CN101733110A - Three-dimensional ordered macroporous oxide catalyst for diesel soot purification and preparation method thereof - Google Patents
Three-dimensional ordered macroporous oxide catalyst for diesel soot purification and preparation method thereof Download PDFInfo
- Publication number
- CN101733110A CN101733110A CN200810225707A CN200810225707A CN101733110A CN 101733110 A CN101733110 A CN 101733110A CN 200810225707 A CN200810225707 A CN 200810225707A CN 200810225707 A CN200810225707 A CN 200810225707A CN 101733110 A CN101733110 A CN 101733110A
- Authority
- CN
- China
- Prior art keywords
- catalyst
- preparation
- metal
- macroporous
- 3dom
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000003054 catalyst Substances 0.000 title claims abstract description 100
- 239000004071 soot Substances 0.000 title claims abstract description 67
- 238000002360 preparation method Methods 0.000 title claims abstract description 26
- 238000000746 purification Methods 0.000 title claims description 5
- 229910044991 metal oxide Inorganic materials 0.000 claims abstract description 62
- 150000004706 metal oxides Chemical class 0.000 claims abstract description 62
- 239000013078 crystal Substances 0.000 claims abstract description 47
- 239000011148 porous material Substances 0.000 claims abstract description 46
- 239000002131 composite material Substances 0.000 claims abstract description 34
- 238000007254 oxidation reaction Methods 0.000 claims abstract description 19
- 230000003647 oxidation Effects 0.000 claims abstract description 17
- 239000008139 complexing agent Substances 0.000 claims abstract description 16
- 150000003839 salts Chemical class 0.000 claims abstract description 11
- 229910052723 transition metal Inorganic materials 0.000 claims abstract description 10
- 150000003624 transition metals Chemical class 0.000 claims abstract description 10
- 229910052761 rare earth metal Inorganic materials 0.000 claims abstract description 7
- 150000002910 rare earth metals Chemical class 0.000 claims abstract description 7
- 239000000243 solution Substances 0.000 claims description 64
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical group OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 claims description 36
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical group OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 claims description 33
- 229920003229 poly(methyl methacrylate) Polymers 0.000 claims description 33
- 239000004926 polymethyl methacrylate Substances 0.000 claims description 33
- 239000004005 microsphere Substances 0.000 claims description 28
- 239000004793 Polystyrene Substances 0.000 claims description 20
- 239000000839 emulsion Substances 0.000 claims description 19
- 238000000034 method Methods 0.000 claims description 19
- 229920002223 polystyrene Polymers 0.000 claims description 19
- 229910052751 metal Inorganic materials 0.000 claims description 18
- 239000002184 metal Substances 0.000 claims description 16
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 14
- 229910002651 NO3 Inorganic materials 0.000 claims description 14
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 claims description 14
- 239000000203 mixture Substances 0.000 claims description 13
- 238000010438 heat treatment Methods 0.000 claims description 12
- 238000003756 stirring Methods 0.000 claims description 11
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 11
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 10
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 claims description 10
- 229910021645 metal ion Inorganic materials 0.000 claims description 10
- 239000000126 substance Substances 0.000 claims description 10
- 230000003197 catalytic effect Effects 0.000 claims description 9
- 239000006104 solid solution Substances 0.000 claims description 9
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 claims description 8
- 239000003999 initiator Substances 0.000 claims description 8
- 239000012018 catalyst precursor Substances 0.000 claims description 6
- 239000006184 cosolvent Substances 0.000 claims description 6
- 230000008569 process Effects 0.000 claims description 6
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 claims description 5
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical compound COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 claims description 5
- 229910052783 alkali metal Inorganic materials 0.000 claims description 5
- 150000001340 alkali metals Chemical class 0.000 claims description 5
- 239000007788 liquid Substances 0.000 claims description 5
- 229910052757 nitrogen Inorganic materials 0.000 claims description 5
- 229910052784 alkaline earth metal Inorganic materials 0.000 claims description 4
- 150000001342 alkaline earth metals Chemical class 0.000 claims description 4
- 238000001035 drying Methods 0.000 claims description 4
- 239000000178 monomer Substances 0.000 claims description 4
- 229910052684 Cerium Inorganic materials 0.000 claims description 3
- 229910052779 Neodymium Inorganic materials 0.000 claims description 3
- 229910052777 Praseodymium Inorganic materials 0.000 claims description 3
- 229910052802 copper Inorganic materials 0.000 claims description 3
- 230000008021 deposition Effects 0.000 claims description 3
- 238000001704 evaporation Methods 0.000 claims description 3
- 230000008020 evaporation Effects 0.000 claims description 3
- 229910052742 iron Inorganic materials 0.000 claims description 3
- 229910052749 magnesium Inorganic materials 0.000 claims description 3
- 229910052748 manganese Inorganic materials 0.000 claims description 3
- 229910052759 nickel Inorganic materials 0.000 claims description 3
- 229910052700 potassium Inorganic materials 0.000 claims description 3
- 229910052708 sodium Inorganic materials 0.000 claims description 3
- 150000001298 alcohols Chemical class 0.000 claims description 2
- 229910052792 caesium Inorganic materials 0.000 claims description 2
- 229910052791 calcium Inorganic materials 0.000 claims description 2
- 229910052746 lanthanum Inorganic materials 0.000 claims description 2
- 229910052744 lithium Inorganic materials 0.000 claims description 2
- 229910052701 rubidium Inorganic materials 0.000 claims description 2
- 229910052712 strontium Inorganic materials 0.000 claims description 2
- 150000005846 sugar alcohols Polymers 0.000 claims description 2
- 239000006193 liquid solution Substances 0.000 claims 3
- 238000006424 Flood reaction Methods 0.000 claims 2
- 238000007599 discharging Methods 0.000 claims 2
- 238000002803 maceration Methods 0.000 claims 2
- 239000003795 chemical substances by application Substances 0.000 claims 1
- 239000002283 diesel fuel Substances 0.000 claims 1
- 235000011187 glycerol Nutrition 0.000 claims 1
- 238000009413 insulation Methods 0.000 claims 1
- 238000002156 mixing Methods 0.000 claims 1
- 238000010792 warming Methods 0.000 claims 1
- 239000002245 particle Substances 0.000 abstract description 62
- 238000002485 combustion reaction Methods 0.000 abstract description 30
- 238000009792 diffusion process Methods 0.000 abstract description 5
- 230000009286 beneficial effect Effects 0.000 abstract description 2
- 238000001354 calcination Methods 0.000 abstract description 2
- 229910052728 basic metal Inorganic materials 0.000 abstract 1
- 150000003818 basic metals Chemical class 0.000 abstract 1
- 239000002243 precursor Substances 0.000 description 31
- 229910017771 LaFeO Inorganic materials 0.000 description 24
- 230000000694 effects Effects 0.000 description 19
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 18
- 238000011156 evaluation Methods 0.000 description 14
- 238000001878 scanning electron micrograph Methods 0.000 description 14
- 230000000052 comparative effect Effects 0.000 description 12
- 239000000463 material Substances 0.000 description 10
- 235000002639 sodium chloride Nutrition 0.000 description 10
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 9
- CETPSERCERDGAM-UHFFFAOYSA-N ceric oxide Chemical compound O=[Ce]=O CETPSERCERDGAM-UHFFFAOYSA-N 0.000 description 9
- 229910000422 cerium(IV) oxide Inorganic materials 0.000 description 9
- 238000006243 chemical reaction Methods 0.000 description 9
- 239000007787 solid Substances 0.000 description 9
- OZAIFHULBGXAKX-UHFFFAOYSA-N 2-(2-cyanopropan-2-yldiazenyl)-2-methylpropanenitrile Chemical compound N#CC(C)(C)N=NC(C)(C)C#N OZAIFHULBGXAKX-UHFFFAOYSA-N 0.000 description 8
- 229910002321 LaFeO3 Inorganic materials 0.000 description 7
- 230000008018 melting Effects 0.000 description 7
- 238000002844 melting Methods 0.000 description 7
- 229910052596 spinel Inorganic materials 0.000 description 7
- 239000011029 spinel Substances 0.000 description 7
- 238000012546 transfer Methods 0.000 description 7
- 239000013618 particulate matter Substances 0.000 description 6
- 238000002441 X-ray diffraction Methods 0.000 description 5
- 238000000967 suction filtration Methods 0.000 description 5
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 4
- 229910052799 carbon Inorganic materials 0.000 description 4
- HSJPMRKMPBAUAU-UHFFFAOYSA-N cerium(3+);trinitrate Chemical compound [Ce+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O HSJPMRKMPBAUAU-UHFFFAOYSA-N 0.000 description 4
- 238000000151 deposition Methods 0.000 description 4
- 239000007789 gas Substances 0.000 description 4
- 238000005470 impregnation Methods 0.000 description 4
- VCJMYUPGQJHHFU-UHFFFAOYSA-N iron(3+);trinitrate Chemical compound [Fe+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O VCJMYUPGQJHHFU-UHFFFAOYSA-N 0.000 description 4
- 239000011022 opal Substances 0.000 description 4
- OERNJTNJEZOPIA-UHFFFAOYSA-N zirconium nitrate Chemical compound [Zr+4].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O OERNJTNJEZOPIA-UHFFFAOYSA-N 0.000 description 4
- FYDKNKUEBJQCCN-UHFFFAOYSA-N lanthanum(3+);trinitrate Chemical compound [La+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O FYDKNKUEBJQCCN-UHFFFAOYSA-N 0.000 description 3
- 150000002739 metals Chemical class 0.000 description 3
- 239000011259 mixed solution Substances 0.000 description 3
- 229920000642 polymer Polymers 0.000 description 3
- USHAGKDGDHPEEY-UHFFFAOYSA-L potassium persulfate Chemical compound [K+].[K+].[O-]S(=O)(=O)OOS([O-])(=O)=O USHAGKDGDHPEEY-UHFFFAOYSA-L 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- 239000006228 supernatant Substances 0.000 description 3
- 238000002604 ultrasonography Methods 0.000 description 3
- 229910052772 Samarium Inorganic materials 0.000 description 2
- 150000001242 acetic acid derivatives Chemical class 0.000 description 2
- 150000004703 alkoxides Chemical class 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 229910052804 chromium Inorganic materials 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 239000012154 double-distilled water Substances 0.000 description 2
- 238000007720 emulsion polymerization reaction Methods 0.000 description 2
- HHLFWLYXYJOTON-UHFFFAOYSA-N glyoxylic acid Chemical compound OC(=O)C=O HHLFWLYXYJOTON-UHFFFAOYSA-N 0.000 description 2
- 239000011799 hole material Substances 0.000 description 2
- 238000011065 in-situ storage Methods 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 150000003891 oxalate salts Chemical class 0.000 description 2
- FGIUAXJPYTZDNR-UHFFFAOYSA-N potassium nitrate Chemical compound [K+].[O-][N+]([O-])=O FGIUAXJPYTZDNR-UHFFFAOYSA-N 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 239000011882 ultra-fine particle Substances 0.000 description 2
- BNGXYYYYKUGPPF-UHFFFAOYSA-M (3-methylphenyl)methyl-triphenylphosphanium;chloride Chemical compound [Cl-].CC1=CC=CC(C[P+](C=2C=CC=CC=2)(C=2C=CC=CC=2)C=2C=CC=CC=2)=C1 BNGXYYYYKUGPPF-UHFFFAOYSA-M 0.000 description 1
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 1
- 229910052693 Europium Inorganic materials 0.000 description 1
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 1
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 229910052788 barium Inorganic materials 0.000 description 1
- 239000002585 base Substances 0.000 description 1
- WUKWITHWXAAZEY-UHFFFAOYSA-L calcium difluoride Chemical compound [F-].[F-].[Ca+2] WUKWITHWXAAZEY-UHFFFAOYSA-L 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 239000012876 carrier material Substances 0.000 description 1
- UFMZWBIQTDUYBN-UHFFFAOYSA-N cobalt dinitrate Chemical compound [Co+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O UFMZWBIQTDUYBN-UHFFFAOYSA-N 0.000 description 1
- 229910001981 cobalt nitrate Inorganic materials 0.000 description 1
- 230000000536 complexating effect Effects 0.000 description 1
- 238000010668 complexation reaction Methods 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 238000000635 electron micrograph Methods 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 230000005621 ferroelectricity Effects 0.000 description 1
- 230000005307 ferromagnetism Effects 0.000 description 1
- 239000010436 fluorite Substances 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- 238000004817 gas chromatography Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 229910017053 inorganic salt Inorganic materials 0.000 description 1
- MVFCKEFYUDZOCX-UHFFFAOYSA-N iron(2+);dinitrate Chemical compound [Fe+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O MVFCKEFYUDZOCX-UHFFFAOYSA-N 0.000 description 1
- -1 lanthanide metals Chemical class 0.000 description 1
- 229910052747 lanthanoid Inorganic materials 0.000 description 1
- 239000012705 liquid precursor Substances 0.000 description 1
- 229910001960 metal nitrate Inorganic materials 0.000 description 1
- 235000010755 mineral Nutrition 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 239000002105 nanoparticle Substances 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 229910000510 noble metal Inorganic materials 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 238000005191 phase separation Methods 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 235000010333 potassium nitrate Nutrition 0.000 description 1
- 239000004323 potassium nitrate Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 239000012429 reaction media Substances 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 238000002137 ultrasound extraction Methods 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Images
Landscapes
- Catalysts (AREA)
Abstract
本发明涉及一种柴油碳烟净化用大孔复合金属氧化物催化剂及其制备方法。本发明首先提供了一种柴油车排放碳烟颗粒物燃烧用氧化催化剂,其是由稀土金属、过渡金属和碱性金属中的一种以上的元素作为活性组分且具有三维有序大孔结构的简单金属氧化物或者复合金属氧化物,其中,该催化剂的平均孔径为50nm-1μm。采用上述具有三维有序大孔结构的催化剂,有利于碳烟颗粒物在孔道内的扩散,提高催化剂活性表面积的利用率,大大降低碳烟颗粒物的燃烧温度。本发明还提供了上述催化剂的制备方法,通过将含有其活性组分的盐的有机络合剂溶液对胶体晶体模板进行浸渍,然后经过焙烧得到的上述催化剂。
The invention relates to a macroporous composite metal oxide catalyst for purifying diesel soot and a preparation method thereof. The present invention firstly provides an oxidation catalyst for the combustion of soot particles emitted by diesel vehicles, which is composed of more than one element among rare earth metals, transition metals and basic metals as active components and has a three-dimensional ordered macroporous structure Simple metal oxides or composite metal oxides, wherein the average pore diameter of the catalyst is 50nm-1μm. The use of the above-mentioned catalyst with a three-dimensional ordered macropore structure is beneficial to the diffusion of soot particles in the pores, improves the utilization rate of the active surface area of the catalyst, and greatly reduces the combustion temperature of the soot particles. The present invention also provides the preparation method of the above-mentioned catalyst, which is obtained by impregnating the colloidal crystal template with the organic complexing agent solution containing the salt of the active component, and then calcining the above-mentioned catalyst.
Description
技术领域technical field
本发明涉及柴油车排放碳烟颗粒物净化技术,具体地说,涉及一种柴油碳烟净化用三维有序大孔氧化物催化剂及其制备方法,属于环保技术领域。The invention relates to a technology for purifying soot particles emitted by diesel vehicles, in particular to a three-dimensional ordered macroporous oxide catalyst for purifying diesel soot and a preparation method thereof, belonging to the technical field of environmental protection.
背景技术Background technique
提高柴油车尾气排放的碳烟颗粒物(PM)净化用催化剂的活性,降低碳烟颗粒物的燃烧温度,从而使碳烟颗粒物捕集器能够长时间连续工作,是减少柴油机排放碳烟颗粒物最直接的方法。由于碳烟的消除反应是一个气-固(碳烟)-固(催化剂)三相复杂的深度氧化反应过程,催化剂活性的提高不仅与氧化物催化剂本身的氧化还原性能密切相关,同时还与固体催化剂和PM的接触程度密切相关。同一活性组分的催化剂,与碳烟的接触能力越高,活性越好。但是,由于碳烟颗粒物的粒度较大(单个碳烟粒子的直径大于25nm),很难进入催化剂或载体微孔内进行反应,即使是超大介孔分子筛(最大孔径约20nm),碳烟颗粒物的扩散也有一定的阻力,碳烟颗粒物只能和催化剂的外表面接触,从而使活性表面积的利用率大大降低。Improving the activity of the catalyst for purifying soot particulate matter (PM) from diesel vehicle exhaust, reducing the combustion temperature of soot particulate matter, so that the soot particulate matter trap can work continuously for a long time is the most direct way to reduce the soot particulate matter emitted by diesel engines method. Since the elimination reaction of soot is a gas-solid (soot)-solid (catalyst) three-phase complex deep oxidation reaction process, the improvement of catalyst activity is not only closely related to the redox performance of the oxide catalyst itself, but also to the solid The contact degree of catalyst and PM is closely related. For catalysts with the same active component, the higher the contact ability with soot, the better the activity. However, due to the large particle size of the soot particles (the diameter of a single soot particle is greater than 25nm), it is difficult to enter the micropores of the catalyst or carrier for reaction. Diffusion also has a certain resistance, and the soot particles can only contact the outer surface of the catalyst, so that the utilization rate of the active surface area is greatly reduced.
钙钛矿型、类钙钛矿型、尖晶石型、白钨矿型或者Ce基固溶体型等具有固定结构的复合金属氧化物具有灵活的可“化学剪裁”的设计特点和独特的物理性质(如铁磁性、铁电性、超导性、热导性、吸附性等),此类催化剂对于碳烟的燃烧也具有较高的催化活性。中国专利CN1743067A中公开了几种可以用于催化柴油机尾气中碳颗粒的燃烧的钙钛矿和类钙钛矿系列纳米超细微粒催化剂,采用此类催化剂可以使碳颗粒燃烧温度明显降低,使之达到柴油车尾气净化所要求的温度范围。尽管此类催化剂为纳米超细微粒,可以改善催化剂与碳颗粒的接触性能,但是该催化剂的孔径小于10nm,碳烟颗粒物难以进入催化剂孔道内进行反应,只能和催化剂的外表面接触,催化剂的活性比表面积利用率低。因此制备大孔催化剂对于柴油碳烟燃烧具有重要意义。Composite metal oxides with fixed structures such as perovskite, perovskite-like, spinel, scheelite or Ce-based solid solution have flexible design features and unique physical properties that can be "chemically tailored" (such as ferromagnetism, ferroelectricity, superconductivity, thermal conductivity, adsorption, etc.), this type of catalyst also has high catalytic activity for the combustion of soot. Chinese patent CN1743067A discloses several perovskite and perovskite-like series nano-ultrafine particle catalysts that can be used to catalyze the combustion of carbon particles in diesel engine exhaust. The use of such catalysts can significantly reduce the combustion temperature of carbon particles, making them Reach the temperature range required for diesel vehicle exhaust purification. Although this type of catalyst is nano-ultrafine particles, which can improve the contact performance between the catalyst and carbon particles, the pore size of the catalyst is less than 10nm, and it is difficult for soot particles to enter the catalyst pores for reaction, and can only contact the outer surface of the catalyst. The active specific surface area utilization rate is low. Therefore, the preparation of macroporous catalysts is of great significance for diesel soot combustion.
按照国际纯粹和应用化学联合会(IUPAC)的定义,大孔材料是指孔径大于50nm的多孔材料,并且根据其孔道的有序性和无序性可以分为有序大孔材料和无序大孔材料。三维有序大孔材料(3DOM材料,Three-dimensionally Ordered Macroporous Materials)具有特定组成和周期有序大孔两种特性,孔径大,孔分布均匀,孔道排列整齐有序,和其他多孔材料相比,其独特的孔道结构有利于物质从各个方向进入孔内,降低物质的扩散阻力,为物质的扩散提供最佳流速及更高的效率,在催化剂、载体材料等众多领域有着广阔的应用前景。According to the definition of the International Union of Pure and Applied Chemistry (IUPAC), macroporous materials refer to porous materials with a pore diameter greater than 50 nm, and can be divided into ordered macroporous materials and disordered macroporous materials according to the order and disorder of their channels. hole material. Three-dimensionally ordered macroporous materials (3DOM materials, Three-dimensionally Ordered Macroporous Materials) have two characteristics of specific composition and periodic ordered macropores, with large pore size, uniform pore distribution, and orderly arrangement of channels. Compared with other porous materials, Its unique pore structure is conducive to the entry of substances into the pores from all directions, reduces the diffusion resistance of substances, provides the best flow rate and higher efficiency for the diffusion of substances, and has broad application prospects in many fields such as catalysts and carrier materials.
目前制备三维有序大孔材料的方法主要是胶体晶体模板法,一般包括以下一些步骤:首先,通过人工方法将单分散微球堆积成类似于自然界的蛋白石(opal)具有三维有序结构的一类物质,即所谓的胶体晶体(或是合成opal),其为面心立方(fcc)结构,其中胶粒占74%(体积比),空气占26%(体积比);其次,将液态前驱体填充到胶体晶体的间隙,并在原位转化为固体骨架;最后,将微球去除,在原来微球间的空隙位置得到固体骨架,原来微球占据的位置则成为相互连接的孔穴,最后所得到的三维有序结构为蛋白石的反结构,被称为反opal。At present, the method for preparing three-dimensional ordered macroporous materials is mainly the colloidal crystal template method, which generally includes the following steps: First, artificially stack monodisperse microspheres into a three-dimensional ordered structure similar to opal in nature. Substances, so-called colloidal crystals (or synthetic opal), are face-centered cubic (fcc) structures, in which colloidal particles account for 74% (volume ratio), and air accounts for 26% (volume ratio); secondly, the liquid precursor The gaps between the colloidal crystals are filled with solids and converted into solid skeletons in situ; finally, the microspheres are removed to obtain a solid skeleton in the gaps between the original microspheres, and the positions occupied by the original microspheres become interconnected holes. The resulting three-dimensional ordered structure is the inverse structure of opal, known as inverse opal.
中国专利公开CN101199929A中公开了一种用于水煤气变换反应的大孔Pt/CeO2催化剂及其制备方法,该催化剂以聚苯乙烯胶体晶体为模板制备的三维有序大孔CeO2为载体,担载贵金属Pt为活性组分。该三维有序大孔载体担载型催化剂用于水煤气变换反应具有活性高、选择性好和稳定性良好的特点。Chinese patent publication CN101199929A discloses a macroporous Pt/ CeO2 catalyst for water gas shift reaction and its preparation method. The catalyst uses three-dimensional ordered macroporous CeO2 prepared from polystyrene colloidal crystals as a template as a carrier. The noble metal Pt is loaded as the active component. The three-dimensional ordered macroporous carrier-supported catalyst has the characteristics of high activity, good selectivity and good stability when used in water gas shift reaction.
目前已经存在的有关大孔金属氧化物的报道所公开的技术方案多是采用金属的醇盐、草酸盐、乙酸盐等有机盐作为活性组分的来源。但是,过渡金属和镧系金属的醇盐前驱体难以制备,而且成本很高,不适于制备3DOM复合金属氧化物;虽然普通金属的草酸盐和乙酸盐不存在这样的问题,但是每一种金属与酸、碱的反应活性不同,生成的草酸盐、乙酸盐等在反应介质中的溶解度不同,这将会导致焙烧之后得到的金属氧化物的化学计量比和原始的化学计量比不一致,难以得到所需要的化学组成的复合金属氧化物;目前,金属有机盐仅仅用于制备简单金属氧化物。Most of the technical solutions disclosed in existing reports on macroporous metal oxides use organic salts such as metal alkoxides, oxalates, and acetates as sources of active components. However, the alkoxide precursors of transition metals and lanthanide metals are difficult to prepare, and the cost is high, which is not suitable for the preparation of 3DOM composite metal oxides; although the oxalates and acetates of common metals do not have such problems, each The reactivity of the metals with acids and bases is different, and the solubility of the generated oxalate and acetate in the reaction medium is different, which will lead to the stoichiometric ratio of the metal oxide obtained after roasting and the original stoichiometric ratio. Inconsistent, it is difficult to obtain the required chemical composition of composite metal oxides; currently, metal organic salts are only used to prepare simple metal oxides.
鉴于金属有机盐存在上述诸多问题,目前的一些研究开始关注利用活性组分的无机盐来制备金属氧化物,硝酸盐是常见的普通盐类,如果能用硝酸盐作为原料,成本将会大大降低。但是硝酸盐的熔点很低,利用胶体晶体模板法制备金属氧化物时,在胶体晶体模板还未去除时,硝酸盐就已经发生分解,难以得到3DOM结构。通过络合的办法可以将硝酸盐转化为熔点较高的金属前驱体,该前驱体可以渗透进胶体晶体模板转化为相应的金属氧化物而不熔化,从而得到三维有序大孔结构。邬泉周等人在《硝酸盐制备三维有序大孔金属氧化物材料研究》(化学学报,2005年第63卷第10期,891-896)中报道:可以采用柠檬酸来络合硝酸盐中的金属离子,将其转化为熔点较高的络合物,通过进一步焙烧,得到三维有序大孔金属氧化物材料:Al2O3,CeO2,Cr2O3,NiO,MgO,In2O3,CeO2/Al2O3,Cr2O3/Al2O3和NiO/Al2O3。该文献公开的工艺方法是制备具有三维有序大孔结构的简单金属氧化物的技术方案,由于柠檬酸在较低温度下(大约100-300℃)容易发生自燃烧,因此,反应条件控制不当,有可能导致无法得到3DOM结构。另外,柠檬酸本身为固体,作为络合剂,在操作上不如液态络合剂方便,例如柠檬酸的水溶液要经过长时间回流,才能得到类似于胶体的溶液,然后才能用作络合剂。而且,由于柠檬酸对不同金属离子的配位能力不同,采用柠檬酸作为络合剂来制备钙钛矿型、类钙钛矿型、尖晶石型、白钨矿型、Ce基固溶体型的三维有序大孔复合金属氧化物时,所得到的复合金属氧化物的组成很难和前驱体溶液中的金属摩尔比保持一致,难以得到满足化学计量比要求的复合金属氧化物。In view of the above-mentioned problems of metal organic salts, some current researches have begun to focus on the use of inorganic salts of active components to prepare metal oxides. Nitrate is a common common salt. If nitrate can be used as a raw material, the cost will be greatly reduced. . However, the melting point of nitrate is very low. When the colloidal crystal template method is used to prepare metal oxides, the nitrate has already decomposed before the colloidal crystal template is removed, and it is difficult to obtain the 3DOM structure. The nitrate can be converted into a metal precursor with a higher melting point through complexation, which can penetrate into the colloidal crystal template and convert into the corresponding metal oxide without melting, thereby obtaining a three-dimensional ordered macroporous structure. Wu Quanzhou and others reported in "Research on Preparation of Three-Dimensional Ordered Macroporous Metal Oxide Materials from Nitrate" (Acta Chemica Sinica, Volume 63, No. 10, 2005, 891-896): Citric acid can be used to complex the nitrate Metal ions, which are converted into complexes with higher melting points, and further calcined to obtain three-dimensional ordered macroporous metal oxide materials: Al 2 O 3 , CeO 2 , Cr 2 O 3 , NiO, MgO, In 2 O 3 , CeO 2 /Al 2 O 3 , Cr 2 O 3 /Al 2 O 3 and NiO/Al 2 O 3 . The process method disclosed in this document is a technical solution for preparing simple metal oxides with three-dimensional ordered macroporous structure. Since citric acid is prone to self-combustion at relatively low temperatures (about 100-300 ° C), the reaction conditions are not properly controlled. , it may lead to failure to obtain the 3DOM structure. In addition, citric acid itself is a solid, and as a complexing agent, it is not as convenient as a liquid complexing agent in operation. For example, the aqueous solution of citric acid needs to be refluxed for a long time to obtain a colloid-like solution before it can be used as a complexing agent. Moreover, due to the different coordination abilities of citric acid to different metal ions, citric acid is used as a complexing agent to prepare perovskite-type, perovskite-like, spinel-type, scheelite-type, and Ce-based solid solution When three-dimensionally ordered macroporous composite metal oxides are used, the composition of the obtained composite metal oxides is difficult to keep consistent with the metal molar ratio in the precursor solution, and it is difficult to obtain composite metal oxides that meet the requirements of the stoichiometric ratio.
鉴于三维有序大孔结构具有上述的特点,制备开发具有三维有序大孔结构的金属氧化物,例如简单金属氧化物以及钙钛矿型、类钙钛矿型、尖晶石型、白钨矿型、Ce基固溶体型复合金属氧化物,将其用作柴油车排放碳烟颗粒物燃烧用催化剂,对于提高催化剂的活性表面利用率,降低碳烟颗粒的燃烧温度,降低柴油车尾气污染,保护环境具有重要意义。In view of the above-mentioned characteristics of the three-dimensional ordered macroporous structure, the preparation and development of metal oxides with a three-dimensional ordered macroporous structure, such as simple metal oxides and perovskite type, perovskite-like type, spinel type, scheelite Mineral type, Ce-based solid solution type composite metal oxide, which is used as a catalyst for the combustion of soot particles emitted by diesel vehicles, can improve the utilization rate of the active surface of the catalyst, reduce the combustion temperature of soot particles, reduce the exhaust pollution of diesel vehicles, and protect Environment matters.
发明内容Contents of the invention
为解决上述技术问题,本发明的目的在于提供一种碳烟颗粒物燃烧用催化剂,其是一种简单金属氧化物或者钙钛矿型、类钙钛矿型、尖晶石型、白钨矿型、Ce基固溶体型等类型的复合金属氧化物,该催化剂与碳烟颗粒的接触面积较大,活性表面积的利用率也较高。In order to solve the above technical problems, the object of the present invention is to provide a catalyst for the combustion of soot particles, which is a simple metal oxide or perovskite type, perovskite-like type, spinel type, scheelite type , Ce-based solid solution and other types of composite metal oxides, the contact area between the catalyst and the soot particles is large, and the utilization rate of the active surface area is also high.
本发明的目的还在于提供上述碳烟颗粒燃烧用催化剂的制备方法,利用胶体晶体模板法制备得到具有较高催化活性和三维有序大孔结构的简单金属氧化物或者复合金属氧化物。The purpose of the present invention is also to provide a method for preparing the above-mentioned soot particle combustion catalyst, which uses a colloidal crystal template method to prepare simple metal oxides or composite metal oxides with high catalytic activity and three-dimensional ordered macroporous structure.
为达到上述目的,本发明首先提供了一种柴油车排放碳烟颗粒物燃烧用氧化催化剂,其是一种柴油碳烟净化用三维有序大孔氧化物催化剂,是由稀土金属、过渡金属和碱性金属等中的一种以上的元素作为活性组分且具有三维有序大孔结构的简单金属氧化物或者复合金属氧化物,其中,复合金属氧化物为钙钛矿型、类钙钛矿型、尖晶石型、白钨矿型或Ce基固溶体型复合金属氧化物。In order to achieve the above object, the present invention firstly provides an oxidation catalyst for the combustion of soot particles emitted from diesel vehicles, which is a three-dimensional ordered macroporous oxide catalyst for purifying diesel soot, which is composed of rare earth metals, transition metals and alkalis. Simple metal oxides or composite metal oxides that have more than one element in the active metal and have a three-dimensional ordered macroporous structure, wherein the composite metal oxide is perovskite type, perovskite-like type , spinel type, scheelite type or Ce-based solid solution type composite metal oxide.
本发明的发明人通过研究发现,利用具有较大孔道的催化剂对柴油车碳烟颗粒进行处理时,碳烟颗粒能够进入催化剂内部,与催化剂内部孔道的活性表面接触,其燃烧温度比目前所采用的其他净化催化剂要低很多。但是,由于碳烟的粒度较大(单个碳烟粒子的直径大于25nm),要使碳烟颗粒能够顺利进入催化剂内部孔道,必须满足一定的孔径要求,即要求催化剂具有大孔结构。而根据IUPAC的定义,孔径大于50nm的孔称为大孔,所以,本发明的柴油碳烟净化用大孔金属氧化物催化剂,其内部孔道的平均孔径50nm-1μm,属于大孔金属氧化物催化剂。The inventors of the present invention have found through research that when using a catalyst with larger pores to process soot particles from diesel vehicles, the soot particles can enter the interior of the catalyst and contact the active surface of the internal pores of the catalyst, and the combustion temperature is higher than that used at present Other purification catalysts are much lower. However, due to the large particle size of soot (the diameter of a single soot particle is greater than 25nm), in order for the soot particles to enter the internal pores of the catalyst smoothly, a certain pore size requirement must be met, that is, the catalyst is required to have a macroporous structure. According to the definition of IUPAC, pores with a pore diameter greater than 50 nm are called macropores, so the macroporous metal oxide catalyst for purifying diesel soot of the present invention has an average pore diameter of 50 nm-1 μm in the internal pores, which belongs to the macroporous metal oxide catalyst. .
本发明提供的大孔金属氧化物催化剂的孔结构的孔径大,而且孔分布均匀,孔道排列整齐有序,属于三维有序大孔结构,因此,本发明提供的柴油车排放碳烟颗粒物燃烧用氧化催化剂是一种三维有序大孔金属氧化物催化剂,独特的孔道结构有利于物质从各个方向进入孔内,降低了碳烟颗粒的扩散阻力,为碳烟颗粒的扩散提供了最佳流速及更高的效率。The pore structure of the macroporous metal oxide catalyst provided by the invention has a large pore size, and the pore distribution is uniform, and the pores are arranged in an orderly manner, belonging to a three-dimensional ordered macropore structure. The oxidation catalyst is a three-dimensional ordered macroporous metal oxide catalyst. The unique pore structure facilitates the entry of substances into the pores from all directions, reduces the diffusion resistance of soot particles, and provides the best flow rate and higher efficiency.
本发明提供的柴油车排放碳烟颗粒物燃烧用氧化催化剂可以是简单金属氧化物、钙钛矿型、类钙钛矿型、尖晶石型、白钨矿型或者Ce基固溶体型复合金属氧化物。简单金属氧化物的化学组成可以表示为MaOb,式中,M为金属元素中的任意一种,例如:Li,Na,K,Mg,Al,Ti,V,Cr,Mn,Fe,Co,Ni,Cu,Zn,Zr,Nb,Mo,Pb,Ce,Pr,Nd,Sm,Eu等;复合金属氧化物的化学组成可以表示为Ln1-xAxM1-yByO3、Ln2-zAzM1-yByO4、Ln1-xAxM2-wBwO4、Ln1-xAxM1-yByO4、Ce1-mZrmO2或Ce1-m-nZrmPrnO2,式中,Ln为稀土金属,A为碱性金属,包括碱金属或碱土金属,M为过渡金属,B为不同于M的过渡金属,且x=0-0.95,y=0-0.95,z=0-1.95,w=0-1.95,m=0-0.99,n=0-0.99;其中,稀土金属包括La、Ce、Pr、Nd和Sm等中的一种或几种;过渡金属包括Fe、Co、Mn、Ni、Cu和Cr等中的一种或几种;碱性金属包括碱金属和/或碱土金属,包括Li、Na、K、Rb、Cs、Mg、Ca、Sr和Ba等中的一种或几种。The oxidation catalyst for the combustion of diesel vehicle exhaust soot particles can be a simple metal oxide, perovskite type, perovskite-like type, spinel type, scheelite type or Ce-based solid solution type composite metal oxide . The chemical composition of simple metal oxides can be expressed as M a O b , where M is any one of the metal elements, such as: Li, Na, K, Mg, Al, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Zr, Nb, Mo, Pb, Ce, Pr, Nd, Sm, Eu, etc.; the chemical composition of composite metal oxides can be expressed as Ln 1-x A x M 1-y By O 3. Ln 2-z A z M 1-y By O 4 , Ln 1-x A x M 2-w B w O 4 , Ln 1-x A x M 1-y By O 4 , Ce 1- m Zr m O 2 or Ce 1-mn Zr m Pr n O 2 , where Ln is a rare earth metal, A is an alkali metal, including alkali metal or alkaline earth metal, M is a transition metal, and B is a transition metal different from M metal, and x=0-0.95, y=0-0.95, z=0-1.95, w=0-1.95, m=0-0.99, n=0-0.99; wherein, rare earth metals include La, Ce, Pr, One or more of Nd and Sm, etc.; transition metals include one or more of Fe, Co, Mn, Ni, Cu and Cr, etc.; alkaline metals include alkali metals and/or alkaline earth metals, including Li, One or more of Na, K, Rb, Cs, Mg, Ca, Sr and Ba, etc.
根据本发明的具体技术方案,本发明提供的上述氧化催化剂可以是将含有其活性组分的盐的有机络合剂溶液作为浸渍液对胶体晶体模板进行浸渍,然后经过焙烧得到的。According to the specific technical solution of the present invention, the above oxidation catalyst provided by the present invention can be obtained by impregnating the colloidal crystal template with the organic complexing agent solution containing the salt of its active component as the impregnating liquid, and then roasting.
本发明还提供了上述氧化催化剂的制备方法,其包括以下步骤:The present invention also provides the preparation method of above-mentioned oxidation catalyst, it comprises the following steps:
将含有活性组分的盐按照预定的化学计量比混合溶于有机络合剂中,并加入助溶剂,得到催化剂前驱体溶液;Mix and dissolve the salt containing the active component in the organic complexing agent according to a predetermined stoichiometric ratio, and add a co-solvent to obtain a catalyst precursor solution;
利用所得到的催化剂前驱体溶液作为浸渍液,加入胶体晶体模板反复进行浸渍、干燥,然后在空气气氛中升温至目标温度450℃-1000℃,保温4-10h。Using the obtained catalyst precursor solution as an impregnating liquid, add a colloidal crystal template to impregnate and dry repeatedly, then raise the temperature to a target temperature of 450°C-1000°C in an air atmosphere, and keep it warm for 4-10h.
根据本发明的具体技术方案,含有活性组分的盐、有机络合剂和助溶剂的催化剂前驱体溶液中,金属离子的总浓度可以控制为0.05-3mol/L。According to the specific technical solution of the present invention, in the catalyst precursor solution containing the salt of the active component, the organic complexing agent and the co-solvent, the total concentration of metal ions can be controlled to be 0.05-3mol/L.
根据本发明的具体技术方案,空气气氛中的空气流速可以控制为30-300mL/min,所采用的升温可以是以2℃/min以下的升温速率程序升温至目标温度450℃-1000℃。According to the specific technical solution of the present invention, the air flow rate in the air atmosphere can be controlled to 30-300mL/min, and the temperature increase can be programmed to a target temperature of 450°C-1000°C at a rate below 2°C/min.
为了保证得到的金属氧化物催化剂的性能,本发明提供的制备方法中所采用的活性组分的盐可以是能够提供活性组分的无机盐,优选采用硝酸盐。本发明通过络合的方法,利用有机络合剂将硝酸盐转化为熔点较高的金属前驱体,该前驱体可以渗透进胶体晶体模板转化为相应的金属氧化物而不熔化,从而得到三维有序大孔结构。采取本发明提供的技术方案,可以避免出现由于硝酸盐的熔点低导致含有活性组分的硝酸盐在胶体晶体模板未去除时发生分解,无法得到3DOM结构的金属氧化物的问题。In order to ensure the performance of the obtained metal oxide catalyst, the salt of the active component used in the preparation method provided by the present invention may be an inorganic salt capable of providing the active component, preferably a nitrate. The present invention uses an organic complexing agent to convert nitrate into a metal precursor with a higher melting point through a complexing method, and the precursor can penetrate into a colloidal crystal template and convert into a corresponding metal oxide without melting, thereby obtaining a three-dimensional organic ordered macroporous structure. Adopting the technical solution provided by the invention can avoid the problem that the nitrate containing the active component decomposes when the colloidal crystal template is not removed due to the low melting point of the nitrate, and the problem that the metal oxide with a 3DOM structure cannot be obtained.
适用于本发明的有机络合剂为液态二元醇或多元醇,例如乙二醇、丙三醇等。当采用乙二醇为有机络合剂时,金属硝酸盐的乙二醇溶液能够在较低的温度下,在模板被烧掉之前发生原位硝酸盐氧化,生成相应的金属乙醛酸盐,通过进一步的焙烧可以将乙醛酸盐转化为相应的金属氧化物,并将聚合物模板去除,从而得到3DOM金属氧化物材料。Organic complexing agents suitable for use in the present invention are liquid dihydric alcohols or polyhydric alcohols, such as ethylene glycol, glycerol, and the like. When ethylene glycol is used as the organic complexing agent, the ethylene glycol solution of the metal nitrate can oxidize the nitrate in situ at a lower temperature before the template is burned to generate the corresponding metal glyoxylate, The glyoxylate can be converted to the corresponding metal oxide by further calcination, and the polymer template can be removed to obtain the 3DOM metal oxide material.
为了稀释含有活性组分的盐和有机络合剂的混合溶液,降低其粘度,可以向混合溶液中加入一定量的助溶剂,这样有利于前驱体溶液在毛细管力的作用下渗入模板,进一步转化为固体骨架。适用于本发明的助溶剂可以是本领域常用的助溶剂,例如甲醇、乙醇等。In order to dilute the mixed solution containing the salt of the active component and the organic complexing agent and reduce its viscosity, a certain amount of co-solvent can be added to the mixed solution, which is conducive to the penetration of the precursor solution into the template under the action of capillary force, and further transformation is a solid skeleton. The co-solvents suitable for the present invention can be commonly used co-solvents in this field, such as methanol, ethanol and the like.
本发明所采用的胶体晶体模板可以是聚甲基丙烯酸甲酯(PMMA)模板、聚苯乙烯(PS)模板、苯乙烯和甲基丙烯酸甲酯的共聚物模板(P(S-MMA))或表面带有羧基官能团的PS、PMMA模板等,既可以是商购的成品,也可以自行制备。其中,聚甲基丙烯酸甲酯模板或者聚苯乙烯模板等的制备可以采用包括以下步骤的方法进行:The colloidal crystal template that the present invention adopts can be polymethyl methacrylate (PMMA) template, polystyrene (PS) template, the copolymer template (P(S-MMA)) of styrene and methyl methacrylate) or PS and PMMA templates with carboxyl functional groups on the surface can be either commercially purchased or self-prepared. Wherein, the preparation of polymethyl methacrylate template or polystyrene template etc. can adopt the method that comprises the following steps to carry out:
1、采用无皂乳液聚合法制备单分散聚合物微球1. Preparation of monodisperse polymer microspheres by soap-free emulsion polymerization
在氮气保护下,将丙酮和二次蒸馏水混合,并以水浴预热至60-90℃,加入单体甲基丙烯酸甲酯或苯乙烯,继续以水浴加热至60-90℃;Under nitrogen protection, mix acetone and double-distilled water, and preheat to 60-90°C with a water bath, add monomer methyl methacrylate or styrene, and continue heating to 60-90°C with a water bath;
在氮气保护下,加入60-90℃的引发剂水溶液,其中,该引发剂可以包括过硫酸钾和偶氮二异丁腈等在制备胶体晶体模板时常用的引发剂,持续搅拌2-30h,得到单分散聚甲基丙烯酸甲酯或聚苯乙烯微球乳液;优选地,应使得到的微球的表面比较光滑,粒径比较均一,采用这种微球可以使最终获得的金属氧化物具有较好的形态和结构;Under the protection of nitrogen, add an aqueous initiator solution at 60-90°C, wherein the initiator can include potassium persulfate and azobisisobutyronitrile and other commonly used initiators in the preparation of colloidal crystal templates, and continue stirring for 2-30h, Obtain monodisperse polymethyl methacrylate or polystyrene microsphere emulsion; Preferably, the surface of the obtained microsphere should be relatively smooth, and the particle size is relatively uniform. Adopting this microsphere can make the metal oxide finally obtained have better shape and structure;
2、采用离心沉积法或蒸发沉积法制备胶体晶体模板2. Preparation of colloidal crystal templates by centrifugal deposition method or evaporation deposition method
将微球乳液置于离心管中,以1000-10000rpm,优选1000-5000rpm,的转速离心处理1-30h,优选的处理时间为10-20h,得到紧密堆积的胶体晶体模板,或者将微球乳液置于平底容器内,以40-80℃的温度在干燥箱中缓慢蒸发,微球沉积得到胶体晶体模板。The microsphere emulsion is placed in a centrifuge tube, and centrifuged at a speed of 1000-10000rpm, preferably 1000-5000rpm, for 1-30h, and the preferred processing time is 10-20h to obtain a tightly packed colloidal crystal template, or the microsphere emulsion Place in a flat-bottomed container, slowly evaporate in a drying oven at a temperature of 40-80°C, and deposit microspheres to obtain a colloidal crystal template.
根据本发明的具体实施方案,可以采用包括以下具体参数和具体步骤的制备方法制备得到聚甲基丙烯酸甲酯模板或者聚苯乙烯模板:According to a specific embodiment of the present invention, a polymethyl methacrylate template or a polystyrene template can be prepared using a preparation method including the following specific parameters and specific steps:
将30-100ml丙酮和50-300ml二次蒸馏水混合得到混合液,水浴加热至60-90℃,然后加入30-120ml单体甲基丙烯酸甲酯或苯乙烯,水浴加热至60-90℃;Mix 30-100ml of acetone and 50-300ml of twice distilled water to obtain a mixed solution, heat in a water bath to 60-90°C, then add 30-120ml of monomeric methyl methacrylate or styrene, and heat in a water bath to 60-90°C;
加入引发剂过硫酸钾0.001g-0.500g和偶氮二异丁腈0.001g-0.500g的60-90℃水溶液,持续搅拌2-30h,得到单分散聚甲基丙烯酸甲酯或聚苯乙烯微球乳液,整个反应过程在氮气保护下进行,所得单分散微球的粒径可以通过对单体用量、引发剂用量、搅拌速度、反应温度以及反应时间的控制进行调节,所得微球的粒径介于100nm-1μm;Add initiator potassium persulfate 0.001g-0.500g and azobisisobutyronitrile 0.001g-0.500g 60-90°C aqueous solution, and keep stirring for 2-30h to obtain monodisperse polymethyl methacrylate or polystyrene micro For spherical emulsion, the whole reaction process is carried out under the protection of nitrogen. The particle size of the obtained monodisperse microspheres can be adjusted by controlling the amount of the monomer, the amount of the initiator, the stirring speed, the reaction temperature and the reaction time. The particle size of the obtained microspheres Between 100nm-1μm;
将微球乳液置于离心管中,以1000rpm-5000rpm的转速离心处理10-20h,得到紧密堆积的胶体晶体模板,或者将微球乳液置于平底容器内,以40-80℃的温度在干燥箱中缓慢蒸发,微球沉积得到胶体晶体模板。Place the microsphere emulsion in a centrifuge tube and centrifuge at a speed of 1000rpm-5000rpm for 10-20h to obtain a tightly packed colloidal crystal template, or place the microsphere emulsion in a flat-bottomed container and dry it at a temperature of 40-80°C Slowly evaporated in the box, the microspheres were deposited to obtain a colloidal crystal template.
本发明还提供了一种净化柴油车排放碳烟颗粒物的方法,其包括采用上述的氧化催化剂催化柴油车排放的碳烟颗粒物的燃烧进行净化的过程。The present invention also provides a method for purifying soot particles emitted by diesel vehicles, which includes the process of using the above-mentioned oxidation catalyst to catalyze the combustion of soot particles emitted by diesel vehicles for purification.
本发明提供的柴油车排放碳烟颗粒物燃烧用氧化催化剂是具有三维有序大孔结构的简单金属氧化物、钙钛矿型、类钙钛矿型、尖晶石型、白钨矿型或Ce基固溶体型复合金属氧化物,其内部的规则有序的孔道和大的孔径足以使碳烟颗粒物在其孔道内顺利扩散,使碳烟颗粒物不仅能与催化剂的活性外表面接触,而且还可以使碳烟颗粒从各个方向扩散到孔道内,充分与催化剂的活性内表面尤其是活性中心接触,使碳烟颗粒物催化剂活性表面的利用率大大提高,使碳烟颗粒物的燃烧温度大幅度降低,在柴油车尾气排放的温度范围内,碳颗粒基本能够完全燃烧。The oxidation catalyst for the combustion of diesel vehicle exhaust soot particles is a simple metal oxide, perovskite type, perovskite-like type, spinel type, scheelite type or Ce with a three-dimensional ordered macroporous structure. Based solid solution type composite metal oxide, its internal regular and orderly pores and large pore size are enough to make the soot particles diffuse smoothly in the pores, so that the soot particles can not only contact the active outer surface of the catalyst, but also make the The soot particles diffuse into the pores from all directions, and fully contact with the active inner surface of the catalyst, especially the active center, so that the utilization rate of the active surface of the soot particle catalyst is greatly improved, and the combustion temperature of the soot particles is greatly reduced. Within the temperature range of vehicle exhaust emissions, carbon particles can basically be completely burned.
本发明采用胶体晶体模板法制备的具有三维有序大孔结构的简单氧化物和复合金属氧化物(钙钛矿型、类钙钛矿型、尖晶石型、白钨矿型或Ce基固溶体型等),其制备过程简单易行,反应过程容易控制。Simple oxides and composite metal oxides (perovskite type, perovskite-like type, spinel type, scheelite type or Ce-based solid solution) prepared by colloidal crystal template method with three-dimensional ordered macroporous structure type, etc.), its preparation process is simple and easy, and the reaction process is easy to control.
三维有序大孔氧化物催化剂,其平均孔径介于50nm-1μm,孔道排列整齐有序,碳烟颗粒物可以从各个方向扩散到孔道内,充分与催化剂的活性中心接触,故催化剂活性表面积的利用率大大提高,从而能够使碳烟颗粒物的燃烧温度大幅度降低,能将碳烟颗粒物燃烧为CO2的温度降低到柴油车尾气的排气温度范围内。通过对催化剂的活性进行比较可以得知,本发明制备的三维有序大孔氧化物催化剂比相应的常规催化剂、纳米颗粒催化剂和无序大孔催化剂具有更好的催化活性。Three-dimensional ordered macroporous oxide catalyst, its average pore size is between 50nm-1μm, the pores are arranged in an orderly manner, soot particles can diffuse into the pores from all directions, and fully contact with the active center of the catalyst, so the active surface area of the catalyst is utilized The efficiency is greatly improved, so that the combustion temperature of soot particles can be greatly reduced, and the temperature at which soot particles are burned into CO 2 can be reduced to within the exhaust temperature range of diesel vehicle exhaust. By comparing the activities of the catalysts, it can be known that the three-dimensional ordered macroporous oxide catalyst prepared by the present invention has better catalytic activity than corresponding conventional catalysts, nano particle catalysts and disordered macroporous catalysts.
附图说明Description of drawings
图1a和图1b为实施例1制备的3DOM CeO2的扫描电镜照片;Fig. 1a and Fig. 1b are the 3DOM CeO that embodiment 1 prepares 2Scanning electron micrographs;
图1c为实施例2制备的3DOM LaFeO3的扫描电镜照片;Fig. 1c is the scanning electron micrograph of the 3DOM LaFeO that embodiment 2 prepares;
图1d为实施例3制备的3DOM La0.9K0.1FeO3的扫描电镜照片;Figure 1d is a scanning electron micrograph of 3DOM La 0.9 K 0.1 FeO prepared in Example 3 ;
图1e为实施例4制备的3DOM LaFe0.7Co0.3O3的扫描电镜照片;Figure 1e is a scanning electron micrograph of 3DOM LaFe 0.7 Co 0.3 O prepared in Example 4;
图1f为实施例5制备的3DOM ZrO2的扫描电镜照片;Fig. 1 f is the 3DOM ZrO that embodiment 5 prepares Scanning electron micrograph;
图1g为实施例6制备的3DOMAl2O3的扫描电镜照片;Fig. 1g is the scanning electron micrograph of the 3DOMAl2O3 that embodiment 6 prepares;
图2a为对比例1制备的无序大孔CeO2的扫描电镜照片;Fig. 2a is the disordered macroporous CeO that comparative example 1 prepares Scanning electron micrograph;
图2b为对比例2制备的无序大孔LaFeO3的扫描电镜照片;Figure 2b is a scanning electron micrograph of the disordered macroporous LaFeO prepared in Comparative Example 2 ;
图2c为对比例3制备的无序大孔La0.9K0.1FeO3的扫描电镜照片;Figure 2c is a scanning electron micrograph of the disordered macroporous La 0.9 K 0.1 FeO prepared in Comparative Example 3;
图3为实施例1-3,7制备的3DOM CeO2、3DOM LaFeO3、3DOMLa0.9K0.1FeO3和Ce0.75Zr0.25O2的X射线衍射图谱;Fig. 3 is the X-ray diffraction pattern of 3DOM CeO 2 , 3DOM LaFeO 3 , 3DOMLa 0.9 K 0.1 FeO 3 and Ce 0.75 Zr 0.25 O 2 prepared in Examples 1-3, 7;
图4为实施例1-3制备的3DOM CeO2、3DOM LaFeO3和3DOMLa0.9K0.1FeO3催化氧化碳烟颗粒物生成CO2的浓度与温度的关系曲线图。Fig. 4 is a graph showing the relationship between the concentration and temperature of CO 2 generated from 3DOM CeO 2 , 3DOM LaFeO 3 and 3DOMLa 0.9 K 0.1 FeO 3 catalyzed oxidation of soot particles prepared in Examples 1-3.
具体实施方式Detailed ways
以下通过具体实施例介绍本发明的实现和所具有的有益效果,但不应据此对本发明的实施范围构成任何限定。The implementation and beneficial effects of the present invention are described below through specific examples, but the implementation scope of the present invention should not be construed in any way.
催化剂活性的评价方法:Catalyst activity evaluation method:
使用固定床微型反应器-气相色谱检测系统;Use fixed bed microreactor-gas chromatography detection system;
具体参数:催化剂样品100mg,催化剂与碳烟颗粒物的质量比为10∶1;Specific parameters: catalyst sample 100mg, the mass ratio of catalyst to soot particles is 10:1;
具体步骤:利用超声辅助的方法,即将称量好的催化剂和碳烟颗粒物置于小烧杯中,用药匙搅拌均匀,再向其中加入3ml乙醇,超声3-10min使碳烟颗粒物进入催化剂样品的孔道内,其中,控制气体流量为50ml/min,气体中NO的体积含量为2000ppm,O2的体积含量为5%,余量为He;Specific steps: use the ultrasound-assisted method, that is, place the weighed catalyst and soot particles in a small beaker, stir evenly with a medicine spoon, then add 3ml of ethanol to it, and ultrasonically 3-10min to make the soot particles enter the pores of the catalyst sample In the channel, wherein the control gas flow rate is 50ml/min, the volume content of NO in the gas is 2000ppm, the volume content of O2 is 5%, and the balance is He;
当碳烟颗粒进入催化剂样品孔道内之后,进行加热,其中,升温速率控制为2℃/min左右。After the soot particles enter the pores of the catalyst sample, they are heated, wherein the heating rate is controlled to be about 2° C./min.
评价方式:催化剂的氧化能力强弱采用碳烟颗粒物的燃烧温度来表示,其中,碳烟颗粒物的起燃温度(T10)、燃烧速率最大时对应的温度(T50)和燃尽温度(T90),分别表示碳烟燃烧完成10%、50%和90%时对应的温度点,其计算方法是通过对程序升温氧化反应中碳黑燃烧产生的CO2与CO的曲线进行积分,CO2与CO积分面积之和的10%、50%、90%的数值所对应的温度点即为T10、T50和T90。Evaluation method: The oxidation ability of the catalyst is expressed by the combustion temperature of soot particles, among which, the ignition temperature (T 10 ), the temperature corresponding to the maximum combustion rate (T 50 ) and the burnout temperature (T 90 ), which represent the corresponding temperature points when 10%, 50% and 90% of soot combustion is completed, and the calculation method is to integrate the curve of CO 2 and CO produced by carbon black combustion in the temperature-programmed oxidation reaction, CO 2 The temperature points corresponding to the values of 10%, 50%, and 90% of the sum of CO integral areas are T 10 , T 50 , and T 90 .
催化剂的孔径根据SEM照片来确定。The pore size of the catalyst was determined from SEM photographs.
胶体晶体模板制备方法:Colloidal crystal template preparation method:
1)采用无皂乳液聚合法制备单分散聚合物微球1) Preparation of monodisperse polymer microspheres by soap-free emulsion polymerization
将50ml丙酮和150ml二次蒸馏水,加入到1000ml四颈烧瓶中,以70℃水浴预热至70℃,将70ml单体甲基丙烯酸甲酯(或苯乙烯)加入到预热好的四颈烧瓶中;在预热反应物的同时,称取引发剂过硫酸钾K2S2O80.090g和偶氮二异丁腈(AIBN)0.1538g,用150ml水溶解,水浴加热到70℃;待反应单体预热至70℃时,加入70℃的引发剂水溶液,持续搅拌反应2-10h,即得固含量为5-10%的单分散聚甲基丙烯酸甲酯(或聚苯乙烯)微球乳液;Add 50ml of acetone and 150ml of double-distilled water into a 1000ml four-necked flask, preheat it to 70°C in a 70°C water bath, and add 70ml of monomeric methyl methacrylate (or styrene) into the preheated four-necked flask medium; while preheating the reactants, weigh 0.090g of initiator potassium persulfate K 2 S 2 O 8 and 0.1538g of azobisisobutyronitrile (AIBN), dissolve them in 150ml of water, and heat them in a water bath to 70°C; When the reaction monomer is preheated to 70°C, add an aqueous initiator solution at 70°C, and continue stirring for 2-10 hours to obtain a monodisperse polymethyl methacrylate (or polystyrene) with a solid content of 5-10%. ball emulsion;
2)采用离心沉积法或蒸发沉积法制备胶体晶体模板2) Preparation of colloidal crystal templates by centrifugal deposition or evaporation deposition
将适量的微球乳液置于离心管中,以1000-5000rpm的转速离心处理10-20h,得到紧密堆积的胶体晶体模板;Place an appropriate amount of microsphere emulsion in a centrifuge tube and centrifuge at a speed of 1000-5000rpm for 10-20h to obtain a tightly packed colloidal crystal template;
或者将适量微球乳液置于平底容器(例如烧杯)内,以40-80℃的温度在干燥箱中缓慢蒸发,微球沉积得到胶体晶体模板。Alternatively, put an appropriate amount of microsphere emulsion in a flat-bottomed container (such as a beaker), slowly evaporate in a drying oven at a temperature of 40-80° C., and deposit the microspheres to obtain a colloidal crystal template.
实施例13DOM CeO2简单金属氧化物Embodiment 13DOM CeO 2 simple metal oxides
取少量粒径为446nm的聚甲基丙烯酸甲酯微球乳液,以3000rpm的转速离心处理10h,得到PMMA胶体晶体模板,自然干燥;Take a small amount of polymethyl methacrylate microsphere emulsion with a particle size of 446nm, centrifuge at a speed of 3000rpm for 10h to obtain a PMMA colloidal crystal template, and dry naturally;
称取一定量的硝酸铈,溶于乙二醇中,将所得溶液转移到容量瓶中,用甲醇定容(甲醇体积分数为5-50%),所配溶液中金属离子浓度为2.0mol/L,得到3DOM CeO2的前驱体溶液;Weigh a certain amount of cerium nitrate, dissolve it in ethylene glycol, transfer the resulting solution to a volumetric flask, and constant volume with methanol (methanol volume fraction is 5-50%), the concentration of metal ions in the prepared solution is 2.0mol/ L, to obtain the precursor solution of 3DOM CeO2 ;
向干燥好的PMMA胶体晶体模板滴加3DOM CeO2的前驱体溶液,直到溶液浸没PMMA模板,待浸渍完全后,抽滤除去多余溶液,得到前驱体/PMMA的复合物,自然干燥,然后置于管式炉中以≤2℃/min的升温速率将温度升至500℃,焙烧(保温)5h,得到3DOM CeO2。Add the precursor solution of 3DOM CeO2 dropwise to the dried PMMA colloidal crystal template until the solution is immersed in the PMMA template. Raise the temperature to 500° C. at a heating rate of ≤2° C./min in a tube furnace, and roast (keep heat) for 5 hours to obtain 3DOM CeO 2 .
图1a和图1b为本实施例制备的3DOM CeO2的不同放大倍数扫描电镜(SEM)照片。由图中3DOM CeO2的整体形貌可以看出,3DOM CeO2具有三维有序大孔结构,平均孔径约为248nm;本实施例制备的3DOM CeO2的X射线衍射图谱如图3所示,其衍射峰均为纯CeO2的萤石型立方结构的特征衍射峰,该结果表明本实施例制备的催化剂的成分为CeO2。Figure 1a and Figure 1b are scanning electron microscope (SEM) photos of different magnifications of 3DOM CeO 2 prepared in this example. It can be seen from the overall morphology of 3DOM CeO 2 in the figure that 3DOM CeO 2 has a three-dimensional ordered macroporous structure with an average pore diameter of about 248nm; the X-ray diffraction pattern of 3DOM CeO 2 prepared in this example is shown in Figure 3, The diffraction peaks are all characteristic diffraction peaks of the fluorite cubic structure of pure CeO 2 , which indicates that the composition of the catalyst prepared in this example is CeO 2 .
对比例1无序大孔CeO2 Comparative Example 1 Disordered macroporous CeO 2
取少量实施例1中得到的3DOM CeO2的前驱体溶液,置于马弗炉中,以≤2℃/min的升温速率将温度升至500℃,焙烧5h,得到具有无序蜂窝状大孔结构的CeO2,即无序大孔CeO2,其表面形貌如图2a所示。Take a small amount of the 3DOM CeO2 precursor solution obtained in Example 1, put it in a muffle furnace, raise the temperature to 500°C at a heating rate of ≤2°C/min, and bake it for 5h to obtain a disordered honeycomb macropore Structured CeO 2 , that is, disordered macroporous CeO 2 , its surface morphology is shown in Figure 2a.
活性评价1Activity Evaluation 1
根据上述的催化剂活性的评价方法对实施例1制备的3DOM CeO2、对比例1制备的无序大孔CeO2以及非大孔CeO2进行评价,3DOM CeO2的活性评价结果如图4所示(其中,纵坐标为CO2浓度,纵坐标为温度),上述三种催化剂的活性评价数据见表1。The 3DOM CeO2 prepared in Example 1 , the disordered macroporous CeO2 prepared in Comparative Example 1 and the non-macroporous CeO2 were evaluated according to the above-mentioned catalyst activity evaluation method, and the activity evaluation results of 3DOM CeO2 are shown in Figure 4 (Wherein, the ordinate is CO concentration , and the ordinate is temperature), and the activity evaluation data of the above three catalysts are shown in Table 1.
超声辅助碳烟颗粒物进入3DOM CeO2和无序大孔CeO2的孔道内,在此条件下,3DOM CeO2使碳烟颗粒燃烧的起燃温度低于294℃,峰值温度(T50)为386℃,燃尽温度低于412℃,与无序大孔CeO2相比,其起燃温度(T10)、燃烧速率最大时对应的温度(T50)和燃尽温度(T90)都较低,其中T10低70℃,T50低67℃。Ultrasound assists soot particles to enter the pores of 3DOM CeO 2 and disordered macroporous CeO 2 . Under these conditions, 3DOM CeO 2 makes the ignition temperature of soot particles lower than 294°C, and the peak temperature (T 50 ) is 386 ℃, and the burnout temperature is lower than 412°C. Compared with disordered macroporous CeO 2 , its light-off temperature (T 10 ), temperature corresponding to the maximum burning rate (T 50 ) and burnout temperature (T 90 ) are all lower. Low, where T 10 is 70°C lower and T 50 is 67°C lower.
比较非大孔CeO2、无序大孔CeO2和3DOM CeO2对于碳烟的燃烧的催化活性,其催化活性顺序为:3DOM CeO2>无序大孔CeO2>非大孔CeO2。Comparing the catalytic activity of non-macroporous CeO 2 , disordered macroporous CeO 2 and 3DOM CeO 2 for the combustion of soot, the order of catalytic activity is: 3DOM CeO 2 >disordered macroporous CeO 2 >non-macroporous CeO 2 .
表1:Table 1:
实施例23DOM LaFeO3复合金属氧化物Embodiment 23DOM LaFeO 3 composite metal oxides
取少量粒径为367nm的聚苯乙烯微球乳液,以3000rpm的转速离心处理20h,得到PS胶体晶体模板,自然干燥;Take a small amount of polystyrene microsphere emulsion with a particle size of 367nm, centrifuge at a speed of 3000rpm for 20h to obtain a PS colloidal crystal template, and dry naturally;
按化学计量比(摩尔比1∶1)称取硝酸镧、硝酸铁,向其中加入乙二醇,磁力搅拌2h,将得到的溶液转移到容量瓶中,用甲醇定容(甲醇的体积分数为30%),所配溶液中金属离子浓度为1.5mol/L,得到3DOM LaFeO3的前驱体溶液,此溶液即为3DOM LaFeO3复合金属氧化物催化剂的前驱体溶液;Weigh lanthanum nitrate and ferric nitrate according to the stoichiometric ratio (molar ratio 1:1), add ethylene glycol therein, magnetically stir for 2 h, transfer the resulting solution to a volumetric flask, and dilute to volume with methanol (the volume fraction of methanol is 30%), the concentration of metal ions in the solution is 1.5mol/L, to obtain the precursor solution of 3DOM LaFeO3 , this solution is the precursor solution of 3DOM LaFeO3 composite metal oxide catalyst;
将3DOM LaFeO3的前驱体溶液滴加到干燥的PS胶体晶体模板中,直到溶液浸没PS模板,待浸渍完全后,抽滤除去多余溶液,得到前驱体/PS的复合物,自然干燥,然后置于管式炉中以<2℃/min的升温速率将温度升至600℃,焙烧5h,得到3DOM LaFeO3。Add the precursor solution of 3DOM LaFeO 3 dropwise to the dry PS colloidal crystal template until the solution is immersed in the PS template. In a tube furnace, the temperature was raised to 600°C at a heating rate of <2°C/min, and calcined for 5 hours to obtain 3DOM LaFeO 3 .
图1c为本实施例制备的3DOM LaFeO3的扫描电镜照片。由图中可以看出,本实施例中使用PS胶体晶体为模板制备的3DOM LaFeO3具有规整的三维有序大孔结构,平均孔径约为320nm;本实施例制备的3DOM LaFeO3的X射线衍射图谱如图3所示,其结果表明本实施例制备的3DOM LaFeO3具有钙钛矿结构。Figure 1c is a scanning electron micrograph of 3DOM LaFeO 3 prepared in this example. It can be seen from the figure that the 3DOM LaFeO 3 prepared using PS colloidal crystals as a template in this example has a regular three-dimensional ordered macroporous structure with an average pore diameter of about 320 nm; the X-ray diffraction of the 3DOM LaFeO 3 prepared in this example The spectrum is shown in Figure 3, and the results show that the 3DOM LaFeO 3 prepared in this example has a perovskite structure.
对比例2无序大孔LaFeO3 Comparative Example 2 Disordered macroporous LaFeO 3
取少量的3DOM LaFeO3的前驱体溶液置于坩埚内,于马弗炉中以≤2℃/min的升温速率将温度升至600℃,焙烧5h,得到具有无序蜂窝状大孔结构的LaFeO3,即无序大孔LaFeO3;Take a small amount of 3DOM LaFeO 3 precursor solution and place it in a crucible, raise the temperature to 600°C in a muffle furnace at a heating rate of ≤2°C/min, and bake it for 5 hours to obtain LaFeO with a disordered honeycomb macroporous structure 3 , that is, disordered macroporous LaFeO 3 ;
图2b为本对比例制备的无序大孔LaFeO3的扫描电镜照片,由图中可以看出,本对比例将前驱体溶液直接在马弗炉中焙烧得到的LaFeO3呈蜂窝状大孔结构,平均孔径大于50nm。Figure 2b is a scanning electron micrograph of the disordered macroporous LaFeO3 prepared in this comparative example. It can be seen from the figure that the LaFeO3 obtained by directly roasting the precursor solution in a muffle furnace in this comparative example has a honeycomb macroporous structure , the average pore size is greater than 50nm.
活性评价2
根据上述的催化剂活性的评价方法对实施例2制备的3DOM LaFeO3、对比例2制备的无序大孔LaFeO3以及非大孔LaFeO3进行评价,3DOMLaFeO3的活性评价结果如图4所示(横坐标为温度,纵坐标为CO2浓度),上述三种催化剂的活性评价数据见表2;According to the evaluation method of above-mentioned catalyst activity, the 3DOM LaFeO3 prepared by Example 2, the disordered macroporous LaFeO3 prepared by Comparative Example 2 and the non-macroporous LaFeO3 are evaluated, and the activity evaluation results of 3DOMLaFeO3 are as shown in Figure 4 ( Abscissa is temperature, and ordinate is CO Concentration), the activity evaluation data of above-mentioned three kinds of catalysts are shown in Table 2;
在超声辅助下,碳烟颗粒物进入3DOM LaFeO3和无序大孔LaFeO3的孔道内,碳烟颗粒物的燃烧温度降低。With the assistance of ultrasound, soot particles enter the pores of 3DOM LaFeO 3 and disordered macropore LaFeO 3 , and the combustion temperature of soot particles decreases.
对比3DOM LaFeO3、无序大孔LaFeO3和非大孔LaFeO3三种不同形貌的催化剂的催化活性数据可以得知3DOM LaFeO3对应的碳烟颗粒的燃烧温度最低,对碳烟的燃烧的催化活性最高。Comparing the catalytic activity data of 3DOM LaFeO 3 , disordered macroporous LaFeO 3 and non-macroporous LaFeO 3 catalysts with three different morphologies, it can be known that the combustion temperature of soot particles corresponding to 3DOM LaFeO 3 is the lowest, and the effect on the combustion of soot is the lowest. Highest catalytic activity.
表2:Table 2:
实施例33DOMLa0.9K0.1FeO3复合金属氧化物Embodiment 33DOMLa 0.9 K 0.1 FeO 3 composite metal oxides
取少量粒径为487nm的聚甲基丙烯酸甲酯微球乳液,以2000rpm的转速离心处理15h,弃去上层清液,得到PMMA胶体晶体模板,自然干燥;Take a small amount of polymethyl methacrylate microsphere emulsion with a particle size of 487nm, centrifuge at a speed of 2000rpm for 15h, discard the supernatant to obtain a PMMA colloidal crystal template, and dry naturally;
按化学计量比(摩尔比9∶1∶10)称取硝酸镧、硝酸钾和硝酸铁,向其中加入乙二醇,磁力搅拌2h,将所得溶液转移到容量瓶中,用甲醇定容(甲醇体积分数为40%),所配溶液中金属离子浓度为2.0mol/L,得到3DOMLa0.9K0.1FeO3的前驱体溶液,此溶液即为3DOM La0.9K0.1FeO3复合金属氧化物催化剂的前驱体溶液;Weigh lanthanum nitrate, potassium nitrate and ferric nitrate according to the stoichiometric ratio (9:1:10 in molar ratio), add ethylene glycol therein, stir magnetically for 2 hours, transfer the resulting solution to a volumetric flask, and dilute to volume with methanol (methanol volume fraction is 40%), the metal ion concentration in the prepared solution is 2.0mol/L, and the precursor solution of 3DOMLa 0.9 K 0.1 FeO is obtained, and this solution is the precursor of 3DOM La 0.9 K 0.1 FeO composite metal oxide catalyst body solution;
向干燥好的PS胶体晶体模中,滴加3DOM La0.9K0.1FeO3的前驱体溶液,直到溶液浸没PMMA模板,待浸渍完全后,抽滤除去多余溶液,得到前驱体/PMMA的复合物,自然干燥,然后置于管式炉中以≤2℃/min的升温速率将温度升至650℃,焙烧5h,得到3DOM La0.9K0.1FeO3。In the dried PS colloidal crystal mold, add dropwise the precursor solution of 3DOM La 0.9 K 0.1 FeO until the solution is immersed in the PMMA template. After the impregnation is complete, remove the excess solution by suction filtration to obtain a precursor/PMMA composite. Naturally dry, then place in a tube furnace to raise the temperature to 650°C at a rate of ≤2°C/min, and bake for 5 hours to obtain 3DOM La 0.9 K 0.1 FeO 3 .
图1d为本实施例制备的3DOM La0.9K0.1FeO3的扫描电镜照片。由图中可以看出,使用PMMA胶体晶体为模板制备的La0.9K0.1FeO3具有三维有序大孔结构,属于三维有序大孔催化剂,平均孔径约为400nm;本实施例制备的3DOM La0.9K0.1FeO3的X射线衍射图谱如图3所示,其结果表明本实施例制备的3DOM La0.9K0.1FeO3为钙钛矿型氧化物。Figure 1d is a scanning electron micrograph of 3DOM La 0.9 K 0.1 FeO 3 prepared in this example. As can be seen from the figure, the La 0.9 K 0.1 FeO 3 prepared using PMMA colloidal crystals as a template has a three-dimensional ordered macroporous structure, which belongs to a three-dimensional ordered macroporous catalyst, with an average pore diameter of about 400 nm; the 3DOM La prepared in this example The X-ray diffraction pattern of 0.9 K 0.1 FeO 3 is shown in Figure 3, and the results show that the 3DOM La 0.9 K 0.1 FeO 3 prepared in this example is a perovskite oxide.
对比例3无序大孔La0.9K0.1FeO3 Comparative example 3 Disordered macroporous La 0.9 K 0.1 FeO 3
取少量3DOM La0.9K0.1FeO3的前驱体溶液置于坩埚内,于马弗炉中以≤2℃/min的升温速率将温度升至650℃,焙烧5h,得到具有无序蜂窝状大孔结构的La0.9K0.1FeO3,即无序大孔La0.9K0.1FeO3。Take a small amount of 3DOM La 0.9 K 0.1 FeO 3 precursor solution and place it in a crucible, raise the temperature to 650°C in a muffle furnace at a heating rate of ≤2°C/min, and bake it for 5 hours to obtain a disordered honeycomb macropore Structure of La 0.9 K 0.1 FeO 3 , that is, disordered macroporous La 0.9 K 0.1 FeO 3 .
图2c为本对比例制备的无序大孔La0.9K0.1FeO3的扫描电镜照片,由图中可以看出,将前驱体溶液直接在马弗炉中焙烧得到的La0.9K0.1FeO3为蜂窝状无序大孔催化剂,平均孔径大于50nm。Figure 2c is the scanning electron microscope photo of the disordered macroporous La 0.9 K 0.1 FeO 3 prepared in this comparative example. It can be seen from the figure that the La 0.9 K 0.1 FeO 3 obtained by directly roasting the precursor solution in a muffle furnace is Honeycomb disordered macroporous catalyst, the average pore diameter is greater than 50nm.
活性评价3Activity Evaluation 3
根据上述的催化剂活性的评价方法对实施例3制备的3DOMLa0.9K0.1FeO3、对比例3制备的无序大孔La0.9K0.1FeO3以及非大孔La0.9K0.1FeO3进行评价,3DOM La0.9K0.1FeO3的活性评价结果如图4所示;上述三种催化剂的活性评价数据见表3。3DOMLa 0.9 K 0.1 FeO 3 prepared in Example 3, the disordered macroporous La 0.9 K 0.1 FeO 3 prepared in Comparative Example 3 and the non-macroporous La 0.9 K 0.1 FeO 3 were evaluated according to the above-mentioned catalyst activity evaluation method, 3DOM The activity evaluation results of La 0.9 K 0.1 FeO 3 are shown in Figure 4; the activity evaluation data of the above three catalysts are shown in Table 3.
在超声辅助下,碳烟颗粒物进入3DOM La0.9K0.1FeO3和无序大孔La0.9K0.1FeO3的孔道内,碳烟颗粒物的燃烧温度降低,与非大孔La0.9K0.1FeO3、无序大孔La0.9K0.1FeO3相比,3DOM La0.9K0.1FeO3对应的碳烟颗粒的燃烧温度最低,对碳烟的燃烧的催化活性最高。With the assistance of ultrasound, soot particles enter the channels of 3DOM La 0.9 K 0.1 FeO 3 and disordered macropores La 0.9 K 0.1 FeO 3 , and the combustion temperature of soot particles decreases, which is different from that of non-macropores La 0.9 K 0.1 FeO 3 , Compared with the disordered macroporous La 0.9 K 0.1 FeO 3 , the combustion temperature of soot particles corresponding to 3DOM La 0.9 K 0.1 FeO 3 is the lowest, and the catalytic activity for the combustion of soot is the highest.
表3:table 3:
实施例43DOM LaFe0.7Co0.3O3复合金属氧化物Embodiment 43DOM LaFe 0.7 Co 0.3 O 3 composite metal oxide
取少量粒径为362nm的聚甲基丙烯酸甲酯微球乳液,以7200rpm的转速离心处理1h,弃去上层清液,得到PMMA胶体晶体模板,自然干燥;Take a small amount of polymethyl methacrylate microsphere emulsion with a particle size of 362nm, centrifuge at a speed of 7200rpm for 1h, discard the supernatant to obtain a PMMA colloidal crystal template, and dry naturally;
按化学计量比(摩尔比10∶7∶3)称取硝酸镧、硝酸铁和硝酸钴,向其中加入乙二醇,磁力搅拌2h,将所得溶液转移到容量瓶中,用甲醇定容(甲醇体积分数为35%),所配溶液中金属离子浓度为2.0mol/L,得到3DOMLaFe0.7Co0.3O3的前驱体溶液,此溶液即为3DOM LaFe0.7Co0.3O3复合金属氧化物催化剂的前驱体溶液;将其滴加到干燥好的PMMA模板中,直到溶液浸没PMMA模板,待浸渍完全后,抽滤除去多余溶液,得到前驱体/PMMA的复合物,自然干燥,然后置于管式炉中以≤2℃/min的升温速率将温度升至650℃,焙烧5h,得到3DOM LaFe0.7Co0.3O3。Weigh lanthanum nitrate, iron nitrate and cobalt nitrate according to the stoichiometric ratio (molar ratio 10:7:3), add ethylene glycol therein, stir magnetically for 2 hours, transfer the resulting solution to a volumetric flask, and dilute to volume with methanol (methanol volume fraction is 35%), metal ion concentration is 2.0mol/L in the prepared solution, obtains the precursor solution of 3DOMLaFe0.7Co0.3O3 , and this solution is the precursor of 3DOMLaFe0.7Co0.3O3 composite metal oxide catalyst body solution; add it dropwise to the dry PMMA template until the solution is immersed in the PMMA template. After the impregnation is complete, remove the excess solution by suction filtration to obtain a precursor/PMMA composite, dry it naturally, and then place it in a tube furnace 3DOM LaFe 0.7 Co 0.3 O 3 was obtained by raising the temperature to 650° C. at a heating rate of ≤2° C./min and roasting for 5 hours.
图1e为本实施例制备的3DOM LaFe0.7Co0.3O3的扫描电镜照片。由图中可以看出,使用PMMA胶体晶体为模板制备的LaFe0.7Co0.3O3具有三维有序大孔结构,属于三维有序大孔催化剂,平均孔径约为268nm。Figure 1e is a scanning electron micrograph of the 3DOM LaFe 0.7 Co 0.3 O 3 prepared in this example. It can be seen from the figure that the LaFe 0.7 Co 0.3 O 3 prepared using PMMA colloidal crystals as a template has a three-dimensional ordered macroporous structure, which belongs to a three-dimensional ordered macroporous catalyst, with an average pore diameter of about 268 nm.
实施例53DOM ZrO2简单金属氧化物Embodiment 53DOM ZrO 2 simple metal oxides
取少量粒径为446nm的聚甲基丙烯酸甲酯微球乳液,以3000rpm的转速离心处理10h,弃去上层清液,得到PMMA胶体晶体模板,自然干燥;Take a small amount of polymethyl methacrylate microsphere emulsion with a particle size of 446nm, centrifuge at a speed of 3000rpm for 10h, discard the supernatant to obtain a PMMA colloidal crystal template, and dry naturally;
称取硝酸锆,将其溶于乙二醇和乙醇(50%)的混合液,将所得溶液转移到容量瓶中,得到3DOM ZrO2的前驱体溶液,用以浸渍干燥好的PMMA模板,待浸渍完全后,抽滤除去多余溶液,得到前驱体/PMMA的复合物,自然干燥,然后置于管式炉中以≤2℃/min的升温速率将温度升至500℃,焙烧5h,得到3DOM ZrO2。Weigh zirconium nitrate, dissolve it in a mixture of ethylene glycol and ethanol (50%), transfer the resulting solution to a volumetric flask, and obtain a precursor solution of 3DOM ZrO , which is used to impregnate the dried PMMA template, to be impregnated After completion, the excess solution was removed by suction filtration to obtain the precursor/PMMA composite, which was dried naturally, then placed in a tube furnace to raise the temperature to 500°C at a heating rate of ≤2°C/min, and roasted for 5h to obtain 3DOM ZrO 2 .
图1f为本实施例制备的3DOM ZrO2的扫描电镜照片。由图中可以看出,使用PMMA胶体晶体为模板制备的ZrO2具有三维有序大孔结构,属于三维有序大孔催化剂,平均孔径约为378nm。Figure 1f is a scanning electron micrograph of 3DOM ZrO 2 prepared in this example. It can be seen from the figure that the ZrO 2 prepared using PMMA colloidal crystals as a template has a three-dimensional ordered macroporous structure, which belongs to a three-dimensional ordered macroporous catalyst, with an average pore diameter of about 378nm.
实施例63DOM Al2O3简单金属氧化物Embodiment 63 DOM Al 2 O 3 simple metal oxides
取少量粒径为144nm的聚苯乙烯微球乳液,以5500rpm的转速离心处理20h,得到PS胶体晶体模板,自然干燥;Take a small amount of polystyrene microsphere emulsion with a particle size of 144nm, and centrifuge it at a speed of 5500rpm for 20h to obtain a PS colloidal crystal template, and dry it naturally;
称取硝酸铝,向其中加入乙二醇,磁力搅拌2h,将得到的溶液转移到容量瓶中,用甲醇定容(甲醇的体积分数为30%),所配溶液中金属离子浓度为1.5mol/L,此溶液即为3DOM Al2O3的前驱体溶液;Weigh aluminum nitrate, add ethylene glycol therein, magnetically stir for 2h, transfer the solution obtained in the volumetric flask, constant volume with methanol (the volume fraction of methanol is 30%), the metal ion concentration in the prepared solution is 1.5mol /L, this solution is the precursor solution of 3DOM Al 2 O 3 ;
将干燥的PS胶体晶体模板用3DOM Al2O3的前驱体溶液浸渍,待浸渍完全后,抽滤除去多余溶液,得到前驱体/PS的复合物,自然干燥,然后置于管式炉中以<2℃/min的升温速率将温度升至700℃,焙烧5h,得到3DOMAl2O3。The dried PS colloidal crystal template was impregnated with the precursor solution of 3DOM Al 2 O 3 , and after the impregnation was complete, the excess solution was removed by suction filtration to obtain the precursor/PS composite, which was dried naturally, and then placed in a tube furnace to Raise the temperature to 700°C at a heating rate of <2°C/min, and calcine for 5 hours to obtain 3DOMAl 2 O 3 .
图1g为本实施例制备的3DOM Al2O3的扫描电镜照片。由图中可以看出,本实施例中使用PS胶体晶体为模板制备的3DOM Al2O3具有规整的三维有序大孔结构,平均孔径约为100nm。Fig. 1g is a scanning electron micrograph of 3DOM Al 2 O 3 prepared in this example. It can be seen from the figure that the 3DOM Al 2 O 3 prepared using PS colloidal crystals as a template in this example has a regular three-dimensional ordered macroporous structure with an average pore diameter of about 100 nm.
实施例73DOM Ce0.75Zr0.25O2复合金属氧化物Embodiment 73DOM Ce 0.75 Zr 0.25 O 2 composite metal oxides
取少量粒径为454nm的聚甲基丙烯酸甲酯微球乳液,以3000rpm的转速离心处理10h,得到PMMA胶体晶体模板,自然干燥;Take a small amount of polymethyl methacrylate microsphere emulsion with a particle size of 454nm, centrifuge at a speed of 3000rpm for 10h to obtain a PMMA colloidal crystal template, and dry naturally;
按化学计量比(摩尔比3∶1)称取硝酸铈、硝酸锆,向其中加入乙二醇和乙醇的混合液(乙醇的体积分数为50%),磁力搅拌2h,将所得溶液转移到容量瓶中,用乙醇定容,所配溶液中金属离子浓度为2.0mol/L,得到3DOM Ce0.75Zr0.25O2的前驱体溶液;将干燥好的PMMA模板浸渍到3DOMCe0.75Zr0.25O2的前驱体溶液中,待浸渍完全后,抽滤除去多余溶液,得到前驱体/PMMA的复合物,自然干燥,然后置于管式炉中以≤2℃/min的升温速率将温度升至650℃,焙烧5h,得到3DOM Ce0.75Zr0.25O2。Weigh cerium nitrate and zirconium nitrate according to the stoichiometric ratio (molar ratio 3:1), add a mixture of ethylene glycol and ethanol (the volume fraction of ethanol is 50%), magnetically stir for 2 hours, and transfer the resulting solution to a volumetric flask , use ethanol to make up the volume, and the metal ion concentration in the prepared solution is 2.0mol/L to obtain the precursor solution of 3DOM Ce 0.75 Zr 0.25 O 2 ; impregnate the dried PMMA template into the precursor of 3DOMCe 0.75 Zr 0.25 O 2 In the solution, after the impregnation is complete, the excess solution is removed by suction filtration, and the precursor/PMMA composite is obtained, dried naturally, and then placed in a tube furnace to raise the temperature to 650°C at a heating rate of ≤2°C/min, and roasted 5h, 3DOM Ce 0.75 Zr 0.25 O 2 was obtained.
本实施例制备的3DOM Ce0.75Zr0.25O2的X射线衍射图谱如图3所示,在本实施例制备的催化剂样品的谱图和纯CeO2的萤石型立方结构,没有出现ZrO2的特征峰,这说明3DOM Ce0.75Zr0.25O2以一种晶相存在,没有出现分相。The X-ray diffraction pattern of 3DOM Ce 0.75 Zr 0.25 O prepared in this embodiment is shown in Figure 3, in the spectrogram of the catalyst sample prepared in this embodiment and pure CeO The fluorite-type cubic structure does not appear ZrO The characteristic peaks indicate that 3DOM Ce 0.75 Zr 0.25 O 2 exists in one crystal phase without phase separation.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN200810225707A CN101733110B (en) | 2008-11-07 | 2008-11-07 | Three-dimensional ordered macroporous oxide catalyst for diesel soot purification and preparation method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN200810225707A CN101733110B (en) | 2008-11-07 | 2008-11-07 | Three-dimensional ordered macroporous oxide catalyst for diesel soot purification and preparation method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101733110A true CN101733110A (en) | 2010-06-16 |
CN101733110B CN101733110B (en) | 2012-09-05 |
Family
ID=42457441
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN200810225707A Expired - Fee Related CN101733110B (en) | 2008-11-07 | 2008-11-07 | Three-dimensional ordered macroporous oxide catalyst for diesel soot purification and preparation method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN101733110B (en) |
Cited By (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101982234A (en) * | 2010-09-16 | 2011-03-02 | 中国石油天然气集团公司 | Three-dimensionally ordered macroporous gold-loaded catalyst with composite oxide as carrier and for catalytic combustion |
CN102179261A (en) * | 2011-03-31 | 2011-09-14 | 大庆石油管理局 | Catalyst for preparing crylic acid from propane through selective oxidation and preparation method thereof |
CN102794175A (en) * | 2012-08-30 | 2012-11-28 | 北京工业大学 | Thermal-stability three-dimensional ordered macro-porous carbon smoke combustion catalyst and preparation method thereof |
CN103182314A (en) * | 2011-12-30 | 2013-07-03 | 中国石油天然气股份有限公司 | Catalytic cracking regenerated flue gas combustion-supporting catalyst and preparation method thereof |
CN103240088A (en) * | 2013-05-07 | 2013-08-14 | 中国石油大学(北京) | Catalyst for macro-porous oxide supported core-shell structure nanoparticles and preparation method of catalyst |
CN103464165A (en) * | 2013-08-23 | 2013-12-25 | 东莞上海大学纳米技术研究院 | Honeycomb cerium-copper composite multi-element oxide catalyst, preparation method and application |
CN103480405A (en) * | 2013-09-26 | 2014-01-01 | 中国石油大学(北京) | Macroporous carbonized nickel catalyst, and preparation method and application thereof |
CN104525197A (en) * | 2014-12-18 | 2015-04-22 | 北京工业大学 | Method for preparing thermostable supported three-dimensional ordered macroporous three-way catalyst |
CN105413676A (en) * | 2015-11-06 | 2016-03-23 | 中国科学院山西煤炭化学研究所 | Method for preparing three-dimensional ordered macroporous V-Mg oxide materials and application thereof |
CN107754787A (en) * | 2017-10-26 | 2018-03-06 | 华中科技大学 | Three-dimensional order mullite catalyst and preparation method thereof, purification method |
CN107973339A (en) * | 2017-11-24 | 2018-05-01 | 武汉理工大学 | The three-dimensional ordered macroporous calcium titanate photonic crystal and its synthetic method that a kind of porous nano-sheet is constructed |
CN108295849A (en) * | 2018-01-18 | 2018-07-20 | 中国科学院宁波材料技术与工程研究所 | My/LaxSr1-xTi1-yO3Catalyst, its preparation method and application |
CN109046309A (en) * | 2018-08-13 | 2018-12-21 | 杭州电子科技大学 | A kind of macro-pore SiO for carbon-smoke combustion2One-pot synthesis method of environmental friendly material and products thereof |
CN110433806A (en) * | 2019-07-19 | 2019-11-12 | 福州大学 | A kind of cobalt-aluminium composite oxide catalyst and its preparation method and application |
CN110773150A (en) * | 2019-10-25 | 2020-02-11 | 华中科技大学 | A kind of composite oxide and its preparation and application as carbon particle combustion catalyst |
CN111068710A (en) * | 2019-12-13 | 2020-04-28 | 中国石油大学(北京) | Catalyst for burning carbon smoke and preparation method and application thereof |
CN111375402A (en) * | 2018-12-29 | 2020-07-07 | 华中师范大学 | Honeycomb ceramic catalyst loaded with macroporous cerium-zirconium-based composite metal oxide and application thereof |
CN111379613A (en) * | 2018-12-29 | 2020-07-07 | 华中师范大学 | Diesel particulate trap loaded with macroporous perovskite oxide and application thereof |
CN111821971A (en) * | 2020-07-30 | 2020-10-27 | 中自环保科技股份有限公司 | Integral catalyst for catalytic regeneration of soot and preparation method thereof |
CN111916770A (en) * | 2020-09-02 | 2020-11-10 | 厦门理工学院 | High-performance air electrode catalyst and preparation method thereof |
CN113318728A (en) * | 2021-06-25 | 2021-08-31 | 北京化工大学 | Three-dimensional ordered macroporous tungsten-cerium-zirconium composite oxide catalyst and preparation method and application thereof |
CN114177902A (en) * | 2021-12-14 | 2022-03-15 | 西华师范大学 | A kind of cerium zirconium solid solution with micron-scale macropores and its preparation method and application |
CN115487800A (en) * | 2022-09-16 | 2022-12-20 | 四川大学 | CeO2-ZrO2 catalytic material with stable macroporous structure and its preparation method and application |
CN116510720A (en) * | 2023-06-20 | 2023-08-01 | 南昌大学 | Preparation method and application of a catalyst for eliminating soot particles in diesel vehicles |
CN116651433A (en) * | 2023-05-24 | 2023-08-29 | 华中师范大学 | Monolithic catalyst with metal oxide skeleton and its preparation method and application |
CN117101665A (en) * | 2023-08-28 | 2023-11-24 | 昆明理工大学 | Catalyst for hydrogenating carbon dioxide to synthesize methanol and preparation method thereof |
CN118988416A (en) * | 2024-09-06 | 2024-11-22 | 浙江大学台州研究院 | Preparation method and application of three-dimensional ordered macroporous catalytic filter material |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100540139C (en) * | 2007-12-24 | 2009-09-16 | 天津大学 | Macroporous Pt/the CeO that is used for water gas shift reaction 2Catalysts and its preparation method |
-
2008
- 2008-11-07 CN CN200810225707A patent/CN101733110B/en not_active Expired - Fee Related
Cited By (44)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101982234B (en) * | 2010-09-16 | 2012-09-05 | 中国石油天然气集团公司 | Three-dimensionally ordered macroporous gold-loaded catalyst for catalytic combustion with composite oxide as carrier |
CN101982234A (en) * | 2010-09-16 | 2011-03-02 | 中国石油天然气集团公司 | Three-dimensionally ordered macroporous gold-loaded catalyst with composite oxide as carrier and for catalytic combustion |
CN102179261A (en) * | 2011-03-31 | 2011-09-14 | 大庆石油管理局 | Catalyst for preparing crylic acid from propane through selective oxidation and preparation method thereof |
CN103182314A (en) * | 2011-12-30 | 2013-07-03 | 中国石油天然气股份有限公司 | Catalytic cracking regenerated flue gas combustion-supporting catalyst and preparation method thereof |
CN103182314B (en) * | 2011-12-30 | 2015-09-23 | 中国石油天然气股份有限公司 | Catalytic cracking regenerated flue gas combustion-supporting catalyst and preparation method thereof |
CN102794175B (en) * | 2012-08-30 | 2014-07-30 | 北京工业大学 | Thermal-stability three-dimensional ordered macro-porous carbon smoke combustion catalyst and preparation method thereof |
CN102794175A (en) * | 2012-08-30 | 2012-11-28 | 北京工业大学 | Thermal-stability three-dimensional ordered macro-porous carbon smoke combustion catalyst and preparation method thereof |
CN103240088B (en) * | 2013-05-07 | 2015-01-07 | 中国石油大学(北京) | Catalyst for macro-porous oxide supported core-shell structure nanoparticles and preparation method of catalyst |
CN103240088A (en) * | 2013-05-07 | 2013-08-14 | 中国石油大学(北京) | Catalyst for macro-porous oxide supported core-shell structure nanoparticles and preparation method of catalyst |
CN103464165A (en) * | 2013-08-23 | 2013-12-25 | 东莞上海大学纳米技术研究院 | Honeycomb cerium-copper composite multi-element oxide catalyst, preparation method and application |
CN103480405A (en) * | 2013-09-26 | 2014-01-01 | 中国石油大学(北京) | Macroporous carbonized nickel catalyst, and preparation method and application thereof |
CN103480405B (en) * | 2013-09-26 | 2015-11-18 | 中国石油大学(北京) | A kind of macropore carbonization Raney nickel and its preparation method and application |
CN104525197A (en) * | 2014-12-18 | 2015-04-22 | 北京工业大学 | Method for preparing thermostable supported three-dimensional ordered macroporous three-way catalyst |
CN105413676A (en) * | 2015-11-06 | 2016-03-23 | 中国科学院山西煤炭化学研究所 | Method for preparing three-dimensional ordered macroporous V-Mg oxide materials and application thereof |
CN107754787B (en) * | 2017-10-26 | 2020-05-19 | 华中科技大学 | Three-dimensional ordered mullite catalyst, preparation method and purification method thereof |
CN107754787A (en) * | 2017-10-26 | 2018-03-06 | 华中科技大学 | Three-dimensional order mullite catalyst and preparation method thereof, purification method |
CN107973339B (en) * | 2017-11-24 | 2020-04-21 | 武汉理工大学 | A three-dimensional ordered macroporous calcium titanate photonic crystal constructed by porous nanosheets and its synthesis method |
CN107973339A (en) * | 2017-11-24 | 2018-05-01 | 武汉理工大学 | The three-dimensional ordered macroporous calcium titanate photonic crystal and its synthetic method that a kind of porous nano-sheet is constructed |
CN108295849A (en) * | 2018-01-18 | 2018-07-20 | 中国科学院宁波材料技术与工程研究所 | My/LaxSr1-xTi1-yO3Catalyst, its preparation method and application |
CN108295849B (en) * | 2018-01-18 | 2021-06-22 | 中国科学院宁波材料技术与工程研究所 | My/LaxSr1-xTi1-yO3Catalyst, its preparation method and application |
CN109046309B (en) * | 2018-08-13 | 2021-08-10 | 杭州电子科技大学 | Macroporous SiO for soot combustion2One-pot synthesis method of material and product thereof |
CN109046309A (en) * | 2018-08-13 | 2018-12-21 | 杭州电子科技大学 | A kind of macro-pore SiO for carbon-smoke combustion2One-pot synthesis method of environmental friendly material and products thereof |
CN111375402A (en) * | 2018-12-29 | 2020-07-07 | 华中师范大学 | Honeycomb ceramic catalyst loaded with macroporous cerium-zirconium-based composite metal oxide and application thereof |
CN111379613A (en) * | 2018-12-29 | 2020-07-07 | 华中师范大学 | Diesel particulate trap loaded with macroporous perovskite oxide and application thereof |
CN111379613B (en) * | 2018-12-29 | 2022-02-08 | 华中师范大学 | Diesel particulate filter loaded with macroporous perovskite oxide and its application |
CN110433806A (en) * | 2019-07-19 | 2019-11-12 | 福州大学 | A kind of cobalt-aluminium composite oxide catalyst and its preparation method and application |
CN110773150A (en) * | 2019-10-25 | 2020-02-11 | 华中科技大学 | A kind of composite oxide and its preparation and application as carbon particle combustion catalyst |
CN110773150B (en) * | 2019-10-25 | 2020-11-17 | 华中科技大学 | Composite oxide, preparation thereof and application of composite oxide as carbon particle combustion catalyst |
CN111068710A (en) * | 2019-12-13 | 2020-04-28 | 中国石油大学(北京) | Catalyst for burning carbon smoke and preparation method and application thereof |
CN111821971A (en) * | 2020-07-30 | 2020-10-27 | 中自环保科技股份有限公司 | Integral catalyst for catalytic regeneration of soot and preparation method thereof |
CN111821971B (en) * | 2020-07-30 | 2023-08-18 | 中自环保科技股份有限公司 | Integral catalyst for catalytic regeneration of carbon smoke and preparation method thereof |
CN111916770B (en) * | 2020-09-02 | 2021-09-24 | 厦门理工学院 | A kind of high-performance air electrode catalyst and preparation method thereof |
CN111916770A (en) * | 2020-09-02 | 2020-11-10 | 厦门理工学院 | High-performance air electrode catalyst and preparation method thereof |
CN113318728A (en) * | 2021-06-25 | 2021-08-31 | 北京化工大学 | Three-dimensional ordered macroporous tungsten-cerium-zirconium composite oxide catalyst and preparation method and application thereof |
CN113318728B (en) * | 2021-06-25 | 2023-06-27 | 北京化工大学 | Three-dimensional ordered large Kong Wushi zirconium composite oxide catalyst and preparation method and application thereof |
CN114177902A (en) * | 2021-12-14 | 2022-03-15 | 西华师范大学 | A kind of cerium zirconium solid solution with micron-scale macropores and its preparation method and application |
CN114177902B (en) * | 2021-12-14 | 2023-09-15 | 西华师范大学 | A cerium-zirconium solid solution with micron-sized macropores and its preparation method and application |
CN115487800A (en) * | 2022-09-16 | 2022-12-20 | 四川大学 | CeO2-ZrO2 catalytic material with stable macroporous structure and its preparation method and application |
CN115487800B (en) * | 2022-09-16 | 2023-11-14 | 四川大学 | CeO with stable macroporous structure 2 -ZrO 2 Catalytic material, preparation method and application thereof |
CN116651433A (en) * | 2023-05-24 | 2023-08-29 | 华中师范大学 | Monolithic catalyst with metal oxide skeleton and its preparation method and application |
CN116510720A (en) * | 2023-06-20 | 2023-08-01 | 南昌大学 | Preparation method and application of a catalyst for eliminating soot particles in diesel vehicles |
CN117101665A (en) * | 2023-08-28 | 2023-11-24 | 昆明理工大学 | Catalyst for hydrogenating carbon dioxide to synthesize methanol and preparation method thereof |
CN118988416A (en) * | 2024-09-06 | 2024-11-22 | 浙江大学台州研究院 | Preparation method and application of three-dimensional ordered macroporous catalytic filter material |
CN118988416B (en) * | 2024-09-06 | 2025-05-27 | 浙江大学台州研究院 | Preparation method and application of three-dimensional ordered macroporous catalytic filter material |
Also Published As
Publication number | Publication date |
---|---|
CN101733110B (en) | 2012-09-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101733110B (en) | Three-dimensional ordered macroporous oxide catalyst for diesel soot purification and preparation method thereof | |
CN103240088B (en) | Catalyst for macro-porous oxide supported core-shell structure nanoparticles and preparation method of catalyst | |
CN101683616B (en) | Macroporous composite metal oxide catalyst for purifying soot of diesel and preparation method thereof | |
CN101940925B (en) | Catalyst of three-dimensional ordered macroporous cerium-based oxide supported gold for purifying diesel soot | |
CN103495418B (en) | A kind of foramen magnum-mesoporous cerium zirconium sosoloid carries silver catalyst and preparation method and application | |
CN101484241B (en) | Catalyst for purifying exhaust gas | |
CN101982234B (en) | Three-dimensionally ordered macroporous gold-loaded catalyst for catalytic combustion with composite oxide as carrier | |
CN104815635B (en) | A kind of soot particulate thing burning catalyst and preparation method and application | |
CN101773830B (en) | High-temperature stability catalyst used for three-effect catalysis | |
CN101274215B (en) | A rare earth perovskite type oxygen storage material for automobile exhaust purification | |
CN103212413B (en) | Thermal stabilization core-shell structure nano three-way catalyst and preparation method thereof | |
CN102794175B (en) | Thermal-stability three-dimensional ordered macro-porous carbon smoke combustion catalyst and preparation method thereof | |
CN101992089A (en) | Three-dimensional ordered porous-mesoporous iron-based perovskite oxide catalyst and preparation method thereof | |
JP2004141833A (en) | Method for producing metal oxide particles and catalyst for purifying exhaust gas | |
CN104525197B (en) | Method for preparing thermostable supported three-dimensional ordered macroporous three-way catalyst | |
CN104607179B (en) | 3DOM supports catalyst and preparation and the application of potassium manganese-cerium composite oxide | |
CN103801288A (en) | Compound oxide catalyst for oxidization of nitric oxides and preparation method thereof | |
CN112439408A (en) | Rare earth manganese-loaded cerium-zirconium composite compound, preparation method and catalyst | |
EP1598104B1 (en) | Diesel particulate filter | |
CN111068637A (en) | Perovskite for catalytic combustion and preparation method thereof | |
Wan et al. | Controllable synthesis of argentum decorated CuOx@ CeO2 catalyst and its highly efficient performance for soot oxidation | |
CN104607187B (en) | The three-dimensional ordered macroporous mesoporous three-way catalyst and preparation method and application of a kind of heat-staple precious metal doping type | |
JP4577408B2 (en) | Exhaust gas purification catalyst | |
CN115487800B (en) | CeO with stable macroporous structure 2 -ZrO 2 Catalytic material, preparation method and application thereof | |
JP6651344B2 (en) | Particulate filter |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C17 | Cessation of patent right | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20120905 Termination date: 20131107 |