CN101729157B - Method for separating vibration signal blind sources under a kind of strong noise environment - Google Patents
Method for separating vibration signal blind sources under a kind of strong noise environment Download PDFInfo
- Publication number
- CN101729157B CN101729157B CN200910232300.1A CN200910232300A CN101729157B CN 101729157 B CN101729157 B CN 101729157B CN 200910232300 A CN200910232300 A CN 200910232300A CN 101729157 B CN101729157 B CN 101729157B
- Authority
- CN
- China
- Prior art keywords
- matrix
- separation
- signal
- noise
- noise reduction
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000000034 method Methods 0.000 title claims abstract description 37
- 239000011159 matrix material Substances 0.000 claims abstract description 98
- 238000000926 separation method Methods 0.000 claims abstract description 56
- 230000009467 reduction Effects 0.000 claims abstract description 24
- 230000002087 whitening effect Effects 0.000 claims abstract description 17
- 238000000354 decomposition reaction Methods 0.000 claims description 9
- 230000008569 process Effects 0.000 claims description 4
- 238000011946 reduction process Methods 0.000 claims description 3
- 239000000654 additive Substances 0.000 claims 2
- 230000000996 additive effect Effects 0.000 claims 2
- 238000001914 filtration Methods 0.000 claims 2
- 238000002203 pretreatment Methods 0.000 claims 1
- 238000007781 pre-processing Methods 0.000 abstract description 7
- 230000000694 effects Effects 0.000 abstract description 5
- 230000008901 benefit Effects 0.000 abstract description 4
- 238000012935 Averaging Methods 0.000 abstract 1
- 230000001934 delay Effects 0.000 description 3
- 238000005457 optimization Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 2
- 230000000737 periodic effect Effects 0.000 description 2
- 230000009466 transformation Effects 0.000 description 2
- 238000005311 autocorrelation function Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 239000010977 jade Substances 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 230000017105 transposition Effects 0.000 description 1
Landscapes
- Filters That Use Time-Delay Elements (AREA)
Abstract
本发明公布了一种强噪声环境下的振动信号盲源分离算法。本发明方法如下:第一步,对于一组给定的含噪声的混合信号,通过时延自相关方法对混合信号进行降噪,得到去噪后的混合信号;第二步,对第一步得到的混合信号进行去均值及稳健的白化预处理,以进一步减小噪声信号对分离结果的影响;第三步,计算初始分离信号的二阶及四阶累积量,以二阶与四阶累积量矩阵的对角线元素之和作为代价函数,通过最大化该代价函数,使得各累积量矩阵联合近似对角化,实现各独立源信号的分离,从而得到正交的分离矩阵。本发明将现有的降噪方法与盲分离算法结合,实现强噪声环境下的混合信号分离,较现有算法具有分离效果好、收敛速度快且降噪效果不受阀值设置限制的优点。
The invention discloses a vibration signal blind source separation algorithm in a strong noise environment. The method of the present invention is as follows: the first step, for a group of given noise-containing mixed signals, the mixed signal is denoised by the time-delay autocorrelation method, and the mixed signal after denoising is obtained; the second step is for the first step The obtained mixed signal is subjected to de-averaging and robust whitening preprocessing to further reduce the influence of the noise signal on the separation result; the third step is to calculate the second-order and fourth-order cumulants of the initial separation signal, and use the second-order and fourth-order cumulants The sum of the diagonal elements of the cumulant matrix is used as the cost function, and by maximizing the cost function, the cumulant matrices are jointly approximated to be diagonalized, and the separation of independent source signals is realized, thereby obtaining an orthogonal separation matrix. The present invention combines the existing noise reduction method with a blind separation algorithm to realize the separation of mixed signals in a strong noise environment, and has the advantages of better separation effect and faster convergence speed than the existing algorithm, and the noise reduction effect is not limited by threshold setting.
Description
技术领域technical field
本发明涉及混叠振动信号的分离技术,尤其是一种强噪声环境下的混叠振动信号分离技术。The invention relates to a separation technology of aliasing vibration signals, in particular to a separation technology of aliasing vibration signals in a strong noise environment.
背景技术Background technique
强噪声环境下的混叠振动信号盲分离,因其更接近实际情况,是识别振源信号与微弱信号的重要信号处理方法,已成为相关科研机构,以及各国学者的研究焦点。Blind separation of aliased vibration signals in a strong noise environment, because it is closer to the actual situation, is an important signal processing method for identifying vibration source signals and weak signals, and has become the research focus of relevant scientific research institutions and scholars from various countries.
现有方法大多基于这样一个事实:在忽略噪声的情况下,利用最优化方法对独立性判据优化实现瞬时混叠信号的分离。振动信号作为一种具有时间结构的信号,通常可以采用二阶累积量矩阵的对角元素平方和作为代价函数,最优化该代价函数实现混合信号的分离,其复杂度低、计算速度快,但是对噪声信号不具有鲁棒性。基于四阶累积量矩阵的JADE算法利用了噪声信号的高阶累积量为零的特性,通过联合近似对角化各四阶累积量矩阵实现混合信号的分离,由于其利用了高阶累积量,其复杂度大、计算速度慢,对野值敏感,且只对高斯白色噪声具有鲁棒性。Most of the existing methods are based on the fact that when the noise is neglected, the separation of the instantaneous aliasing signal can be achieved by optimizing the independence criterion with the optimization method. As a signal with a time structure, the vibration signal can usually use the sum of squares of the diagonal elements of the second-order cumulant matrix as a cost function, and optimize the cost function to achieve the separation of mixed signals, which has low complexity and fast calculation speed, but Not robust to noisy signals. The JADE algorithm based on the fourth-order cumulant matrix takes advantage of the characteristic that the high-order cumulant of the noise signal is zero, and realizes the separation of mixed signals by jointly approximately diagonalizing each fourth-order cumulant matrix. It is complex, slow to calculate, sensitive to outliers, and only robust to Gaussian white noise.
针对含噪声的混叠信号,考虑先利用小波降噪方法对含噪信号进行降噪,以降低噪声信号对分离效果的影响,然后再对降噪后的混叠信号进行分离。然而,在小波降噪方法中,阀值的选取至关重要,选择不当将会导致算法失效。For the noise-containing aliasing signal, it is considered to use the wavelet denoising method to denoise the noise-containing signal first, so as to reduce the influence of the noise signal on the separation effect, and then separate the denoising aliasing signal. However, in the wavelet noise reduction method, the selection of the threshold is very important, and improper selection will lead to the failure of the algorithm.
发明内容Contents of the invention
本发明目的是针对现有技术存在的缺陷提供一种提出在强噪声环境下具有良好的分离性能、较快的分离速度、对噪声鲁棒性强的混叠振动信号分离算法。The object of the present invention is to provide an aliasing vibration signal separation algorithm that has good separation performance, fast separation speed and strong robustness to noise in a strong noise environment.
本发明为实现上述目的,采用如下技术方案:In order to achieve the above object, the present invention adopts the following technical solutions:
本发明一种强噪声环境的盲源分离方法,其特征是,该方法包括以下步骤:The blind source separation method of a kind of strong noise environment of the present invention is characterized in that, the method comprises the following steps:
(1)、将一组给定的含噪声的混合信号经过自相关方法进行降噪处理,然后将自相关方法降噪处理后的混合信号经过时延方法实现二次降噪,得到降噪后的混合信号x(t),其中t为时间序列;(1) A set of given noise-containing mixed signals is subjected to noise reduction processing by the autocorrelation method, and then the mixed signal after the autocorrelation method noise reduction processing is subjected to the second noise reduction by the time delay method, and the noise reduction is obtained The mixed signal x(t), where t is the time series;
(2)、对步骤(1)所述的降噪后的混合信号x(t)进行去均值以及稳健的白化预处理滤除所述的降噪后的混合信号x(t)中的白色高斯噪声;(2), de-meaning the mixed signal x(t) after noise reduction described in step (1) and robust whitening preprocessing to filter out the white Gaussian in the mixed signal x(t) after noise reduction noise;
所述稳健白化预处理方法如下:The robust whitening preprocessing method is as follows:
(A)计算降噪后的混合信号x(t)在时延τj下的协方差矩阵Cx(τj),并将协方差矩阵Cx(τj)调整为:(A) Calculate the covariance matrix C x (τ j ) of the mixed signal x(t) after noise reduction under time delay τ j , and adjust the covariance matrix C x (τ j ) as:
上式中,τj表示第j个时延,j=1,2,…,J,J为时延个数且为自然数,T表示对矩阵的转置,将Mx(τj)构造成一个组合矩阵M,并进行奇异值分解,即:In the above formula, τ j represents the jth delay, j=1, 2,..., J, J is the number of delays and is a natural number, T represents the transpose of the matrix, and M x (τ j ) is constructed as A combination matrix M, and perform singular value decomposition, namely:
M=[Mx(τ1),…,Mx(τJ)]M=[M x (τ 1 ),..., M x (τ J )]
M=U∑VT M=U∑V T
上式中,U为与M矩阵维数相同的正交矩阵;∑为由M的奇异值组成的对角矩阵;V为正交矩阵;In the above formula, U is an orthogonal matrix with the same dimension as M matrix; ∑ is a diagonal matrix composed of singular values of M; V is an orthogonal matrix;
(B)随机选取参数矩阵α=[α1,…,αj,…,αJ]T,其中αj表示参数矩阵α的第j个向量,对于时延τj,计算:(B) Randomly select the parameter matrix α=[α 1 ,…,α j ,…,α J ] T , where α j represents the jth vector of the parameter matrix α, for the time delay τ j , calculate:
fj=UTMx(τj)Uf j =U T M x (τ j )U
进行线性组合有:The linear combination is:
当矩阵F满足正定性,则转到步骤(D),否则转到步骤(C);When matrix F satisfies positive definiteness, then go to step (D), otherwise go to step (C);
(C)根据矩阵F的最小特征值所对应的特征向量u来调整参数矩阵α,即:(C) Adjust the parameter matrix α according to the eigenvector u corresponding to the minimum eigenvalue of the matrix F, namely:
然后转至步骤(B),直到矩阵F满足正定性;Go to step (B) then, until matrix F satisfies positive definiteness;
(D)当随机选取的参数矩阵α满足正定性要求时,利用所选参数矩阵计算目标矩阵C,并对其作特征值分解,即:(D) When the randomly selected parameter matrix α meets the requirements of positive definiteness, use the selected parameter matrix to calculate the target matrix C, and perform eigenvalue decomposition on it, namely:
C=RDRT C = RDR T
当随机选取的参数矩阵α不满足正定性要求时,利用步骤(C)得到的参数矩阵α来计算目标矩阵C,并对其作特征值分解,即:When the randomly selected parameter matrix α does not meet the requirement of positive definiteness, the parameter matrix α obtained in step (C) is used to calculate the target matrix C, and its eigenvalue decomposition is performed, namely:
C=RDRT C = RDR T
式中,D为由目标矩阵C的特征值组成的对角矩阵,R为由各特征值对应的特征向量组成的特征向量矩阵;In the formula, D is a diagonal matrix composed of eigenvalues of the target matrix C, and R is an eigenvector matrix composed of eigenvectors corresponding to each eigenvalue;
(E)求得白化矩阵Q=D-1/2RT,白化信号为z(t)=Q·x(t)。(E) Calculate the whitening matrix Q=D −1/2 R T , and the whitening signal is z(t)=Q·x(t).
(3)、计算初始分离信号的二阶以及四阶累积量,将二阶及四阶累积量矩阵的对角元素平方和作为代价函数;(3), calculate the second-order and fourth-order cumulants of the initial separation signal, and use the sum of squares of the diagonal elements of the second-order and fourth-order cumulant matrices as a cost function;
所述的初始分离信号如下:The initial separation signal described is as follows:
初始正交分离矩阵为W,则初始分离信号y(t)=W·z(t);The initial orthogonal separation matrix is W, then the initial separation signal y(t)=W z(t);
(4)、通过最大化步骤(3)中代价函数,实现各二阶及四阶累积量矩阵的联合近似对角化,得到使步骤(2)所述滤除白色高斯噪声的混合信号分离的正交分离矩阵P,从而得到分离矩阵H以及分离信号s(t);其中H=PQ,s(t)=H·x(t)。(4), by maximizing the cost function in step (3), realize the joint approximate diagonalization of each second-order and fourth-order cumulant matrices, obtain the separation of the mixed signal that filters out the white Gaussian noise described in step (2). Orthogonal separation matrix P to obtain separation matrix H and separation signal s(t); where H=PQ, s(t)=H·x(t).
所述的一种强噪声环境的盲源分离方法,其特征在于所述正交分离矩阵P采用Givens旋转法求得。The blind source separation method in a strong noise environment is characterized in that the orthogonal separation matrix P is obtained by the Givens rotation method.
本发明的有益效果是,本发明是一种强噪声环境下混叠振动信号盲分离的算法,包括降噪、稳健的预处理、构造代价函数、优化代价函数求解分离矩阵4个步骤。在进行分离之前,充分滤除噪声信号,以减小噪声信号对分离结果的影响,最终实现强噪声环境下混叠信号的分离。The beneficial effects of the present invention are that the present invention is an algorithm for blind separation of aliased vibration signals in a strong noise environment, including four steps of noise reduction, robust preprocessing, construction of a cost function, and optimization of the cost function to solve the separation matrix. Before the separation, the noise signal is fully filtered to reduce the influence of the noise signal on the separation result, and finally achieve the separation of the aliased signal in a strong noise environment.
在第(1)步中,本发明采用了时延自相关降噪方法,在使用该方法对混叠含噪信号进行降噪时,可以实现二次降噪且不需要设置阀值,而且自相关处理可以保留振动信号中的周期性有用信息,去除随机的非周期噪声,其降噪效果的可行性已得到业界人士的肯定。因此,用该方法可以有效的滤除混叠含噪信号中的噪声信号。In step (1), the present invention adopts the time-delay autocorrelation noise reduction method. When using this method to reduce the noise of the aliasing noise signal, the secondary noise reduction can be realized without setting a threshold, and the automatic Correlation processing can retain the periodic useful information in the vibration signal and remove random non-periodic noise, and the feasibility of its noise reduction effect has been affirmed by the industry. Therefore, this method can effectively filter out the noise signal in the aliased noise-containing signal.
在第(2)步中,本发明针对第(1)步中降噪后的混叠信号,提出利用稳健的预处理方法滤除混叠信号中的白色高斯噪声,进一步减小噪声对分离结果的影响。In the (2) step, the present invention proposes to use a robust preprocessing method to filter out the white Gaussian noise in the aliasing signal for the aliasing signal after denoising in the (1) step, further reducing the impact of noise on the separation result. Impact.
在第(3)步中,综合考虑了基于二阶累积量和四阶累积量算法的优点,将二阶累积量及四阶累积量矩阵的对角元素的平方和作为代价函数,使得算法收敛速度较四阶累积量算法快及对野值不敏感,且避开了二阶累积量算法不能分离具有相同谱结构信号的不足。In step (3), the advantages of the algorithm based on the second-order cumulant and the fourth-order cumulant are comprehensively considered, and the sum of the squares of the diagonal elements of the second-order cumulant and the fourth-order cumulant matrix is used as the cost function to make the algorithm converge The speed is faster than the fourth-order cumulant algorithm and it is not sensitive to outliers, and it avoids the disadvantage that the second-order cumulant algorithm cannot separate signals with the same spectral structure.
在第(4)步中,本发明利用最优化方法对代价函数进行最优化,实现二阶累积量及四阶累积量的联合近似对角化,因此实现混叠信号的分离。In step (4), the present invention utilizes an optimization method to optimize the cost function to realize the joint approximate diagonalization of the second-order cumulant and the fourth-order cumulant, thereby realizing the separation of aliasing signals.
因此,本发明较现有算法具有:强噪声环境下分离效果好且稳定、不受阀值设置限制的优点,且对于多个混叠信号的分离具有收敛速度快的特性。Therefore, compared with the existing algorithm, the present invention has the advantages of good and stable separation effect in a strong noise environment, and is not limited by threshold setting, and has the characteristics of fast convergence speed for the separation of multiple aliased signals.
附图说明Description of drawings
图1是本发明的方法流程图。Fig. 1 is a flow chart of the method of the present invention.
具体实施方式detailed description
下面结合附图对发明的技术方案进行详细说明:Below in conjunction with accompanying drawing, the technical scheme of invention is described in detail:
结合附图对本发明的实施做出进一步说明。图1是本发明的方法流程图,如图1所示,该算法包括以下四个步骤。The implementation of the present invention is further described in conjunction with the accompanying drawings. Fig. 1 is a flow chart of the method of the present invention, as shown in Fig. 1, the algorithm includes the following four steps.
步骤1:对于一组给定的含噪声的混合信号,首先对混合信号作自相关处理,然后去除自相关处理后的信号在时延为零以及时延最大值附近的部分,以实现二次降噪,得到降噪后的混合信号。具体为:Step 1: For a given set of noise-containing mixed signals, first perform autocorrelation processing on the mixed signals, and then remove the part of the autocorrelation-processed signal at zero delay and near the maximum delay to achieve the quadratic Noise reduction to obtain the noise-reduced mixed signal. Specifically:
用自相关降噪方法对含噪的混叠信号进行降噪,信号x(t)的自相关函数定义为:The noise-containing aliasing signal is denoised by the autocorrelation noise reduction method, and the autocorrelation function of the signal x(t) is defined as:
其中,L为信号x(t)的周期,τ为时延参数。Among them, L is the period of the signal x(t), and τ is the delay parameter.
对含噪的混叠信号进行自相关处理以减小混叠信号中的随机高斯噪声信号,为进一步减小噪声信号的影响,对自相关处理后的数据进行时延处理,即去除时延为零附近以及时延为最大值附近的数据。去除的数据长度视情况而定。Autocorrelation processing is performed on the noisy aliasing signal to reduce the random Gaussian noise signal in the aliasing signal. In order to further reduce the influence of the noise signal, the time delay processing is performed on the data after autocorrelation processing, that is, the time delay is removed as The data near zero and the delay is near the maximum value. The length of data to remove depends on the situation.
本1步骤还可使用的降噪方法包括:小波降噪法、中值滤波等方法,但自相关降噪方法在降噪过程中无需设定阀值,不会破坏信号的原来结构。The noise reduction methods that can also be used in this step 1 include: wavelet noise reduction method, median filter and other methods, but the autocorrelation noise reduction method does not need to set a threshold during the noise reduction process, and will not destroy the original structure of the signal.
步骤2:对降噪后的混合信号x(t)(其中t为时间序列)进行去均值以及稳健的白化预处理。Step 2: Perform de-meaning and robust whitening preprocessing on the noise-reduced mixed signal x(t) (where t is a time series).
该步骤所采用的稳健白化预处理方法为:The robust whitening preprocessing method used in this step is:
(A)计算降噪后的混合信号在不同时延τj下的协方差矩阵Cx(τj),为了使协方差矩阵具有更好的对称结构,将其调整为(A) Calculate the covariance matrix C x (τ j ) of the noise-reduced mixed signal at different time delays τ j , in order to make the covariance matrix have a better symmetrical structure, adjust it to
式中,j=1,2,…,J(J为时延个数且为自然数),T表示对矩阵的转置,将Mx(τj)构造成一个大的组合矩阵M,并进行奇异值分解,即In the formula, j=1, 2,..., J (J is the number of time delays and is a natural number), T represents the transposition of the matrix, constructs M x (τ j ) into a large combination matrix M, and performs singular value decomposition, that is
M=[Mx(τ1),…,Mx(τJ)](3)M=[M x (τ 1 ),..., M x (τ J )] (3)
M=U∑VT(4)M=U∑V T (4)
式中,U为与M矩阵维数相同的正交矩阵;∑为由M的奇异值组成的对角矩阵;V为正交矩阵。In the formula, U is an orthogonal matrix with the same dimension as M matrix; ∑ is a diagonal matrix composed of singular values of M; V is an orthogonal matrix.
(B)随机选取参数矩阵α=[α1,…,αj,…,αJ]T,对于每个时延τj,计算(B) Randomly select the parameter matrix α=[α 1 ,…,α j ,…,α J ] T , for each time delay τ j , calculate
fj=UTMx(τj)U(5)f j =U T M x (τ j )U(5)
进行线性组合有Doing a linear combination has
判断矩阵F是否满足正定性,如果矩阵F是正定的,那么转到(D),否则转到(C)。Judging whether the matrix F satisfies the positive definiteness, if the matrix F is positive definite, then go to (D), otherwise go to (C).
(C)根据矩阵F的最小特征值所对应的特征向量u来调整参数α,即(C) Adjust the parameter α according to the eigenvector u corresponding to the minimum eigenvalue of the matrix F, namely
然后转至(B),直到矩阵F满足正定性。Then go to (B) until matrix F satisfies positive definiteness.
(D)当随机选取的参数矩阵α满足正定性要求时,利用所选参数矩阵计算目标矩阵C,并对其作特征值分解,即:(D) When the randomly selected parameter matrix α meets the requirements of positive definiteness, use the selected parameter matrix to calculate the target matrix C, and perform eigenvalue decomposition on it, namely:
C=RDRT(9)C = RDR T (9)
当随机选取的参数矩阵α不满足正定性要求时,利用步骤(C)得到的参数矩阵α来计算目标矩阵C,并对其作特征值分解,即:When the randomly selected parameter matrix α does not meet the requirement of positive definiteness, the parameter matrix α obtained in step (C) is used to calculate the target matrix C, and its eigenvalue decomposition is performed, namely:
C=RDRT(11)C = RDR T (11)
式中,D为由目标矩阵C的特征值组成的对角矩阵,R为由各特征值对应的特征向量组成的特征向量矩阵;(E)求得白化矩阵Q=D-1/2RT,白化信号为z(t)=Qx(t)。In the formula, D is a diagonal matrix composed of eigenvalues of the target matrix C, and R is an eigenvector matrix composed of eigenvectors corresponding to each eigenvalue; (E) obtain the whitening matrix Q=D -1/2 R T , the whitening signal is z(t)=Qx(t).
步骤3:计算初始分离信号的二阶以及四阶累积量,并将二阶及四阶累积量矩阵的对角元素的平方和作为代价函数。实现过程如下:Step 3: Calculate the second-order and fourth-order cumulants of the initial separation signal, and use the sum of squares of the diagonal elements of the second-order and fourth-order cumulant matrices as a cost function. The implementation process is as follows:
设y(t)为初始分离信号,W为与混叠信号维数相同的初始正交分离矩阵,则y(t)=Wz(t)。初始分离信号的二阶及四阶累积量分别定义为:Let y(t) be the initial separation signal, and W be the initial orthogonal separation matrix with the same dimension as the aliasing signal, then y(t)=Wz(t). The second-order and fourth-order cumulants of the initial separation signal are defined as:
为实现各累积量矩阵的联合近似对角化,将累积量矩阵的对角元素的平方和作为代价函数,即In order to realize the joint approximate diagonalization of each cumulant matrix, the sum of the squares of the diagonal elements of the cumulant matrix is used as the cost function, namely
其中,N为源信号的个数。根据叠加原理,将式(13)的两个代价函数叠加得本发明的算法代价函数:Among them, N is the number of source signals. According to the principle of superposition, two cost functions of formula (13) are superimposed to obtain the algorithm cost function of the present invention:
ψ24=ψ2+ψ4(14)ψ 24 =ψ 2 +ψ 4 (14)
步骤4:通过最大化该代价函数,实现各累积量矩阵的联合近似对角化,得到分离矩阵和分离信号。Step 4: By maximizing the cost function, the joint approximate diagonalization of each cumulant matrix is realized to obtain the separation matrix and the separation signal.
在实现混叠信号分离的过程中,一般包含两个步骤:即信号白化及对白化后的信号进行正交旋转变换。具体阐述如下:In the process of realizing the separation of aliased signals, two steps are generally included: that is, signal whitening and performing orthogonal rotation transformation on the whitened signal. The details are as follows:
(1)对混叠信号的白化,以去除信号之间的相关性,降低后续步骤的计算复杂度。这一步骤的白化过程由步骤2实现。这里不赘述。(1) Whitening of aliased signals to remove the correlation between signals and reduce the computational complexity of subsequent steps. The whitening process of this step is realized by step 2. I won't go into details here.
(2)白化信号的正交变换。通常,最大化式(14)的代价函数,即为找一个正交分离矩阵P。(2) Orthogonal transformation of the whitening signal. Usually, maximizing the cost function of formula (14) is to find an orthogonal separation matrix P.
这里采用Givens旋转法求取一个正交分离矩阵。Here the Givens rotation method is used to obtain an orthogonal separation matrix.
得到的分离矩阵为白化矩阵与正交分离矩阵的乘积,即H=PQ。分离信号为s(t)=Hx(t)。The resulting separation matrix is the product of the whitening matrix and the orthogonal separation matrix, ie H=PQ. The separated signal is s(t)=Hx(t).
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN200910232300.1A CN101729157B (en) | 2009-12-11 | 2009-12-11 | Method for separating vibration signal blind sources under a kind of strong noise environment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN200910232300.1A CN101729157B (en) | 2009-12-11 | 2009-12-11 | Method for separating vibration signal blind sources under a kind of strong noise environment |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101729157A CN101729157A (en) | 2010-06-09 |
CN101729157B true CN101729157B (en) | 2016-02-17 |
Family
ID=42449467
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN200910232300.1A Expired - Fee Related CN101729157B (en) | 2009-12-11 | 2009-12-11 | Method for separating vibration signal blind sources under a kind of strong noise environment |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN101729157B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105788295A (en) * | 2014-12-26 | 2016-07-20 | 中国移动通信集团公司 | Traffic flow detection method and traffic flow detection device |
Families Citing this family (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101951619B (en) * | 2010-09-03 | 2013-01-02 | 电子科技大学 | Compressive sensing-based broadband signal separation method in cognitive network |
CN102288285B (en) * | 2011-05-24 | 2012-11-28 | 南京航空航天大学 | Blind source separation method for single-channel vibration signals |
CN102445650B (en) * | 2011-09-22 | 2014-09-24 | 重庆大学 | Circuit Fault Diagnosis Method Based on Blind Signal Separation Algorithm |
CN104180846A (en) * | 2014-04-22 | 2014-12-03 | 中国商用飞机有限责任公司北京民用飞机技术研究中心 | Signal analysis method and device applied to passenger plane structure health monitoring |
CN104359685A (en) * | 2014-11-24 | 2015-02-18 | 沈阳化工大学 | Diesel engine fault identification method |
CN104913355B (en) * | 2015-06-29 | 2017-10-27 | 珠海格力电器股份有限公司 | Noise treatment system, method and device of range hood |
CN105609112A (en) * | 2016-01-15 | 2016-05-25 | 苏州宾果智能科技有限公司 | Sound source positioning method and apparatus and time delay estimation method and apparatus |
CN105717543B (en) * | 2016-01-25 | 2018-07-13 | 浪潮(北京)电子信息产业有限公司 | A kind of noise drawing method and system |
CN106126479B (en) * | 2016-07-07 | 2019-04-12 | 重庆邮电大学 | Order Oscillating population blind source separation method based on hereditary variation optimization |
CN109684898A (en) * | 2017-10-18 | 2019-04-26 | 中国航发商用航空发动机有限责任公司 | Aero-engine and its vibration signal blind separating method and device |
CN109856252B (en) * | 2019-02-01 | 2021-03-16 | 南京信息工程大学 | Multimode lamb wave separation method based on frequency dispersion compensation and blind separation |
CN110792613B (en) * | 2019-09-18 | 2021-07-06 | 山东建筑大学 | A method for extracting weak signal modulation features of centrifugal pump |
CN111190049B (en) * | 2020-01-14 | 2022-04-05 | 洛阳师范学院 | A Method of Detecting Nanovolt-level Weak Sine Signals in Chaotic System Based on Principal Component Analysis |
CN112082792A (en) * | 2020-08-31 | 2020-12-15 | 洛阳师范学院 | A fault diagnosis method for rotating machinery based on MF-JADE |
CN112326017B (en) * | 2020-09-28 | 2022-01-04 | 南京航空航天大学 | A Weak Signal Detection Method Based on Improved Semi-Classical Signal Analysis |
CN113432876B (en) * | 2021-06-24 | 2022-04-19 | 西安电子科技大学 | Conjugate gradient method-based aeroengine main shaft bearing fault signal blind extraction method |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1656485A (en) * | 2002-04-22 | 2005-08-17 | 哈里公司 | Blind source separation utilizing a spatial fourth order cumulant matrix pencil |
CN101242626A (en) * | 2007-02-09 | 2008-08-13 | 捷讯研究有限公司 | Apparatus and method for filtering a receive signal |
CN101546993A (en) * | 2009-04-23 | 2009-09-30 | 华为技术有限公司 | Method and device for whitening filtration with self-adapting iterations |
-
2009
- 2009-12-11 CN CN200910232300.1A patent/CN101729157B/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1656485A (en) * | 2002-04-22 | 2005-08-17 | 哈里公司 | Blind source separation utilizing a spatial fourth order cumulant matrix pencil |
CN101242626A (en) * | 2007-02-09 | 2008-08-13 | 捷讯研究有限公司 | Apparatus and method for filtering a receive signal |
CN101546993A (en) * | 2009-04-23 | 2009-09-30 | 华为技术有限公司 | Method and device for whitening filtration with self-adapting iterations |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105788295A (en) * | 2014-12-26 | 2016-07-20 | 中国移动通信集团公司 | Traffic flow detection method and traffic flow detection device |
Also Published As
Publication number | Publication date |
---|---|
CN101729157A (en) | 2010-06-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101729157B (en) | Method for separating vibration signal blind sources under a kind of strong noise environment | |
CN107301381A (en) | Recognition Method of Radar Emitters based on deep learning and multi-task learning strategy | |
Romberg et al. | Multiscale classification using complex wavelets and hidden Markov tree models | |
CN105393305A (en) | Method for processing acoustic signal | |
CN105334537B (en) | Primary wave based on alternately division Bregman iterative algorithm and repeatedly ripple separation method | |
CN102419972B (en) | A method of sound signal detection and recognition | |
CN108877831B (en) | Blind source separation rapid method and system based on multi-standard fusion frequency point screening | |
CN105427264A (en) | Image reconstruction method based on group sparsity coefficient estimation | |
CN108768543A (en) | Self-adaptive processing algorithm when multiple features fusion cognition type underwater sound communication is empty fast | |
CN103295193A (en) | Cross-power spectrum based blind source separation method | |
CN104008536A (en) | Multi-focus noise image fusion method based on CS-CHMT and IDPCNN | |
CN112992173B (en) | Signal separation and denoising method based on improved BCA blind source separation | |
CN112183225B (en) | Underwater target signal feature extraction method based on probability latent semantic analysis | |
CN104978716A (en) | SAR image noise reduction method based on linear minimum mean square error estimation | |
CN111968669A (en) | Multi-element mixed sound signal separation method and device | |
CN103903631B (en) | Voice signal blind separating method based on Variable Step Size Natural Gradient Algorithm | |
CN104536007B (en) | Fish identification method based on multi-perspective acoustic data | |
CN104408027A (en) | Underdetermined blind identification method based on general covariance and tensor decomposition | |
CN103606133A (en) | Image denoising method based on analytical sparse representation | |
CN112201276B (en) | Microphone array speech separation method based on TC-ResNet network | |
CN111508528B (en) | No-reference audio quality evaluation method and device based on natural audio statistical characteristics | |
CN102289800B (en) | Contourlet domain image denoising method based on Treelet | |
Fouladi et al. | Denoising based on multivariate stochastic volatility modeling of multiwavelet coefficients | |
CN101127084A (en) | Scanning Image Denoising Method Based on Blind Source Separation | |
CN106803089A (en) | Method based on non-linear principal component analysis separate picture information from image sequence |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20160217 |