CN101737380A - Electro-hydraulic load simulator with low-pressure oil pump - Google Patents
Electro-hydraulic load simulator with low-pressure oil pump Download PDFInfo
- Publication number
- CN101737380A CN101737380A CN 200910218027 CN200910218027A CN101737380A CN 101737380 A CN101737380 A CN 101737380A CN 200910218027 CN200910218027 CN 200910218027 CN 200910218027 A CN200910218027 A CN 200910218027A CN 101737380 A CN101737380 A CN 101737380A
- Authority
- CN
- China
- Prior art keywords
- hydraulic
- electro
- oil
- motor
- hydraulic motor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000446 fuel Substances 0.000 claims 3
- 239000000470 constituent Substances 0.000 claims 1
- 238000004088 simulation Methods 0.000 abstract description 29
- 238000012360 testing method Methods 0.000 abstract description 7
- 230000003068 static effect Effects 0.000 abstract description 3
- 239000003921 oil Substances 0.000 description 70
- 239000010720 hydraulic oil Substances 0.000 description 18
- 238000000034 method Methods 0.000 description 7
- 238000010586 diagram Methods 0.000 description 5
- 238000000926 separation method Methods 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
Images
Landscapes
- Fluid-Pressure Circuits (AREA)
Abstract
一种具有低压油泵的电液负载模拟装置,属于电液伺服控制技术领域。现有电液负载模拟装置因自身存在摩擦阻力矩,一方面增大被试电机的负担,另一方面影响力矩模拟测试结果。现有技术还由于液压马达吸油口处的管道中产生的负压,导致液压马达的振动。本发明之装置在液压马达的吸油管道上安装有低压油泵。在电液负载模拟装置工作之前和工作过程中,由低压油泵产生一个背压,抵消所述静摩擦力矩,也避免所述负压的产生。用于随动系统负载的模拟。
An electro-hydraulic load simulation device with a low-pressure oil pump belongs to the technical field of electro-hydraulic servo control. The existing electro-hydraulic load simulator has its own frictional resistance torque, which on the one hand increases the burden on the tested motor, and on the other hand affects the torque simulation test results. The prior art also causes vibration of the hydraulic motor due to the negative pressure generated in the pipeline at the oil suction port of the hydraulic motor. The device of the present invention is equipped with a low-pressure oil pump on the oil suction pipeline of the hydraulic motor. Before and during the operation of the electro-hydraulic load simulation device, a back pressure is generated by the low-pressure oil pump to offset the static friction moment and avoid the generation of the negative pressure. It is used for simulation of servo system load.
Description
技术领域technical field
本发明涉及一种具有低压油泵的电液负载模拟装置,在其中的液压动力系统中采用低压油泵克服在静止及运动状态中装置自身摩擦阻力矩的技术方案,属于电液伺服控制技术领域。The invention relates to an electro-hydraulic load simulation device with a low-pressure oil pump, in which a low-pressure oil pump is used in a hydraulic power system to overcome the device's own friction resistance torque in a static and moving state, and belongs to the technical field of electro-hydraulic servo control.
背景技术Background technique
电液负载模拟装置用于模拟随动系统在运动过程中电机所承受的各种阻力矩,如惯性力矩、风阻力矩、不平衡力矩等。一篇名为“随动系统负载的电液伺服模拟装置”、申请号为200910066801.7的中国发明专利申请公开说明书公开了一种采用电液伺服加载方式实现各种负载的模拟的典型方案,见图1所示,电液负载模拟装置由液压马达1、换向阀2、伺服阀3、高压油泵4、力矩传感器5、编码器6、主控计算机7和油槽8构成,力矩传感器5和编码器6安装在液压马达1力矩输出轴上,并分别与主控计算机7电连接;主控计算机7与伺服阀3的阀驱动器电连接;液压马达1、换向阀2、伺服阀3三者之间为常规液压油路连接,所用液压油在油槽8中循环使用。采用力矩传感器5检测模拟装置提供的力矩,并通过控制伺服阀3的开口量实现各种负载的模拟。液压马达1与被试电机9通过联轴器或者变速器等机械机构连接,电液负载模拟装置所模拟的力矩被施加到被试电机9上。The electro-hydraulic load simulator is used to simulate various resistance torques that the motor bears during the motion of the servo system, such as inertial torque, wind resistance torque, unbalanced torque, etc. A Chinese invention patent application publication titled "Electro-hydraulic servo simulation device for follow-up system load" with application number 200910066801.7 discloses a typical scheme for simulating various loads by using electro-hydraulic servo loading, as shown in Fig. 1, the electro-hydraulic load simulation device is composed of
电液负载模拟装置自身存在摩擦阻力矩,主要来自其中的连接液压马达1和被试电机9的机械机构以及液压马达部分。尤其在被试电机9带动电液负载模拟装置从静止到运动的过程中,需要克服摩擦阻力矩,即只有被试电机9产生等于该摩擦阻力矩的驱动力矩时,其转轴才开始转动。对于电液负载模拟装置而言,这种存在于其自身的摩擦阻力矩若不加以消除,必然会造成电液负载模拟装置力矩输出存在误差。现有解决方法是采用软件补偿,即通过实测确定摩擦阻力矩数据,以该数据作为零点,在电液负载模拟装置工作过程中,将检测到的被试电机承载的力矩数据减去该数据,再进行后续处理。这种方法虽然没有增加电液负载模拟装置中的部件,但是,使被试电机9承载的力矩增加,一方面增大被试电机的负担,特别是当被试电机9工作转矩较小而摩擦阻力矩较大时,会出现被试电机9难以带动电液负载模拟装置的情况;另一方面,被试电机9为克服摩擦阻力矩需要消耗过大转矩,使得电液负载模拟装置难以按照设计进行力矩模拟,影响测试结果。The electro-hydraulic load simulation device itself has friction resistance torque, which mainly comes from the mechanical mechanism connecting the
由于工况、噪音方面的原因,电液负载模拟装置中的液压马达1与以高压油泵4为核心的液压动力系统相距较远,而液压马达1的自吸能力有限,会在其吸油口处的管道中产生负压,当达到油气分离压力时,油中的空气就会分离出来,当带有空气的液压油进入液压马达1后会使液压马达1产生振动,以至于不能正常工作。Due to working conditions and noise, the
发明内容Contents of the invention
为解决摩擦阻力矩对电液负载模拟装置模拟结果的影响以及在液压油管道中因负压发生空气分离从而导致电液负载模拟装置在模拟过程中出现振动的问题,我们发明了一种具有低压油泵的电液负载模拟装置。In order to solve the problem of the influence of friction resistance torque on the simulation results of the electro-hydraulic load simulator and the vibration of the electro-hydraulic load simulator during the simulation process due to air separation due to negative pressure in the hydraulic oil pipeline, we invented a low-pressure An electro-hydraulic load simulator for oil pumps.
本发明之装置其组成部分包括液压马达1、换向阀2、伺服阀3、高压油泵4、力矩传感器5、编码器6、主控计算机7和油槽8,力矩传感器5和编码器6安装在液压马达1力矩输出轴上,并分别与主控计算机7电连接,主控计算机7与伺服阀3的阀驱动器电连接,液压马达1、换向阀2、伺服阀3三者之间为常规液压油路连接,其特征在于,在液压马达1的吸油管道10上还安装有低压油泵11。Its components of the device of the present invention include a
本发明其效果在于,采用低压油泵11向液压马达1供油能够解决现有技术存在的技术问题。在电液负载模拟装置工作之前,由低压油泵11产生的一个背压施加到液压马达1,直至连接液压马达1和被试电机9的机械机构,使电液负载模拟装置处在即将运转的临界状态,即由该背压形成的力矩等于所述静摩擦力矩,被试电机9相当于处在接近空载的状态,或者说起动负荷非常小。当电液负载模拟装置开始工作时,只需根据被试电机9转速、给定的指令信号等确定所需提供的模拟力矩控制伺服阀3开口量即可。被试电机9转轴所承载的力矩几乎完全是电液负载模拟装置所施加的模拟力矩。另外,同样是由于该背压的存在,避免了在液压马达1吸油管道10中负压的产生,也就不会发生液压油中的空气从中分离出来的现象,液压马达1的振动问题随之解决。力矩传感器5检测到的数值十分接近于电液负载模拟装置提供力矩,检测结果更为真实。另外,背压的存在相当于为电液负载模拟装置进行预紧,增加了电液负载模拟装置刚度,使得电液负载模拟装置模拟精度提高。The effect of the present invention is that the use of the low-
附图说明Description of drawings
图1是现有随动系统负载的电液伺服模拟装置结构示意图。图2是本发明之具有低压油泵的电液负载模拟装置结构示意图。图3是本发明之装置在工作前液压动力系统液压油流动方向示意图,该图兼作为摘要附图。图4是本发明之装置在工作后液压动力系统中的液压马达工作在泵状态时液压油流动方向示意图。图5是本发明之装置在工作后液压动力系统中的液压马达工作在马达状态时液压油流动方向示意图。Fig. 1 is a structural schematic diagram of an electro-hydraulic servo simulation device for a conventional servo system load. Fig. 2 is a structural schematic diagram of an electro-hydraulic load simulator with a low-pressure oil pump according to the present invention. Fig. 3 is a schematic diagram of the hydraulic oil flow direction of the hydraulic power system before the device of the present invention works, and this figure is also used as a summary drawing. Fig. 4 is a schematic diagram of the flow direction of hydraulic oil when the hydraulic motor in the hydraulic power system of the device of the present invention works in the pump state. Fig. 5 is a schematic diagram of the flow direction of hydraulic oil when the hydraulic motor in the hydraulic power system of the device of the present invention is working in the motor state.
具体实施方式Detailed ways
本发明之装置其组成部分包括液压马达1、换向阀2、伺服阀3、高压油泵4、力矩传感器5、编码器6、主控计算机7和油槽8。力矩传感器5和编码器6安装在液压马达1力矩输出轴上,并分别与主控计算机7电连接。力矩传感器5是一种扭矩传感器,检测被试电机9承受的扭矩,获得的扭矩数据作为反馈信号控制电液负载模拟装置的输出,以实现电液负载模拟装置的闭环控制。编码器6是一种轴角编码器,随被试电机9旋转,检测被试电机9运动速度。主控计算机7与伺服阀3的阀驱动器电连接。液压马达1、换向阀2、伺服阀3三者之间为常规液压油路连接。换向阀2采用中位机能Y型电液换向阀,在电液负载模拟装置空载运行时,连通液压马达1的进油口、出油口,实现伺服阀3出油口与液压马达1进油口、出油口连接的转换。伺服阀3根据来自主控计算机7的指令信号的大小和方向控制其开口大小,实现对液压马达1进油口、出油口工作压力的控制。换向阀2与伺服阀3配合,决定是控制液压马达1的进油口还是出油口的工作压力。该工作压力通过液压马达1转换为力矩,通过力矩输出轴作用到被试电机9上。高压油泵4为主液压泵,采用电机与柱塞式液压泵一体结构型式的油泵电机组。调节高压油泵电磁溢流阀12,确定高压油泵4的输出压力。通过伺服阀3为液压马达1提供动力。在液压马达1的吸油管道10上还安装有低压油泵11。低压油泵11安装在吸油管道10的接近油槽8段,避免在其进油口至油槽8的油管中形成负压。低压油泵11通过向液压马达1供油在吸油管道10中形成一个背压。低压油泵电磁溢流阀13与低压油泵11并联,在主控计算机7的控制下,调节低压油泵11的供油压力,也就是所述背压,调节到恰好能够抵所述摩擦阻力矩和防止在吸油管道10中形成足以导致空气自液压油中分离的负压的程度。The components of the device of the present invention include a
下面通过对本发明之装置工作过程的描述进一步说明本发明。The present invention will be further illustrated below by describing the working process of the device of the present invention.
电液负载模拟装置工作前,低压油泵11工作并产生一个背压,该背压直接在液压马达1上产生一个力矩,此时,换向阀2处在一个工作位,伺服阀3不工作,液压油的流动方向为:油槽8、低压油泵11、吸油管道10、正转单向阀14、液压马达1、换向阀2、二通阀15、油槽8,见图3所示。调节低压油泵电磁溢流阀13,使得背压的大小达到使电液负载模拟装置处于即将运动而未运动的状态。Before the electro-hydraulic load simulator works, the low-
电液负载模拟装置工作后,被试电机9带动液压马达1转动,液压马达1根据电液负载模拟装置需要模拟的力矩,在泵或马达状态之间切换。After the electro-hydraulic load simulation device works, the tested
当液压马达1工作在泵状态时,被试电机9施加给液压马达1一个力矩,驱动其旋转,如正转。此时通过控制伺服阀3开口量建立阻力矩作用在液压马达1上,并传递到被试电机9上,实现阻力矩模拟。在这个过程中,低压油泵11持续提供背压,并且,该背压在液压马达1上产生的力矩与被试电机9施加给液压马达1的力矩方向相同。液压马达1工作在泵状态时的液压油流动方向为:油槽8、低压油泵11、吸油管道10、正转单向阀14、液压马达1、换向阀2、伺服阀3、回油单向阀16、油槽8,见图4所示。When the
当液压马达1工作在马达状态时,被试电机9施加给液压马达1一个力矩,驱动其旋转,如正转。高压油泵4通过伺服阀3为液压马达1提供动力,驱动其旋转,如正转。再由液压马达1将该动力转换为一个同向力矩施加给被试电机9。在这一工作状态中,通过控制伺服阀3开口量建立一定的动力矩作用在液压马达1上,并传递到被试电机9上,实现动力矩模拟。在这个过程中,低压油泵11依然持续提供背压,并且,该背压在液压马达1上产生的力矩与高压油泵4施加给液压马达1的力矩方向相同。液压马达1工作在马达状态时,在电液负载模拟装置中存在两个液压油循环。其中由低压油泵11驱使的液压油流动方向为:油槽8、低压油泵11、吸油管道10、正转单向阀14、液压马达1、换向阀2、二通阀15、油槽8,见图5所示。其中由高压油泵4驱使的液压油流动方向为:油槽8、高压油泵4、伺服阀3、换向阀2、液压油泵1、换向阀2、二通阀14、油槽8,见图5所示。When the
电液负载模拟装置工作后,被试电机9带动液压马达1反转,液压动力系统中的液压油的流动路径在单向阀环节发生变化,通过反转单向阀17流动,其他不变。After the electro-hydraulic load simulation device works, the tested
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 200910218027 CN101737380B (en) | 2009-12-17 | 2009-12-17 | Electro-hydraulic load simulator with low-pressure oil pump |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 200910218027 CN101737380B (en) | 2009-12-17 | 2009-12-17 | Electro-hydraulic load simulator with low-pressure oil pump |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101737380A true CN101737380A (en) | 2010-06-16 |
CN101737380B CN101737380B (en) | 2013-02-20 |
Family
ID=42461280
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN 200910218027 Expired - Fee Related CN101737380B (en) | 2009-12-17 | 2009-12-17 | Electro-hydraulic load simulator with low-pressure oil pump |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN101737380B (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102654754A (en) * | 2012-04-18 | 2012-09-05 | 中国工程物理研究院总体工程研究所 | Method for detecting vibration control dynamic range by using load simulator and load simulator |
CN104155608A (en) * | 2014-09-04 | 2014-11-19 | 上海航天电子通讯设备研究所 | Rotating load simulation device |
CN104198170A (en) * | 2014-08-26 | 2014-12-10 | 北京精密机电控制设备研究所 | Front-oscillation center spray pipe load simulating friction loading device |
CN105045133A (en) * | 2015-05-25 | 2015-11-11 | 哈尔滨工业大学 | Multi-friction-plate stacking loading mechanism and large-amplitude bidirectional friction loading-type electro-hydraulic load simulator employing same |
CN105045134A (en) * | 2015-05-25 | 2015-11-11 | 哈尔滨工业大学 | Double-friction-disk loading mechanism and bidirectional friction loading-type no-additional-torque electro-hydraulic load simulator employing same |
CN106855466A (en) * | 2015-12-08 | 2017-06-16 | 上海宇航系统工程研究所 | A kind of big flexible load simulator of single-degree-of-freedom |
CN107796644A (en) * | 2017-10-19 | 2018-03-13 | 中石化四机石油机械有限公司 | A kind of motor-driven load experimental rig of oil gas field Operating Pressure and test method |
CN110907830A (en) * | 2019-12-13 | 2020-03-24 | 永昌控股集团有限公司 | Tubular motor life test machine |
CN112983800A (en) * | 2021-03-19 | 2021-06-18 | 北京航空航天大学 | Pump environment simulation and test system for electro-hydrostatic actuator |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN201013312Y (en) * | 2006-03-09 | 2008-01-30 | 西南石油学院 | A Simulator of Oil Production Load |
CN101532516B (en) * | 2009-04-10 | 2010-12-29 | 长春理工大学 | Device for simulating servo system load by electrohydraulic servo |
CN101532517A (en) * | 2009-04-10 | 2009-09-16 | 长春理工大学 | Method for simulating servo system load by electrohydraulic servo |
-
2009
- 2009-12-17 CN CN 200910218027 patent/CN101737380B/en not_active Expired - Fee Related
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102654754A (en) * | 2012-04-18 | 2012-09-05 | 中国工程物理研究院总体工程研究所 | Method for detecting vibration control dynamic range by using load simulator and load simulator |
CN104198170B (en) * | 2014-08-26 | 2017-01-25 | 北京精密机电控制设备研究所 | Front-oscillation center spray pipe load simulating friction loading device |
CN104198170A (en) * | 2014-08-26 | 2014-12-10 | 北京精密机电控制设备研究所 | Front-oscillation center spray pipe load simulating friction loading device |
CN104155608A (en) * | 2014-09-04 | 2014-11-19 | 上海航天电子通讯设备研究所 | Rotating load simulation device |
CN104155608B (en) * | 2014-09-04 | 2017-05-31 | 上海航天电子通讯设备研究所 | One kind rotates load simulating device |
CN105045133A (en) * | 2015-05-25 | 2015-11-11 | 哈尔滨工业大学 | Multi-friction-plate stacking loading mechanism and large-amplitude bidirectional friction loading-type electro-hydraulic load simulator employing same |
CN105045134A (en) * | 2015-05-25 | 2015-11-11 | 哈尔滨工业大学 | Double-friction-disk loading mechanism and bidirectional friction loading-type no-additional-torque electro-hydraulic load simulator employing same |
CN105045134B (en) * | 2015-05-25 | 2017-08-25 | 哈尔滨工业大学 | The bi-directional friction loaded type of double frictional disk load maintainers and the use mechanism is without Surplus Moment electrohydraulic load simulator |
CN105045133B (en) * | 2015-05-25 | 2017-11-17 | 哈尔滨工业大学 | More friction plate superposition load maintainers and the amplitude bi-directional friction loaded type electrohydraulic load simulator using the mechanism |
CN106855466A (en) * | 2015-12-08 | 2017-06-16 | 上海宇航系统工程研究所 | A kind of big flexible load simulator of single-degree-of-freedom |
CN106855466B (en) * | 2015-12-08 | 2019-08-23 | 上海宇航系统工程研究所 | A kind of big flexible load simulator of single-degree-of-freedom |
CN107796644A (en) * | 2017-10-19 | 2018-03-13 | 中石化四机石油机械有限公司 | A kind of motor-driven load experimental rig of oil gas field Operating Pressure and test method |
CN110907830A (en) * | 2019-12-13 | 2020-03-24 | 永昌控股集团有限公司 | Tubular motor life test machine |
CN112983800A (en) * | 2021-03-19 | 2021-06-18 | 北京航空航天大学 | Pump environment simulation and test system for electro-hydrostatic actuator |
Also Published As
Publication number | Publication date |
---|---|
CN101737380B (en) | 2013-02-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101737380A (en) | Electro-hydraulic load simulator with low-pressure oil pump | |
CN100451336C (en) | Low idling energy consumption hydraulic power source | |
CN104514761B (en) | A kind of hydraulic pump that can be consumed energy with recovery test and motor test rig | |
CN109910020B (en) | A closed-loop control system for a hydraulically driven rotary joint of a robot | |
CN104864061A (en) | Lead screw transmission system driven by electro-hydraulic hybrid and control method thereof | |
CN105020458A (en) | Electro hydraulic actuator for butterfly valve | |
CN101865190A (en) | Position flow double closed-loop direct drive volume control electro-hydraulic servo system | |
CN100427913C (en) | Fuel pump valve performance test device | |
CN105805065B (en) | The ESD valve door electrohydraulic actuator of speed change | |
CN105673596A (en) | Double hydraulic control system with automatic pressure-maintaining function and test method of double hydraulic control system | |
CN101413406A (en) | Direct drive type oil servo motor based on direct drive type electrohydraulic servo power source | |
CN103775321B (en) | Hydraulic balanced servo control variable hydraulic pump | |
CN104359658A (en) | Load test board with sail stress simulation function | |
CN101532517A (en) | Method for simulating servo system load by electrohydraulic servo | |
CN106593976B (en) | Drilling machine hydraulic wireline winch testing stand | |
CN204403006U (en) | A kind of can recovery test power consumption oil hydraulic pump and motor test rig | |
CN107605818A (en) | A kind of electro-hydraulic driving swing mechanism | |
CN206320093U (en) | A kind of rig hydraulic wireline winch testing stand | |
CN207297485U (en) | A kind of electro-hydraulic driving swing mechanism | |
CN110345134A (en) | A kind of device for hydraulic impact machine performance test | |
CN107620701A (en) | The driving of high speed constant pressure variable plunger pump and load change test device based on power back off | |
WO2011065161A1 (en) | Hydraulic device | |
CN211202067U (en) | Energy-saving turbine EH oil station | |
CN104133391A (en) | Dual-motor loading mechanism electric load simulator | |
CN103775322A (en) | Sensing feedback programmable servo variable hydraulic pump |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20130220 Termination date: 20141217 |
|
EXPY | Termination of patent right or utility model |