computer, and the test data at each test position is obtained by using the software) to connect as shown in Figure 1.

计算机的硬件最低配置为CPU 2GHz,内存1.24GB,硬盘10GB。操作系统为windows XP。The minimum hardware configuration of the computer is CPU 2GHz, memory 1.24GB, and hard disk 10GB. The operating system is windows XP.

初始化条件为:将三轴位置速率转台、挠性陀螺仪、数据采集设备和计算机按照图1所式方法连接,并通过试验装置进行检测保证其连接正确,三轴位置速率转台启动后能处于平衡状态,存储计算机能正常启动,且可以采集到由数据采集设备传输的信号,挠性陀螺仪能够通过数据采集设备输出测量信号。The initialization conditions are as follows: connect the three-axis position-rate turntable, flexible gyroscope, data acquisition equipment, and computer according to the method shown in Figure 1, and check through the test device to ensure that the connection is correct, and the three-axis position-rate turntable can be in balance after starting state, the storage computer can be started normally, and the signal transmitted by the data acquisition device can be collected, and the flexible gyroscope can output the measurement signal through the data acquisition device.

第二步,对挠性陀螺仪进行稳态试验The second step is to conduct a steady-state test on the flexible gyroscope

挠性陀螺稳态试验包括X测量轴稳态试验、Y测量轴稳态试验。所述X测量轴稳态试验、Y测量轴稳态试验是指挠性陀螺的X测量轴、Y测量轴分别指向东做n≥6次重复实验,每次时间持续3min,试验过程中需要采集和计算的量有:The flexible gyro steady state test includes the X measuring axis steady state test and the Y measuring axis steady state test. The X measurement axis steady-state test and the Y measurement axis steady-state test refer to the X measurement axis and the Y measurement axis of the flexible gyroscope pointing to the east respectively to do n ≥ 6 repeated experiments, each time lasting 3 minutes. During the test, it is necessary to collect and the calculated quantities are:

X测量轴与Y测量轴采样点的个数Ni(i=1~n);The number N i (i=1~n) of sampling points of the X measurement axis and the Y measurement axis;

X测量轴与Y测量轴第i次试验中Ni(i=1~n)个采样点的单个采样点Xik,Yik(i=1~n,k=1~Ni);A single sampling point X ik , Y ik (i = 1~n, k =1~N i ) of the N i (i=1~n) sampling points in the i-th test of the X measurement axis and the Y measurement axis;

X测量轴与Y测量轴Ni(i=1~n)个采样点的平均值D(X)0i,D(Y)0iThe average value D(X) 0i , D(Y) 0i of the X measurement axis and the Y measurement axis N i (i=1~n) sampling points;

X测量轴与Y测量轴 N = Σ i = 1 n N i ( i = 1 ~ n ) 个采样点的平均值D(X),D(Y);X measuring axis and Y measuring axis N = Σ i = 1 no N i ( i = 1 ~ no ) The average value D(X) of sampling points, D(Y);

X测量轴与Y测量轴的重复误差平方和SSeDX0,SSeDY0The sum of squared errors of the X measurement axis and the Y measurement axis SS eDX0 , SS eDY0 .

其中:in:

X测量轴第i次试验中Ni(i=1~n)个采样点的平均值 D ( X ) 0 i = 1 N i Σ k = 1 N i X ik , i = 1 ~ n ; The average value of N i (i=1~n) sampling points in the i-th test on the X measurement axis D. ( x ) 0 i = 1 N i Σ k = 1 N i x ik , i = 1 ~ no ;

Y测量轴第i次试验中Ni(i=1~n)个采样点的平均值 D ( Y ) 0 i = 1 N i Σ k = 1 N i Y ik , i = 1 ~ n ; The average value of N i (i=1~n) sampling points in the i-th test on the Y measurement axis D. ( Y ) 0 i = 1 N i Σ k = 1 N i Y ik , i = 1 ~ no ;

X测量轴 N = Σ i = 1 n N i ( i = 1 ~ n ) 个采样点的平均值 D ‾ ( X ) = 1 N Σ i = 1 n D ( X ) 0 i N i , i = 1 ~ n ; X measuring axis N = Σ i = 1 no N i ( i = 1 ~ no ) The average value of sampling points D. ‾ ( x ) = 1 N Σ i = 1 no D. ( x ) 0 i N i , i = 1 ~ no ;

Y测量轴 N = Σ i = 1 n N i ( i = 1 ~ n ) 个采样点的平均值 D ‾ ( Y ) = 1 N Σ i = 1 n D ( Y ) 0 i N i , i = 1 ~ n ; Y measuring axis N = Σ i = 1 no N i ( i = 1 ~ no ) The average value of sampling points D. ‾ ( Y ) = 1 N Σ i = 1 no D. ( Y ) 0 i N i , i = 1 ~ no ;

X测量轴的重复误差平方和 SS eDX 0 = Σ i = 1 n [ D ( X ) 0 i - D ‾ ( X ) ] 2 , i = 1 ~ n ; Repeat error sum of squares for X measurement axis SS eDX 0 = Σ i = 1 no [ D. ( x ) 0 i - D. ‾ ( x ) ] 2 , i = 1 ~ no ;

Y测量轴的重复误差平方和 SS eDY 0 = Σ i = 1 n [ D ( Y ) 0 i - D ‾ ( Y ) ] 2 , i = 1 ~ n . Repeat error sum of squares for the Y measurement axis SS wxya 0 = Σ i = 1 no [ D. ( Y ) 0 i - D. ‾ ( Y ) ] 2 , i = 1 ~ no .

挠性陀螺稳态试验首先进行X测量轴稳态试验,调整挠性陀螺仪的X测量轴指向“东”,通电3分钟后,连续做n次重复稳态试验,数据采集设备将采集的测试数据以.dat格式保存。The stable test of the flexible gyroscope is first carried out with the steady state test of the X measurement axis, and the X measurement axis of the flexible gyroscope is adjusted to point to "East". Data is saved in .dat format.

X测量轴稳态试验完成后进行Y测量轴稳态试验,调整挠性陀螺仪的Y测量轴指向“东”,通电3min后,连续做n次重复稳态试验,数据采集设备将采集的测试数据以*.dat格式保存;After the X measurement axis steady state test is completed, carry out the Y measurement axis steady state test, adjust the Y measurement axis of the flexible gyroscope to point to "East", and after 3 minutes of power on, repeat the steady state test for n times continuously, and the data acquisition equipment will collect the test The data is saved in *.dat format;

X测量轴稳态试验、Y测量轴稳态试验均完成后,从计算机中读取数据采集设备所采集的数据,并通过稳态试验测试数据处理程序,求出挠性陀螺仪X测量轴的重复误差平方和SSeDX0和Y测量轴的重复误差平方和SSeDY0。如果任一测量轴的重复误差平方和大于100脉冲平方,则停止测试。如果两轴重复误差平方和都小于100脉冲平方,说明挠性陀螺仪能够正常工作,则可以继续进行以下测试步骤。After the X measurement axis steady state test and the Y measurement axis steady state test are completed, read the data collected by the data acquisition equipment from the computer, and test the data processing program through the steady state test to obtain the X measurement axis of the flexible gyroscope. Repeated error sum of squares SS eDX0 and repeated error sum of squares SS eDY0 for the Y measuring axis. Stop the test if the sum of the squared errors of the repeatability of any measurement axis is greater than 100 pulses squared. If the sum of the squares of the repeated errors of the two axes is less than 100 pulse squares, it means that the flexible gyroscope can work normally, and you can proceed to the following test steps.

第三步,按照空间正交十二位置转动转台采集数据The third step is to collect data by rotating the turntable according to the spatially orthogonal twelve positions

首先将陀螺仪三轴(X,Y,Z)分别指向图3所示的第一个方位(北西天),等待稳定一分钟后,开始保存数据,保存位置数据的时间为2min,数据存储为*.dat格式。然后按照图3所示方位依次进行,以后每转到一个新方位都必须等待稳定1min后,再保存该方位的位置数据2min并将数据存储为*.dat格式,直到做完最后一个方位。First, point the three axes (X, Y, Z) of the gyroscope to the first orientation (north and west sky) shown in Figure 3, wait for one minute to stabilize, and then start saving data. The time to save position data is 2 minutes, and the data is stored as *.dat format. Then proceed in sequence according to the orientation shown in Figure 3, after each new orientation, you must wait for 1 minute to stabilize, then save the position data of this orientation for 2 minutes and store the data in *.dat format until the last orientation is completed.

第四步,求取空间正交十二位置漂移系数The fourth step is to calculate the spatial orthogonal twelve position drift coefficients

将存储为*.dat格式的每一位置的位置数据(简称为位置-数据)提出后,通过计算机中的数据处理消除野值,然后将剔除野值后的位置-数据和已知的ωX、ωY、aX、aY、aY代入DTGs-AID-ADD模型中,采用最小二乘法进行解析获得空间正交十二位置漂移系数。After the position data (referred to as position-data) of each position stored in *.dat format is proposed, the outliers are eliminated through data processing in the computer, and then the position-data after the outliers are eliminated and the known ω X , ω Y , a X , a Y , a Y are substituted into the DTGs-AID-ADD model, and the least square method is used to analyze and obtain the space orthogonal twelve position drift coefficients.

DTGs-AID-ADD模型的数学表达式为:The mathematical expression of the DTGs-AID-ADD model is:

DTGsDTGs -- AIDAID -- ADDADD == ii xx ii ythe y == Uu 00 VV 00 ++ Uu 11 Uu 22 VV 11 VV 22 ωω Xx ωω YY ++ Uu 33 Uu 44 VV 33 VV 44 aa Xx aa YY ++ Uu 55 VV 55 aa ZZ ,,

其中, U 1 = cos ( ϵ + ξ ) ( SF ) Y cos ξ , U 2 = sin ( ϵ + ξ ) ( SF ) Y cos ξ in, u 1 = cos ( ϵ + ξ ) ( SF ) Y cos ξ , u 2 = sin ( ϵ + ξ ) ( SF ) Y cos ξ

VV 11 == -- sinsin ϵϵ (( SFSF )) Xx coscos ξξ ,, VV 22 == coscos ϵϵ (( SFSF )) Xx coscos ξξ

U0=U1×D(X)F+U2×D(Y)F,V0=V1×D(X)F+V2×D(Y)F U 0 =U 1 ×D(X) F +U 2 ×D(Y) F , V 0 =V 1 ×D(X) F +V 2 ×D(Y) F

U3=U1×D(X)X+U2×D(Y)X,U4=U1×D(X)Y+U2×D(Y)Y U 3 =U 1 ×D(X) X +U 2 ×D(Y) X , U 4 =U 1 ×D(X) Y +U 2 ×D(Y) Y

V3=V1×D(X)X+V2×D(Y)X,V4=V1×D(X)Y+V2×D(Y)Y V 3 =V 1 ×D(X) X +V 2 ×D(Y) X , V 4 =V 1 ×D(X) Y +V 2 ×D(Y) Y

U5=U1×D(X)Z+U2×D(Y)Z,V5=V1×D(X)Z+V2×D(Y)Z U 5 =U 1 ×D(X) Z +U 2 ×D(Y) Z , V 5 =V 1 ×D(X) Z +V 2 ×D(Y) Z

式中:In the formula:

ix表示挠性陀螺仪X测量轴的力矩器电流所对应的脉冲数;i x represents the number of pulses corresponding to the torquer current of the X measuring axis of the flexible gyroscope;

iy表示挠性陀螺仪Y测量轴的力矩器电流所对应的脉冲数;i y represents the pulse number corresponding to the torque device current of the flexible gyroscope Y measuring axis;

ωX表示地球自转角速度在挠性陀螺仪X测量轴上的分量;ω X represents the component of the earth's rotation angular velocity on the X measurement axis of the flexible gyroscope;

ωY表示地球自转角速度在挠性陀螺仪Y测量轴上的分量;ω Y represents the component of the earth's rotation angular velocity on the Y measurement axis of the flexible gyroscope;

aX表示挠性陀螺仪X测量轴上的加速度分量;a X represents the acceleration component on the X measurement axis of the flexible gyroscope;

aY表示挠性陀螺仪Y测量轴上的加速度分量;a Y represents the acceleration component on the Y measurement axis of the flexible gyroscope;

aZ表示挠性陀螺仪Z自转轴上的加速度分量;a Z represents the acceleration component on the Z rotation axis of the flexible gyroscope;

(SF)X表示挠性陀螺仪X测量轴的力矩器刻度系数;(SF) X represents the torque scale coefficient of the X measuring axis of the flexible gyroscope;

(SF)Y表示挠性陀螺仪Y测量轴的力矩器刻度系数;(SF) Y represents the torque scale coefficient of the Y measuring axis of the flexible gyroscope;

ε表示挠性陀螺仪的力矩器X轴与挠性陀螺仪的壳体X轴之间的夹角;ε represents the angle between the X-axis of the torque device of the flexible gyroscope and the X-axis of the shell of the flexible gyroscope;

ξ表示挠性陀螺仪的力矩器Y轴与挠性陀螺仪的壳体Y轴之间的夹角。ξ represents the angle between the Y-axis of the torque device of the flexible gyroscope and the Y-axis of the shell of the flexible gyroscope.

在本发明中,U0、U1、U2、V0、V1和V2代表加速度零次项漂移系数,U3、U4、U5、V3、V4和V5代表加速度一次项漂移系数。In the present invention, U 0 , U 1 , U 2 , V 0 , V 1 and V 2 represent the zero-order drift coefficient of acceleration, and U 3 , U 4 , U 5 , V 3 , V 4 and V 5 represent the first-order acceleration Item drift coefficient.

第五步,获取误差补偿后的挠性陀螺仪测量值The fifth step is to obtain the measured value of the flexible gyroscope after error compensation

将第四步获得的空间正交十二位置漂移系数和挠性陀螺仪静态误差补偿模型G0对挠性陀螺仪输出测量值进行补偿,通过计算获得补偿后的测量值。Compensate the output measurement value of the flexible gyroscope with the space orthogonal twelve position drift coefficients obtained in the fourth step and the static error compensation model G 0 of the flexible gyroscope, and obtain the measured value after compensation through calculation.

挠性陀螺静态误差补偿模型G0为:The static error compensation model G0 of the flexible gyroscope is:

GG 00 == DD. (( Xx )) DD. (( YY )) == DD. (( Xx )) Ff DD. (( YY )) Ff ++ DD. (( Xx )) Xx DD. (( YY )) Xx aa Xx ++ DD. (( Xx )) YY DD. (( YY )) YY aa YY ++ DD. (( Xx )) ZZ DD. (( YY )) ZZ aa ZZ

式中:In the formula:

D(X)表示挠性陀螺仪X测量轴的漂移量;D(X) represents the drift of the X measuring axis of the flexible gyroscope;

D(Y)表示挠性陀螺仪Y测量轴的漂移量;D(Y) represents the drift of the Y measuring axis of the flexible gyroscope;

D(X)F表示挠性陀螺仪绕X测量轴与加速度无关的漂移系数;D(X) F represents the drift coefficient of the flexible gyroscope around the X measurement axis that has nothing to do with acceleration;

D(Y)F表示挠性陀螺仪绕Y测量轴与加速度无关的漂移系数;D(Y) F represents the drift coefficient of the flexible gyroscope around the Y measurement axis that has nothing to do with acceleration;

D(X)X表示X测量轴中挠性陀螺仪绕X测量轴与加速度一次方有关的漂移系数;D(X) X represents the drift coefficient of the flexible gyroscope around the X measurement axis in the X measurement axis relative to the first power of the acceleration;

D(X)Y表示X测量轴中挠性陀螺仪绕Y测量轴与加速度一次方有关的漂移系数;D(X) Y represents the drift coefficient of the flexible gyroscope around the Y measurement axis in the X measurement axis related to the first power of acceleration;

D(X)Z表示X测量轴中挠性陀螺仪绕Z自转轴与加速度一次方有关的漂移系数;D(X) Z represents the drift coefficient of the flexible gyroscope around the Z rotation axis in the X measurement axis related to the first power of acceleration;

D(Y)X表示Y测量轴中挠性陀螺仪绕X测量轴与加速度一次方有关的漂移系数;D(Y) X represents the drift coefficient of the flexible gyroscope around the X measurement axis in the Y measurement axis related to the first power of acceleration;

D(Y)Y表示Y测量轴中挠性陀螺仪绕Y测量轴与加速度一次方有关的漂移系数;D(Y) Y represents the drift coefficient of the flexible gyroscope around the Y measurement axis in the Y measurement axis relative to the first power of acceleration;

D(Y)Z表示Y测量轴中挠性陀螺仪绕Z自转轴与加速度一次方有关的漂移系数;D(Y) Z represents the drift coefficient of the flexible gyroscope around the Z rotation axis in the Y measurement axis related to the first power of acceleration;

aX表示挠性陀螺仪X测量轴上的加速度分量;a X represents the acceleration component on the X measurement axis of the flexible gyroscope;

aY表示挠性陀螺仪Y测量轴上的加速度分量;a Y represents the acceleration component on the Y measurement axis of the flexible gyroscope;

aZ表示挠性陀螺仪Z自转轴上的加速度分量。a Z represents the acceleration component on the Z rotation axis of the flexible gyroscope.

为了验证基于DTGs-AID-ADD模型的空间正交十二位置标定方法的有效性,下面将对DTGs-AID-ADD模型的两种主要测试方法(传统八位置试验方法、全空间正交二十四位置试验方法)作为对照实例。In order to verify the effectiveness of the spatially orthogonal 12-position calibration method based on the DTGs-AID-ADD model, the two main test methods of the DTGs-AID-ADD model (traditional eight-position test method, full-space orthogonal 20-position calibration method) will be tested below. Four-position test method) as a control example.

对照实例1:传统八位置试验方法Comparative example 1: traditional eight-position test method

按照IEEE Std 813-1988或国军标中规定的传统八位置试验方法进行传统八位置试验,试验方法和步骤与上述空间正交十二位置试验方法相同,只是测试方位改为如表3所示的传统八位置,采集到的位置-数据经过去除野点后如表3中的X轴数据和Y轴数据所示。Carry out the traditional eight-position test according to the traditional eight-position test method specified in IEEE Std 813-1988 or the national military standard. The test method and steps are the same as the above-mentioned spatial orthogonal twelve-position test method, except that the test orientation is changed as shown in Table 3 The traditional eight positions of the collected position-data are shown in the X-axis data and Y-axis data in Table 3 after removing wild points.

参见图4所示,传统八位置表述如下表:As shown in Figure 4, the traditional eight positions are expressed in the following table:

  第一位置first position  挠性陀螺仪从初始安装坐标系(天北西)旋转角度θ为0度,γ为90度,φ为0度。The rotation angle of the flexible gyroscope from the initial installation coordinate system (North West) is 0 degrees, γ is 90 degrees, and φ is 0 degrees.   第二位置second position  挠性陀螺仪从初始安装坐标系(天北西)旋转角度θ为-90度,γ为90度,φ为0度。The rotation angle θ of the flexible gyroscope from the initial installation coordinate system (North West) is -90 degrees, γ is 90 degrees, and φ is 0 degrees.   第三位置third position  挠性陀螺仪从初始安装坐标系(天北西)旋转角度θ为180度,γ为90度,φ为0度。The rotation angle of the flexible gyroscope from the initial installation coordinate system (North West) is 180 degrees, γ is 90 degrees, and φ is 0 degrees.   第四位置Fourth position  挠性陀螺仪从初始安装坐标系(天北西)旋转角度θ为90度,γ为90度,φ为0度。The rotation angle θ of the flexible gyroscope from the initial installation coordinate system (North West) is 90 degrees, γ is 90 degrees, and φ is 0 degrees.   第五位置Fifth position  挠性陀螺仪从初始安装坐标系(天北西)旋转角度θ为-90度,γ为0度,φ为180度。The rotation angle θ of the flexible gyroscope from the initial installation coordinate system (North West) is -90 degrees, γ is 0 degrees, and φ is 180 degrees.   第六位置sixth position  挠性陀螺仪从初始安装坐标系(天北西)旋转角度θ为-90度,γ为0度,φ为-90度。The rotation angle of the flexible gyroscope from the initial installation coordinate system (North West) is -90 degrees, γ is 0 degrees, and φ is -90 degrees.   第七位置Seventh position  挠性陀螺仪从初始安装坐标系(天北西)旋转角度θ为-90度,γ为0度,φ为0度。The rotation angle θ of the flexible gyroscope from the initial installation coordinate system (North West) is -90 degrees, γ is 0 degrees, and φ is 0 degrees.   第八位置eighth position  挠性陀螺仪从初始安装坐标系(天北西)旋转角度θ为-90度,γ为0度,φ为90度。The rotation angle of the flexible gyroscope from the initial installation coordinate system (North West) is -90 degrees, γ is 0 degrees, and φ is 90 degrees.

注:θ为X轴转动角,γ为Y轴转动角,φ为Z轴转动角。Note: θ is the rotation angle of the X axis, γ is the rotation angle of the Y axis, and φ is the rotation angle of the Z axis.

表3传统八位置下的两个测量轴的试验数据Table 3 Experimental data of two measuring axes under traditional eight positions

  方位orientation   X测量轴(脉冲/秒)X measuring axis (pulse/second)   Y测量轴(脉冲/秒)Y measuring axis (pulse/second)   第一位置first position   -89.1083-89.1083   128.4667128.4667   第二位置second position   -244.0167-244.0167   -32.3750-32.3750   第三位置third position   -85.0917-85.0917   -190.9417-190.9417   第四位置Fourth position   69.958369.9583   -30.1167-30.1167

  方位orientation   X测量轴(脉冲/秒)X measuring axis (pulse/second)   Y测量轴(脉冲/秒)Y measuring axis (pulse/second)   第五位置Fifth position   -257.8667-257.8667   -24.3917-24.3917   第六位置sixth position   -80.6333-80.6333   142.7000142.7000   第七位置Seventh position   84.416784.4167   -38.0167-38.0167   第八位置eighth position   -92.7083-92.7083   -205.0917-205.0917

对照实例2:全空间正交二十四位置试验方法Comparative example 2: full-space orthogonal twenty-four-position test method

按照如表4所示的全空间正交二十四位置进行试验,试验方法和步骤仍然与上述空间正交十二位置试验方法相同,只是测试方位改为如表4所示的全空间正交位置,采集到的位置-数据经过去除野点后如表4中的X轴数据和Y轴数据所示。Carry out the test according to the full-space orthogonal twenty-four positions shown in Table 4. The test method and steps are still the same as the above-mentioned space orthogonal twelve-position test method, but the test orientation is changed to the full space orthogonal as shown in Table 4. Position, the collected position-data after removing wild points is shown in the X-axis data and Y-axis data in Table 4.

参见图5所示,全空间正交二十四位置表述如下表:Referring to Figure 5, the full-space orthogonal twenty-four positions are expressed in the following table:

  第一位置first position   挠性陀螺仪从初始安装坐标系(天北西)旋转角度θ为90度,γ为90度,φ为0度。The rotation angle of the flexible gyroscope from the initial installation coordinate system (North West) is 90 degrees, γ is 90 degrees, and φ is 0 degrees.   第二位置second position   挠性陀螺仪从初始安装坐标系(天北西)旋转角度θ为180度,γ为90度,φ为0度。The rotation angle of the flexible gyroscope from the initial installation coordinate system (North West) is 180 degrees, γ is 90 degrees, and φ is 0 degrees.   第三位置third position   挠性陀螺仪从初始安装坐标系(天北西)旋转角度θ为-90度,γ为90度,φ为0度。The rotation angle of the flexible gyroscope from the initial installation coordinate system (North West) is -90 degrees, γ is 90 degrees, and φ is 0 degrees.   第四位置Fourth position   挠性陀螺仪从初始安装坐标系(天北西)旋转角度θ为0度,γ为90度,φ为0度。The rotation angle of the flexible gyroscope from the initial installation coordinate system (North West) is 0 degrees, γ is 90 degrees, and φ is 0 degrees.   第五位置Fifth position   挠性陀螺仪从初始安装坐标系(天北西)旋转角度θ为-90度,γ为-90度,φ为0度。The rotation angle θ of the flexible gyroscope from the initial installation coordinate system (North West) is -90 degrees, γ is -90 degrees, and φ is 0 degrees.   第六位置sixth position   挠性陀螺仪从初始安装坐标系(天北西)旋转角度θ为180度,γ为-90度,φ为0度。The rotation angle of the flexible gyroscope from the initial installation coordinate system (North West) is 180 degrees, γ is -90 degrees, and φ is 0 degrees.   第七位置Seventh position   挠性陀螺仪从初始安装坐标系(天北西)旋转角度θ为90度,γ为-90度,φ为0度。The rotation angle of the flexible gyroscope from the initial installation coordinate system (North West) is 90 degrees, γ is -90 degrees, and φ is 0 degrees.   第八位置eighth position   挠性陀螺仪从初始安装坐标系(天北西)旋转角度θ为0度,γ为--90度,φ为0度。The rotation angle of the flexible gyroscope from the initial installation coordinate system (North West) is 0 degrees, γ is -90 degrees, and φ is 0 degrees.   第九位置Ninth position   挠性陀螺仪从初始安装坐标系(天北西)旋转角度θ为180度,γ为0度,φ为-90度。The rotation angle of the flexible gyroscope from the initial installation coordinate system (North West) is 180 degrees, γ is 0 degrees, and φ is -90 degrees.   第十位置tenth position   挠性陀螺仪从初始安装坐标系(天北西)旋转角度θ为180度,γ为0度,φ为0度。The rotation angle of the flexible gyroscope from the initial installation coordinate system (North West) is 180 degrees, γ is 0 degrees, and φ is 0 degrees.   第十一位置Eleventh position   挠性陀螺仪从初始安装坐标系(天北西)旋转角度θ为180度,γ为0度,φ为90度。The rotation angle of the flexible gyroscope from the initial installation coordinate system (North West) is 180 degrees, γ is 0 degrees, and φ is 90 degrees.   第十二位置Twelfth position   挠性陀螺仪从初始安装坐标系(天北西)旋转角度θ为0度,γ为180度,φ为0度。The rotation angle of the flexible gyroscope from the initial installation coordinate system (North West) is 0 degrees, γ is 180 degrees, and φ is 0 degrees.   第十三位置Thirteenth position   挠性陀螺仪从初始安装坐标系(天北西)旋转角度θ为0度,γ为0度,φ为90度。The rotation angle of the flexible gyroscope from the initial installation coordinate system (North West) is 0 degrees, γ is 0 degrees, and φ is 90 degrees.   第十四位置Fourteenth position   挠性陀螺仪从初始安装坐标系(天北西)旋转角度θ为0度,γ为0度,φ为180度。The rotation angle of the flexible gyroscope from the initial installation coordinate system (North West) is 0 degrees, γ is 0 degrees, and φ is 180 degrees.   第十五位置15th position   挠性陀螺仪从初始安装坐标系(天北西)旋转角度θ为0度,γ为0度,φ为-90度。The rotation angle of the flexible gyroscope from the initial installation coordinate system (North West) is 0 degrees, γ is 0 degrees, and φ is -90 degrees.   第十六位置Sixteenth position   挠性陀螺仪从初始安装坐标系(天北西)旋转角度θ为0度,γ为0度,φ为0度。The rotation angle θ of the flexible gyroscope from the initial installation coordinate system (North West) is 0 degrees, γ is 0 degrees, and φ is 0 degrees.

  第一位置first position   挠性陀螺仪从初始安装坐标系(天北西)旋转角度θ为90度,γ为90度,φ为0度。The rotation angle of the flexible gyroscope from the initial installation coordinate system (North West) is 90 degrees, γ is 90 degrees, and φ is 0 degrees.   第十七位置Seventeenth position   挠性陀螺仪从初始安装坐标系(天北西)旋转角度θ为-90度,γ为0度,φ为90度。The rotation angle of the flexible gyroscope from the initial installation coordinate system (North West) is -90 degrees, γ is 0 degrees, and φ is 90 degrees.   第十八位置18th position   挠性陀螺仪从初始安装坐标系(天北西)旋转角度θ为-90度,γ为0度,φ为180度。The rotation angle of the flexible gyroscope from the initial installation coordinate system (North West) is -90 degrees, γ is 0 degrees, and φ is 180 degrees.   第十九位置Nineteenth position   挠性陀螺仪从初始安装坐标系(天北西)旋转角度θ为-90度,γ为0度,φ为-90度。The rotation angle of the flexible gyroscope from the initial installation coordinate system (North West) is -90 degrees, γ is 0 degrees, and φ is -90 degrees.   第二十位置twentieth position   挠性陀螺仪从初始安装坐标系(天北西)旋转角度θ为-90度,γ为0度,φ为0度。The rotation angle of the flexible gyroscope from the initial installation coordinate system (North West) is -90 degrees, γ is 0 degrees, and φ is 0 degrees.   第二十一位置21st position   挠性陀螺仪从初始安装坐标系(天北西)旋转角度θ为90度,γ为0度,φ为-90度。The rotation angle of the flexible gyroscope from the initial installation coordinate system (North West) is 90 degrees, γ is 0 degrees, and φ is -90 degrees.   第二十二位置22nd position   挠性陀螺仪从初始安装坐标系(天北西)旋转角度θ为90度,γ为0度,φ为0度。The rotation angle θ of the flexible gyroscope from the initial installation coordinate system (North North West) is 90 degrees, γ is 0 degrees, and φ is 0 degrees.   第二十三位置Twenty-third position   挠性陀螺仪从初始安装坐标系(天北西)旋转角度θ为90度,γ为0度,φ为90度。The rotation angle of the flexible gyroscope from the initial installation coordinate system (North West) is 90 degrees, γ is 0 degrees, and φ is 90 degrees.   第二十四位置Twenty-fourth position   挠性陀螺仪从初始安装坐标系(天北西)旋转角度θ为90度,γ为0度,φ为180度。The rotation angle of the flexible gyroscope from the initial installation coordinate system (North West) is 90 degrees, γ is 0 degrees, and φ is 180 degrees.

注:θ为X轴转动角,γ为Y轴转动角,φ为Z轴转动角。Note: θ is the rotation angle of the X axis, γ is the rotation angle of the Y axis, and φ is the rotation angle of the Z axis.

表4全空间正交二十四位置的两个测量轴的试验数据Table 4. Experimental data of two measurement axes in full-space orthogonal twenty-four positions

  方位orientation   X轴(脉冲/秒)X axis (pulse/second)   Y轴(脉冲/秒)Y axis (pulse/second)   第一位置first position   69.958369.9583   -30.1167-30.1167   第二位置second position   -85.0917-85.0917   -190.9417-190.9417   第三位置third position   -244.0167-244.0167   -32.3750-32.3750   第四位置Fourth position   -89.1083-89.1083   128.4667128.4667   第五位置Fifth position   70.708370.7083   -32.5833-32.5833   第六位置sixth position   -87.7417-87.7417   -190.1667-190.1667   第七位置Seventh position   -243.8083-243.8083   -28.1000-28.1000   第八位置eighth position   -85.2917-85.2917   129.6083129.6083   第九位置Ninth position   74.516774.5167   142.2083142.2083   第十位置tenth position   84.658384.6583   -196.4333-196.4333   第十一位置Eleventh position   -248.6750-248.6750   -204.8750-204.8750   第十二位置Twelfth position   -258.5000-258.5000   133.7667133.7667   第十三位置Thirteenth position   66.025066.0250   -206.0500-206.0500

  方位orientation   X轴(脉冲/秒)X axis (pulse/second)   Y轴(脉冲/秒)Y axis (pulse/second)   第十四位置Fourteenth position   -257.7417-257.7417   -186.4417-186.4417   第十五位置15th position   -240.0417-240.0417   143.0750143.0750   第十六位置Sixteenth position   83.758383.7583   123.4833123.4833   第十七位置Seventeenth position   -92.7083-92.7083   -205.0917-205.0917   第十八位置18th position   -257.8667-257.8667   -24.3917-24.3917   第十九位置Nineteenth position   -80.6333-80.6333   142.7000142.7000   第二十位置twentieth position   84.416784.4167   -38.0167-38.0167   第二十一位置21st position   -83.7250-83.7250   142.2000142.2000   第二十二位置22nd position   84.600084.6000   -35.3667-35.3667   第二十三位置Twenty-third position   -89.3000-89.3000   -205.8167-205.8167   第二十四位置Twenty-fourth position   -257.6167-257.6167   -28.4417-28.4417

实施例Example

请参见表7所示,可见采用空间正交十二位置试验方法相对传统八位置试验方法精度大大提高,相对全空间正交二十四位置试验方法精度有所提高并且测试时间缩短了一半。Please refer to Table 7. It can be seen that the accuracy of the space-orthogonal twelve-position test method is greatly improved compared with the traditional eight-position test method, and the accuracy of the full-space orthogonal twenty-four-position test method is improved and the test time is shortened by half.

本发明是基于DTGs-AID-ADD模型的空间正交十二位置标定方法,采用D-最优实验设计方法确定出了DTGs-AID-ADD模型的最优试验位置个数应为十二和最优十二测试方位。表5是在惯导测试中心分别采用传统八位置方法、全空间正交二十四位置方法和空间正交十二位置方法对挠性陀螺进行测试所得到的漂移系数。表6是测试试验点数据,这些试验点是从全正交空间中取出的不同于传统八位置和最优位置中任意方位的测试点,适于评价传统八位置试验方法、全空间正交位置方法和最优位置试验方法对漂移系数的估计精度。表7是利用三种方法得到的漂移系数分别客观的对表6所列试验位置的陀螺输出补偿后的评价结果,由陀螺测量值的剩余平方和可见,利用挠性陀螺仪最优位置试验设计方法求解的漂移系数进行补偿后的结果较传统八位置方法提高了4~5倍,利用挠性陀螺仪最优位置试验设计方法求解的漂移系数进行补偿后的结果较全空间正交位置方法有所提高,而且挠性陀螺仪最优位置试验设计方法试验时间缩短为全空间正交位置方法的一半。因此,可知挠性陀螺仪最优位置试验设计方法,能够省时、省力的准确估计出静态漂移误差模型的漂移系数,提高了挠性陀螺的测量精度。同时本发明的最优位置试验设计方法是所有位置试验设计方法中最优的,采用最优位置试验方法得到的DTGs-AID-ADD模型的漂移系数是最优的,最接近真值,既保证了陀螺的高测量精度,又避免了为了提高测量精度而增加试验测试位置(如二十四位置),大大减少了陀螺测试时间,降低了试验成本。此外,本发明提出的最优位置试验设计方法具有较强的通用性,能够很好地应用到其它类型陀螺地标定过程中。The present invention is a space orthogonal twelve position calibration method based on the DTGs-AID-ADD model, using the D-optimal experimental design method to determine that the number of optimal test positions for the DTGs-AID-ADD model should be twelve and the maximum Excellent twelve test orientation. Table 5 shows the drift coefficients obtained by testing the flexible gyroscope in the inertial navigation test center using the traditional eight-position method, the full-space orthogonal twenty-four-position method and the space orthogonal twelve-position method. Table 6 is the data of test points. These test points are taken from the full-orthogonal space and are different from the test points in the traditional eight-position and the optimal position. They are suitable for evaluating the traditional eight-position test method and the full-space orthogonal position. method and the optimal location test method for the estimation accuracy of the drift coefficient. Table 7 shows the evaluation results of the drift coefficients obtained by the three methods objectively after compensation for the gyro output at the test positions listed in Table 6. It can be seen from the residual sum of squares of the gyro measured values. The optimal position test design of the flexible gyroscope Compared with the traditional eight-position method, the compensation result of the drift coefficient obtained by the method is 4 to 5 times higher than that of the traditional eight-position method. In addition, the test time of the optimal position test design method of the flexible gyroscope is shortened to half of that of the full-space orthogonal position method. Therefore, it can be seen that the optimal position test design method of the flexible gyroscope can accurately estimate the drift coefficient of the static drift error model in a time-saving and labor-saving manner, and improve the measurement accuracy of the flexible gyroscope. Simultaneously the optimal position test design method of the present invention is optimal in all position test design methods, the drift coefficient of the DTGs-AID-ADD model that adopts the optimal position test method to obtain is optimal, the closest to the true value, both guaranteed The high measurement accuracy of the gyroscope is guaranteed, and the increase of test test positions (such as twenty-four positions) is avoided in order to improve the measurement accuracy, which greatly reduces the test time of the gyroscope and reduces the test cost. In addition, the optimal position test design method proposed by the present invention has strong versatility and can be well applied to the calibration process of other types of gyroscopes.

表5测试结果Table 5 Test Results

Figure G2009102421377D00151
Figure G2009102421377D00151

表6测试试验点试验数据Table 6 Test data of test points

  位置 Location   X测量轴(脉冲/秒)X measuring axis (pulse/second)   Y测量轴(脉冲/秒)Y measuring axis (pulse/second)   第二十一位置21st position   -83.7250-83.7250   142.2000142.2000   第二十二位置22nd position   84.600084.6000   -35.3667-35.3667   第二十四位置Twenty-fourth position   -257.6167-257.6167   -28.4417-28.4417

注:这三个位置是从全空间正交二十四位置中选出的。NOTE: These three positions were selected from the full-space orthogonal twenty-four positions.

表7评价结果Table 7 Evaluation Results

  试验方案Test plan  X轴误差平方和X-axis error sum of squares  Y轴误差平方和Y-axis error sum of squares   空间正交十二位置Spatial Orthogonal Twelve Positions   1.54731.5473   5.35235.3523   传统八位置Traditional eight positions   9.45399.4539   23.109523.1095   全空间正交二十四位置Full-space orthogonal twenty-four positions   1.78901.7890   6.59106.5910

Claims (2)

1.一种挠性陀螺仪静态漂移零次和一次加速度相关项误差模型最优位置标定方法,是将挠性陀螺仪安装在三轴位置速率转台上,挠性陀螺仪与数据采集设备相连,数据采集设备与计算机相连;所述计算机内安装有位置测量软件;其特征在于:挠性陀螺仪静态漂移零次和一次加速度相关项误差模型DTGs-AID-ADD最优位置的标定包括有下列标定执行步骤:1. A flexible gyroscope static drift zero-order and first-order acceleration related term error model optimal position calibration method is that the flexible gyroscope is installed on the three-axis position rate turntable, and the flexible gyroscope is connected with the data acquisition equipment. The data acquisition equipment is connected with the computer; the position measurement software is installed in the computer; it is characterized in that: the calibration of the optimal position of the flexible gyroscope static drift zero and primary acceleration related item error model DTGs-AID-ADD includes the following calibration Steps: 第一步:确定最优位置Step 1: Determine the optimal location DTGs-AID-ADD模型测试的最优试验位置采用D-最优试验设计方法获得;The optimal experimental location of DTGs-AID-ADD model test is obtained by D-optimal experimental design method; D-最优试验设计方法是指用于DTGs-AID-ADD模型测试的最优试验位置由D-最优设计准则得到,所谓D-最优设计准则是指使试验点信息矩阵的行列式达到极大值;The D-optimal test design method means that the optimal test position for DTGs-AID-ADD model testing is obtained by the D-optimal design criterion, and the so-called D-optimal design criterion refers to making the determinant of the test point information matrix reach the extreme large value; D-最优试验设计方法首先将DTGs-AID-ADD模型测试的试验位置个数初始化为6,根据D-最优设计准则进行6最优位置试验设计,得到并记录基于DTGs-AID-ADD模型的6最优位置和相应的信息阵行列式,然后依次增加测试的试验位置个数至24,确定出6~24位置个数下的信息阵行列式和相应的最优试验位置,最后获得试验位置个数n=6~24中信息矩阵行列式最大时所对应的试验位置根据D-最优准则该试验位置即为最优实验位置;通过D-最优试验设计方法确定出DTGs-AID-ADD模型的最优试验位置数为十二个位置,其对应的实验位置就是最优实验位置即空间正交十二个位置;The D-optimal experimental design method first initializes the number of test locations for the DTGs-AID-ADD model test to 6, and performs the 6 optimal location experimental design according to the D-optimal design criteria, and obtains and records the DTGs-AID-ADD model based on The 6 optimal positions and the corresponding information array determinant, and then increase the number of test test positions to 24 in turn, determine the information array determinant and the corresponding optimal test position under the number of 6 to 24 positions, and finally obtain the test The test position corresponding to the maximum determinant of the information matrix in the number of positions n=6~24 is the optimal test position according to the D-optimal criterion; the DTGs-AID- The optimal number of experimental positions of the ADD model is twelve positions, and the corresponding experimental positions are the optimal experimental positions, that is, twelve spatially orthogonal positions; 第二步:标定空间正交十二位置方位Step 2: Calibrate the orientation of the space orthogonal twelve positions 第一位置:挠性陀螺仪从初始安装坐标系(天北西)旋转角度θ为0度,γ为0度,φ为0度;First position: the rotation angle θ of the flexible gyroscope from the initial installation coordinate system (Tianbeixi) is 0 degrees, γ is 0 degrees, and φ is 0 degrees; 第二位置:挠性陀螺仪从初始安装坐标系(天北西)旋转角度θ为0度,γ为180度,φ为0度;Second position: the rotation angle θ of the flexible gyroscope from the initial installation coordinate system (North North West) is 0 degrees, γ is 180 degrees, and φ is 0 degrees; 第三位置:挠性陀螺仪从初始安装坐标系(天北西)旋转角度θ为180度,γ为0度,φ为-90度;The third position: the rotation angle θ of the flexible gyroscope from the initial installation coordinate system (Tianbeixi) is 180 degrees, γ is 0 degrees, and φ is -90 degrees; 第四位置:挠性陀螺仪从初始安装坐标系(天北西)旋转角度θ为0度,γ为0度,φ为90度;The fourth position: the rotation angle θ of the flexible gyroscope from the initial installation coordinate system (Tianbeixi) is 0 degrees, γ is 0 degrees, and φ is 90 degrees; 第五位置:挠性陀螺仪从初始安装坐标系(天北西)旋转角度θ为180度,γ为0度,φ为0度;Fifth position: the rotation angle θ of the flexible gyroscope from the initial installation coordinate system (Tianbeixi) is 180 degrees, γ is 0 degrees, and φ is 0 degrees; 第六位置:挠性陀螺仪从初始安装坐标系(天北西)旋转角度θ为0度,γ为0度,φ为180度;Sixth position: The flexible gyroscope rotates from the initial installation coordinate system (North North West) to 0 degrees, γ to 0 degrees, and φ to 180 degrees; 第七位置:挠性陀螺仪从初始安装坐标系(天北西)旋转角度θ为0度,γ为0度,φ为-90度;The seventh position: the rotation angle θ of the flexible gyroscope from the initial installation coordinate system (Tianbeixi) is 0 degrees, γ is 0 degrees, and φ is -90 degrees; 第八位置:挠性陀螺仪从初始安装坐标系(天北西)旋转角度θ为180度,γ为0度,φ为90度;The eighth position: the rotation angle of the flexible gyroscope from the initial installation coordinate system (Tianbeixi) is 180 degrees, γ is 0 degrees, and φ is 90 degrees; 第九位置:挠性陀螺仪从初始安装坐标系(天北西)旋转角度θ为180度,γ为-90度,φ为0度;Ninth position: the rotation angle θ of the flexible gyroscope from the initial installation coordinate system (Tianbeixi) is 180 degrees, γ is -90 degrees, and φ is 0 degrees; 第十位置:挠性陀螺仪从初始安装坐标系(天北西)旋转角度θ为0度,γ为-90度,φ为0度;Tenth position: the rotation angle of the flexible gyroscope from the initial installation coordinate system (North North West) is 0 degrees, γ is -90 degrees, and φ is 0 degrees; 第十一位置:挠性陀螺仪从初始安装坐标系(天北西)旋转角度θ为-90度,γ为90度,φ为0度;Eleventh position: the rotation angle θ of the flexible gyroscope from the initial installation coordinate system (North North West) is -90 degrees, γ is 90 degrees, and φ is 0 degrees; 第十二位置:挠性陀螺仪从初始安装坐标系(天北西)旋转角度θ为90度,γ为90度,φ为0度。The twelfth position: the rotation angle θ of the flexible gyroscope from the initial installation coordinate system (North North West) is 90 degrees, γ is 90 degrees, and φ is 0 degrees. 第三步:获取漂移系数Step 3: Obtain the drift coefficient (A)对传统八位置下的数据进行DTGs-AID-ADD模型的基于最小二乘法解析获得传统八位置漂移系数;(A) Carry out DTGs-AID-ADD model analysis based on the least squares method on the data under the traditional eight positions to obtain the drift coefficient of the traditional eight positions; (B)对全空间正交二十四位置下的数据进行DTGs-AID-ADD模型的基于最小二乘法解析获得全空间正交二十四位置漂移系数;(B) Perform the DTGs-AID-ADD model analysis based on the least squares method on the data under the full-space orthogonal twenty-four positions to obtain the full-space orthogonal twenty-four position drift coefficients; (C)对空间正交十二位置下的数据进行DTGs-AID-ADD模型的基于最小二乘法解析获得空间正交十二位置漂移系数;(C) Carry out DTGs-AID-ADD model analysis based on the least squares method to the data under the spatial orthogonal twelve positions to obtain the spatial orthogonal twelve position drift coefficients; 所述DTGs-AID-ADD模型为The DTGs-AID-ADD model is DTGsDTGs -- AIDAID -- ADDADD == ii xx ii ythe y == Uu 00 VV 00 ++ Uu 11 Uu 22 VV 11 VV 22 ωω Xx ωω YY ++ Uu 33 Uu 44 VV 33 VV 44 aa Xx aa YY ++ Uu 55 VV 55 aa ZZ ,, 其中, U 1 = cos ( ϵ + ξ ) ( SF ) Y cos ξ , U 2 = sin ( ϵ + ξ ) ( SF ) Y cos ξ , in, u 1 = cos ( ϵ + ξ ) ( SF ) Y cos ξ , u 2 = sin ( ϵ + ξ ) ( SF ) Y cos ξ , VV 11 == -- sinsin ϵϵ (( SFSF )) Xx coscos ξξ ,, VV 22 == coscos ϵϵ (( SFSF )) Xx coscos ξξ ,, U0=U1×D(X)F+U2×D(Y)F,V0=V1×D(X)F+V2×D(Y)FU 0 =U 1 ×D(X) F +U 2 ×D(Y) F , V 0 =V 1 ×D(X) F +V 2 ×D(Y) F , U3=U1×D(X)X+U2×D(Y)X,U4=U1×D(X)Y+U2×D(Y)YU 3 =U 1 ×D(X) X +U 2 ×D(Y) X , U 4 =U 1 ×D(X) Y +U 2 ×D(Y) Y , V3=V1×D(X)X+V2×D(Y)X,V4=V1×D(X)Y+V2×D(Y)YV 3 =V 1 ×D(X) X +V 2 ×D(Y) X , V 4 =V 1 ×D(X) Y +V 2 ×D(Y) Y , U5=U1×D(X)Z+U2×D(Y)Z,V5=V1×D(X)Z+V2×D(Y)ZU 5 =U 1 ×D(X) Z +U 2 ×D(Y) Z , V 5 =V 1 ×D(X) Z +V 2 ×D(Y) Z , 式中:ix表示挠性陀螺仪X测量轴的力矩器电流所对应的脉冲数,iy表示挠性陀螺仪Y测量轴的力矩器电流所对应的脉冲数,ωX表示地球自转角速度在挠性陀螺仪X测量轴上的分量,ωY表示地球自转角速度在挠性陀螺仪Y测量轴上的分量,aX表示挠性陀螺仪X测量轴上的加速度分量,aY表示挠性陀螺仪Y测量轴上的加速度分量,aZ表示挠性陀螺仪Z自转轴上的加速度分量,(SF)X表示挠性陀螺仪X测量轴的力矩器刻度系数,(SF)Y表示挠性陀螺仪Y测量轴的力矩器刻度系数,ε表示挠性陀螺仪的力矩器X轴与挠性陀螺仪的壳体X轴之间的夹角,ξ表示挠性陀螺仪的力矩器Y轴与挠性陀螺仪的壳体Y轴之间的夹角;In the formula: i x represents the pulse number corresponding to the torquer current of the X measuring axis of the flexible gyroscope, i y represents the pulse number corresponding to the torquer current of the Y measuring axis of the flexible gyroscope, ω X represents the angular velocity of the earth’s rotation at The component on the X measurement axis of the flexible gyroscope, ω Y represents the component of the earth’s rotation angular velocity on the Y measurement axis of the flexible gyroscope, a X represents the acceleration component on the X measurement axis of the flexible gyroscope, and a Y represents the flexible gyroscope a Z represents the acceleration component on the Z rotation axis of the flexible gyroscope, (SF) X represents the torque scale coefficient of the X measuring axis of the flexible gyroscope, (SF) Y represents the flexible gyroscope The scale factor of the torquer on the Y measuring axis of the instrument, ε represents the angle between the X-axis of the torquer of the flexible gyroscope and the X-axis of the shell of the flexible gyroscope, and ξ represents the angle between the Y-axis of the torquer of the flexible gyroscope and the flexure The angle between the Y-axis of the shell of the gyroscope; 第四步:对空间正交十二位置方位的测量值进行补偿Step 4: Compensate the measured values of spatially orthogonal 12-position azimuth 利用挠性陀螺静态误差补偿模型G0与空间正交十二位置漂移系数对挠性陀螺仪输出测量值进行补偿获得补偿后的测量值;Using the flexible gyroscope static error compensation model G 0 and space orthogonal twelve position drift coefficients to compensate the output measurement value of the flexible gyroscope to obtain the compensated measurement value; 所述挠性陀螺静态误差补偿模型为 G 0 = D ( X ) = D ( X ) F + D ( X ) X a X + D ( X ) Y a Y + D ( X ) Z a z D ( Y ) = D ( Y ) F + D ( Y ) X a X + D ( Y ) Y a Y + D ( Y ) Z a z , 式中,D(X)表示挠性陀螺仪X测量轴的漂移量,D(Y)表示挠性陀螺仪Y测量轴的漂移量,D(X)F表示挠性陀螺仪绕X测量轴与加速度无关的漂移系数,D(Y)F表示挠性陀螺仪绕Y测量轴与加速度无关的漂移系数,D(X)X表示X测量轴中挠性陀螺仪绕X测量轴与加速度一次方有关的漂移系数,D(X)Y表示X测量轴中挠性陀螺仪绕Y测量轴与加速度一次方有关的漂移系数,D(X)Z表示X测量轴中挠性陀螺仪绕Z自转轴与加速度一次方有关的漂移系数,D(Y)X表示Y测量轴中挠性陀螺仪绕X测量轴与加速度一次方有关的漂移系数,D(Y)Y表示Y测量轴中挠性陀螺仪绕Y测量轴与加速度一次方有关的漂移系数,D(Y)Z表示Y测量轴中挠性陀螺仪绕Z自转轴与加速度一次方有关的漂移系数,aX表示挠性陀螺仪X测量轴上的加速度分量,aY表示挠性陀螺仪Y测量轴上的加速度分量,aZ表示挠性陀螺仪Z自转轴上的加速度分量。The static error compensation model of the flexible gyroscope is G 0 = D. ( x ) = D. ( x ) f + D. ( x ) x a x + D. ( x ) Y a Y + D. ( x ) Z a z D. ( Y ) = D. ( Y ) f + D. ( Y ) x a x + D. ( Y ) Y a Y + D. ( Y ) Z a z , In the formula, D(X) represents the drift amount of the X measuring axis of the flexible gyroscope, D(Y) represents the drift amount of the Y measuring axis of the flexible gyroscope, and D(X) F represents the distance between the flexible gyroscope around the X measuring axis and Acceleration-independent drift coefficient, D(Y) F indicates the drift coefficient of the flexible gyroscope around the Y measurement axis that has nothing to do with acceleration, D(X) X indicates that the flexible gyroscope in the X measurement axis is related to the first power of the acceleration around the X measurement axis D(X) Y represents the drift coefficient of the flexible gyroscope around the Y measuring axis in the X measuring axis and the first power of acceleration, and D(X) Z represents the relationship between the flexible gyroscope's rotation around the Z axis and The drift coefficient related to the first power of acceleration, D(Y) X represents the drift coefficient related to the first power of the acceleration of the flexible gyroscope around the X measurement axis in the Y measurement axis, D(Y) Y represents the rotation of the flexible gyroscope in the Y measurement axis The drift coefficient of the Y measurement axis related to the first power of acceleration, D(Y) Z indicates the drift coefficient of the flexible gyroscope around the Z rotation axis in the Y measurement axis related to the first power of acceleration, and a X indicates the X measurement axis of the flexible gyroscope a Y represents the acceleration component on the Y measurement axis of the flexible gyroscope, and a Z represents the acceleration component on the Z rotation axis of the flexible gyroscope. 2.根据权利要求1所述的挠性陀螺仪静态漂移零次和一次加速度相关项误差模型最优位置标定方法,其特征在于:在每一个选定的方位上至少采集6次数据,每次时间持续10min。2. flexible gyroscope static drift zero according to claim 1 and method for calibrating optimal position of first-order acceleration-related term error model, it is characterized in that: gather 6 data at least on each selected orientation, every time The time lasts 10 minutes.
CN2009102421377A 2009-12-08 2009-12-08 Optimal position calibration method of static drifting zero and primary acceleration related term error model of flexible gyroscope Expired - Fee Related CN101738203B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2009102421377A CN101738203B (en) 2009-12-08 2009-12-08 Optimal position calibration method of static drifting zero and primary acceleration related term error model of flexible gyroscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2009102421377A CN101738203B (en) 2009-12-08 2009-12-08 Optimal position calibration method of static drifting zero and primary acceleration related term error model of flexible gyroscope

Publications (2)

Publication Number Publication Date
CN101738203A true CN101738203A (en) 2010-06-16
CN101738203B CN101738203B (en) 2011-12-07

Family

ID=42461981

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2009102421377A Expired - Fee Related CN101738203B (en) 2009-12-08 2009-12-08 Optimal position calibration method of static drifting zero and primary acceleration related term error model of flexible gyroscope

Country Status (1)

Country Link
CN (1) CN101738203B (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102607596A (en) * 2012-03-07 2012-07-25 北京航空航天大学 Strapdown flexible gyro dynamic random drift error testing method based on difference GPS (global position system) observation
CN102607595A (en) * 2012-03-07 2012-07-25 北京航空航天大学 Method for testing dynamic random drifting of strap-down flexible gyroscope by aid of laser Doppler velocimeter
CN102607590A (en) * 2012-02-24 2012-07-25 北京航空航天大学 Flexible gyro overload term anti-interference testing device based on optical fiber monitoring
CN102636185A (en) * 2012-03-31 2012-08-15 北京航空航天大学 Non-linear specific force sensitive item measuring method for flexible gyroscope based on centrifugal machine with uniaxial reverse truntable
CN103884356A (en) * 2014-03-25 2014-06-25 北京航天控制仪器研究所 Method for calibrating combination of strapdown inertial combination gyroscope
CN104501837A (en) * 2015-01-15 2015-04-08 大连楼兰科技股份有限公司 Vehicle-mounted OBD (On Board Diagnostic) device internally arranged inertia assembly parallel calibration and detection method and system thereof
CN107084720A (en) * 2017-05-12 2017-08-22 上海航天控制技术研究所 A kind of method chosen based on the optimal Gyro for installing matrix determinant and resolve angular speed
CN111595309A (en) * 2020-04-24 2020-08-28 中电投电力工程有限公司 System and method for improving verticality measurement precision by using multiple micro-mechanical gyroscopes
CN111854752A (en) * 2019-04-30 2020-10-30 意法半导体公司 Determine the misalignment angle between the direction of movement and the direction of travel of the sensor for dead reckoning

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102607590A (en) * 2012-02-24 2012-07-25 北京航空航天大学 Flexible gyro overload term anti-interference testing device based on optical fiber monitoring
CN102607590B (en) * 2012-02-24 2014-05-07 北京航空航天大学 Flexible gyro overload term anti-interference testing device based on optical fiber monitoring
CN102607595B (en) * 2012-03-07 2014-05-21 北京航空航天大学 Method of Measuring Dynamic Random Drift of Strapdown Flexible Gyroscope Using Laser Doppler Velocimeter
CN102607595A (en) * 2012-03-07 2012-07-25 北京航空航天大学 Method for testing dynamic random drifting of strap-down flexible gyroscope by aid of laser Doppler velocimeter
CN102607596A (en) * 2012-03-07 2012-07-25 北京航空航天大学 Strapdown flexible gyro dynamic random drift error testing method based on difference GPS (global position system) observation
CN102607596B (en) * 2012-03-07 2014-04-30 北京航空航天大学 Strapdown flexible gyro dynamic random drift error testing method based on difference GPS (global position system) observation
CN102636185A (en) * 2012-03-31 2012-08-15 北京航空航天大学 Non-linear specific force sensitive item measuring method for flexible gyroscope based on centrifugal machine with uniaxial reverse truntable
CN102636185B (en) * 2012-03-31 2014-07-02 北京航空航天大学 Non-linear specific force sensitive item measuring method for flexible gyroscope based on centrifugal machine with uniaxial reverse truntable
CN103884356A (en) * 2014-03-25 2014-06-25 北京航天控制仪器研究所 Method for calibrating combination of strapdown inertial combination gyroscope
CN103884356B (en) * 2014-03-25 2016-06-01 北京航天控制仪器研究所 A kind of method demarcating strap down inertial navigation combination gyrostat combination
CN104501837A (en) * 2015-01-15 2015-04-08 大连楼兰科技股份有限公司 Vehicle-mounted OBD (On Board Diagnostic) device internally arranged inertia assembly parallel calibration and detection method and system thereof
CN107084720A (en) * 2017-05-12 2017-08-22 上海航天控制技术研究所 A kind of method chosen based on the optimal Gyro for installing matrix determinant and resolve angular speed
CN111854752A (en) * 2019-04-30 2020-10-30 意法半导体公司 Determine the misalignment angle between the direction of movement and the direction of travel of the sensor for dead reckoning
CN111854752B (en) * 2019-04-30 2024-06-04 意法半导体公司 Dead reckoning by determining a misalignment angle between a direction of movement and a direction of sensor travel
CN111595309A (en) * 2020-04-24 2020-08-28 中电投电力工程有限公司 System and method for improving verticality measurement precision by using multiple micro-mechanical gyroscopes

Also Published As

Publication number Publication date
CN101738203B (en) 2011-12-07

Similar Documents

Publication Publication Date Title
CN101738203B (en) Optimal position calibration method of static drifting zero and primary acceleration related term error model of flexible gyroscope
CN101377422B (en) Optimal Twenty-Four Position Calibration Method for Static Drift Error Model of Flexible Gyroscope
CN100554884C (en) Optimal eight-position calibration method for flexible gyroscopes
CN106525073B (en) A kind of inertial space Gyro Calibration test method based on three-axle table
CN110006450B (en) A calibration method of laser strapdown inertial navigation system on horizontal three-axis turntable
CN102620892B (en) Dynamic balance testing method for rotatable part
CN105091907B (en) DVL orientation alignment error method of estimation in SINS/DVL combinations
CN103743413B (en) Heeling condition modulated is sought northern instrument alignment error On-line Estimation and is sought northern error compensating method
CN101290326A (en) Parameter Identification and Calibration Method for Measurement Components of Quartz Flexible Accelerometer
CN103852085B (en) A kind of fiber strapdown inertial navigation system system for field scaling method based on least square fitting
CN103234560B (en) A kind of method of strapdown inertial navitation system (SINS) Zero positioning
CN101216321A (en) A Fast and Fine Alignment Method for Strapdown Inertial Navigation System
CN106289246A (en) A kind of rods arm measure method based on position and orientation measurement system
CN110887505A (en) Redundant inertial measurement unit laboratory calibration method
CN109507706B (en) GPS signal loss prediction positioning method
CN102636183B (en) Quadratic overload term test method for flexible gyroscope based on optical fiber monitoring and centrifuge with two-axis turntable
CN104121927B (en) A kind of it is applicable to the low precision Inertial Measurement Unit scaling method without azimuth reference single shaft indexing apparatus
CN104121928B (en) A kind of it be applicable to low precision and have the Inertial Measurement Unit scaling method of azimuth reference single shaft indexing apparatus
CN104596543B (en) Gyroscope combined error coefficient scaling method under a kind of benchmark uncertain condition
CN110514228B (en) Dynamic comprehensive performance testing device and method for attitude and heading measurement system of micro unmanned aerial vehicle
CN102778333B (en) Method for performing dynamic balance test on large rotating part
CN111121820A (en) MEMS inertial sensor array fusion method based on Kalman filtering
CN112129322B (en) Method for detecting and correcting installation error of strapdown inertial measurement unit and three-axis rotary table
CN110487300A (en) Vibration absorber influences test method to the performance of inertial navigation system
CN102636184A (en) Specific force-sensitive term calibration method for flexible gyroscope based on centrifuge in environment without angular movement

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20111207

Termination date: 20121208