CN101721743A - Method for strengthening joint stability by using rhBMP-2 release coating on surface of artificial joint - Google Patents
Method for strengthening joint stability by using rhBMP-2 release coating on surface of artificial joint Download PDFInfo
- Publication number
- CN101721743A CN101721743A CN200910312220A CN200910312220A CN101721743A CN 101721743 A CN101721743 A CN 101721743A CN 200910312220 A CN200910312220 A CN 200910312220A CN 200910312220 A CN200910312220 A CN 200910312220A CN 101721743 A CN101721743 A CN 101721743A
- Authority
- CN
- China
- Prior art keywords
- bmp
- rhbmp
- joint
- artificial
- coating
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Prostheses (AREA)
- Materials For Medical Uses (AREA)
Abstract
The invention discloses a method for strengthening joint stability by using an rhBMP-2 release coating on the surface of an artificial joint, which relates to a method for strengthening the joint stability. The invention solves the problem that a function of inducing the bone formation of BMP-2 is difficult to realize in the whole process of forming a new bone by using a method of combining an HA coating and the BMP-2 on the surface of the traditional artificial joint, and the action time of the release is not controllable by using a method of combining the BMP-2 and polyethylene glycol. The method comprises the following steps of: 1, adding EC and PEG 4000 into chloroform, ultrasonically dissolving the EC and PEG 4000, adding BMP-2 and carrying out ultrasonic dispersion to obtain a BMP-2 mixed liquid; and 2, spraying the BMP-2 mixed liquid on an artificial thighbone steam, placing the artificial thighbone steam in an ultra-clean working table to air, packaging into a seal bag, and sterilizing the seal bag at a low temperature to complete the process. The invention has the advantages of even and tight combination of the rhBMP-2 release coating and the joint surface, smooth coating layer, difficult damage, strengthened stability of the artificial joint and adjustable release performance.
Description
Technical field
The present invention relates to strengthen the method for stability of joint.
Background technology
The prosthetic replacement has become orthopaedics conventional therapy means, but the loosening of prosthese is the primary complication of artificial joint replacement.Stability is the key of decision joint service life and application quality, and for the fixed artificial joint of biomechanics, the synostosis degree at interface is its stable determiner.It is a complexity of being regulated by multiple factor and orderly process that osseous tissue forms, bone morphogenetic protein (BMP) is the somatomedin of wherein unique inducing mesenchymal cell separately to the differentiation of osseous tissue direction, it is the regulatory factor of most critical in the osseous tissue forming process, adjusting by the pair cell acceptor levels, collaborative with other factor, inducing cell transforms to bone and cartilage direction.
At present, artificial joint adopts HA (hydroxyapatite hydroxyapatite) coating more, and the prosthese of HA coating is in the fastness that combines that promotes between prosthese and the bone, and accelerates prosthese stability aspect very big effect is all arranged; But the HA coating can only play certain bone conduction effect, will progressively degrade in vivo, and bone-inducing factor and osteocyte can not be provided, and finally still can influence prosthesis stability, causes joint mobilization.The example that adopts the HA coating to combine with BMP-2 on the artificial joint surface is also arranged, but directly use BMP-2 is disposable dispensing, and be applied to the very fast diluted and tissue absorption of intravital BMP-2, very short (t1/2<0.1day) of BMP-2 half-life simultaneously, do not meet the natural law of BMP-2 induced osteogenesis, cause BMP-2 to be difficult to its induced osteogenesis effect of performance in new osteoplastic overall process.Adopt BMP-2 and the research that Polyethylene Glycol (PEG) combines in addition, reached the effect of slow release, but the time of the effect of slow release is uncontrollable.
Summary of the invention
The present invention exists BMP-2 to be difficult to bring into play its induced osteogenesis effect in new osteoplastic overall process for the method that solves existing artificial joint surface and adopt the HA coating to combine with BMP-2; There is uncontrollable problem action time of slow release in the method that adopts BMP-2 to combine with Polyethylene Glycol, and the method for strengthening joint stability by using rhBMP-2 release coating on surface of artificial joint is provided.
The method of strengthening joint stability by using rhBMP-2 release coating on surface of artificial joint realizes according to the following steps: one, the ethyl cellulose (EC) of 35~60mg and the Polyethylene Glycol (PEG) 4000 of 8~12mg are joined in the chloroform of 1.5~3ml, then at 25 ℃ of following ultrasonic dissolutions, the BMP-2 that adds 1mg again gets the BMP-2 mixed liquor behind the ultra-sonic dispersion; Two, the BMP-2 mixed liquor is sprayed on the artificial femur handle, places superclean bench to dry then, be packaged in the sealed bag, cold sterilization is promptly finished; Wherein BMP-2 mixed liquor coating thickness is 30 ± 10 μ m in the step 2.
Polyethylene Glycol (PEG) chemical constitution that the present invention adopts: HO (CH
2CH
2O)
nH is formed by ethylene oxide polymerization, has the extensive compatibility with all kinds of solvents, be good solvent and solubilizing agent, stable, not perishable, drug compatibility is good, promote the release and the absorption of medicine, and make medical surfaces glossy and level and smooth, simultaneously not fragile; Ethyl cellulose (EC) chemical constitution that adopts: [C
6H
7O
2(OC
2H
5)
3]
n, have good physical stability, in aspects such as medicament slow release release performance unique effect, the difference of consumption can effectively be regulated release rate of drugs.The present invention is mixed and made into artificial joint handle controlled-release coating with rhBMP-2, EC and PEG, rhBMP-2 is combined with articular surface evenly, closely, coating is smooth, loss is little in the art, not fragile, can reach the good slow release effect by the effect of EC again, artificial joint stability strengthens.Do not use materials such as PLGA among the present invention, do not need pharmaceutical protein is prepared into microsphere earlier yet.The present invention utilizes that protein self has formed microgranule in the medicament freeze-drying powder, then this microgranule is dispersed in (protein microbeads remains unchanged in this process) in the chloroformic solution with slow-releasing and controlled-releasing action material by the simple physics operation, volatilizes solvent and form the medicament slow release system.Sustained release performance of the present invention can be adjusted as required voluntarily, delays drug release as needs, and the ratio that increases ethyl cellulose gets final product; Accelerate drug release as needs, then only need to increase the ratio of PEG4000, the slow-release time easy-regulating.
Description of drawings
Fig. 1 is that the X line of implanting HA coating prosthese in the specific embodiment seven is taken the photograph sheet figure; Fig. 2 is that the X line of implanting non-slow release rhBMP-2 coating prosthese in the specific embodiment seven is taken the photograph sheet figure; Fig. 3 is that the X line of implantation slow release rhBMP-2 coating prosthese in the specific embodiment seven is taken the photograph sheet figure; Fig. 4 is the CT figure that implants HA coating prosthese in the specific embodiment seven; Fig. 5 is the CT figure that implants non-slow release rhBMP-2 coating prosthese in the specific embodiment seven; Fig. 6 is the CT figure of implantation slow release rhBMP-2 coating prosthese in the specific embodiment seven.
The specific embodiment
Technical solution of the present invention is not limited to the following cited specific embodiment, also comprises the combination in any between each specific embodiment.
The specific embodiment one: the method for present embodiment strengthening joint stability by using rhBMP-2 release coating on surface of artificial joint realizes according to the following steps: one, the ethyl cellulose (EC) of 35~60mg and the Polyethylene Glycol (PEG) 4000 of 8~12mg are joined in the chloroform of 1.5~3ml, then at 25 ℃ of following ultrasonic dissolutions, the BMP-2 that adds 1mg again gets the BMP-2 mixed liquor behind the ultra-sonic dispersion; Two, the BMP-2 mixed liquor is sprayed on the artificial femur handle, places superclean bench to dry then, be packaged in the sealed bag, cold sterilization is promptly finished; Wherein BMP-2 mixed liquor coating thickness is 30 ± 10 μ m in the step 2.
Artificial femur handle will be 70% ethanol scouring sterilization with mass concentration in the present embodiment.
Artificial femur handle is the artificial femur handle of existing various materials in the present embodiment, and has the HA coating on the artificial femur handle.
The specific embodiment two: what present embodiment and the specific embodiment one were different is in the step 1 ethyl cellulose (EC) of 35mg and the Polyethylene Glycol (PEG) 4000 of 8mg to be joined in the chloroform of 1.5ml.Other step and parameter are identical with the specific embodiment one.
The specific embodiment three: what present embodiment and the specific embodiment one were different is in the step 1 ethyl cellulose (EC) of 60mg and the Polyethylene Glycol (PEG) 4000 of 12mg to be joined in the chloroform of 3ml.Other step and parameter are identical with the specific embodiment one.
The specific embodiment four: what present embodiment and the specific embodiment one were different is in the step 1 ethyl cellulose (EC) of 40~55mg and the Polyethylene Glycol (PEG) 4000 of 9~11mg to be joined in the chloroform of 2~2.5ml.Other step and parameter are identical with the specific embodiment one.
The specific embodiment five: what present embodiment and the specific embodiment one were different is in the step 1 ethyl cellulose (EC) of 45mg and the Polyethylene Glycol (PEG) 4000 of 10mg to be joined in the chloroform of 2.8ml.Other step and parameter are identical with the specific embodiment one.
The specific embodiment six: what present embodiment and the specific embodiment one were different is in the step 1 ethyl cellulose (EC) of 50mg and the Polyethylene Glycol (PEG) 4000 of 11mg to be joined in the chloroform of 2ml.Other step and parameter are identical with the specific embodiment one.
The specific embodiment seven: the method for present embodiment strengthening joint stability by using rhBMP-2 release coating on surface of artificial joint realizes according to the following steps: one, the ethyl cellulose (EC) of 35~60mg and the Polyethylene Glycol (PEG) 4000 of 8~12mg are joined in the chloroform of 1.5~3ml, then at 25 ℃ of following ultrasonic dissolutions, the BMP-2 that adds 1mg again gets the BMP-2 mixed liquor behind the ultra-sonic dispersion; Two, the BMP-2 mixed liquor is sprayed on the artificial femur handle, places superclean bench to dry then, be packaged in the sealed bag, cold sterilization is promptly finished; Wherein BMP-2 mixed liquor coating thickness is 30 ± 10 μ m in the step 2.
Adopt the method for strengthening joint stability by using rhBMP-2 release coating on surface of artificial joint in the present embodiment, preparation gained artificial joint, be used for zoopery: 7 healthy adult dogs, male and female are not limit, the about 12-15kg of body weight, observe, raise by Clinical Medicine College No.1, Harbin Medical Univ.'s experimental surgery, determine to experimentize after animal health, the free from infection.Be divided into three groups (A, B, C groups) at random, 2 of A groups are implanted HA coating prosthese, and 2 of B groups are implanted non-slow release rhBMP-2 coating prosthese; 3 of C groups, slow release rhBMP-2 coating prosthese was observed 2 months.Put to death experimental animal in 8 weeks of postoperative, along the complete taking-up of former operative approach left side hind leg femur.
The animal after-operation response: clear-headed in laboratory animal postoperative 1~2h, second day after operation is pulled out drainage tube, and each dog all can normally be taken food, and wound healing is all right, and postoperative was taken out stitches on the 12nd day, did not see obvious inflammatory reaction and disruption of wound; But dog opens four-footed and stands up and walk in the activity of standing of three days tripodias of second day after operation to the about 20 days, gait is recovered normally gradually, and it is movable unusual not have dislocation and art limb; Postoperative does not have digestion, breathes the generation that waits other system's complication.
Observe: put to death experimental animal in 8 weeks of postoperative, along the complete taking-up of former operative approach left side hind leg femur.
Experimental dog is all healthy when drawing materials, and left side hind leg outward appearance is no abnormal, soft tissue NIP reaction performance; After drawing materials, see that all Periprosthetics do not have obvious inflammatory reaction, the good non-corroding performance of artificial thigh bone lustrous surface.
The X line is taken the photograph sheet and CT examination: check that the synostosis scope that has or not lucent area, Periprosthetic between prosthese and bone bed and eburnation degree, Periprosthetic sclerotin have or not absorption.
The X line is taken the photograph sheet and CT examination result, shown in Fig. 1,2,3,4,5 and 6, around the HA coating group new bone formation shadow is arranged, and peripheral clearance is more obvious, and boundary is clear between cortical bone, near the prosthese side low-density shadow is arranged; Non-slow release rhBMP-2 coating group prosthese shank has freshman bone tissue's shadow, but does not cover prosthese fully as yet, and area of new bone density is lower than the peripheral cortex bone; Do not had obvious boundary around the slow release rhBMP-2 coating group prosthese handle and between the archipallium bone, the gap is not obvious, and area of new bone density and surrounding bone are suitable.
Osseous tissue morphometric and stereologic analysis: the synostosis rate of measuring three groups of prosthese outer boundaries, calculate the synostosis rate by following formula: synostosis rate (%)=B1/A1 * 100%, wherein Al is the total length that bone contacts with prosthese, and B1 is that bone and prosthese are synosteotic physical length; As a result, the prosthese outer boundary synostosis rate of HA coating group is X ± S=27.68 ± 5.91, and the prosthese outer boundary synostosis rate of non-slow release group is X ± S=58.22 ± 11.74, and the prosthese outer boundary synostosis rate of slow release group is X ± S=89.44 ± 2.55.
Statistical procedures: use the Spss software kit to carry out statistical analysis, the measurement data data represent that with mean scholar standard deviation two groups of indexs relatively adopt the between group variable analysis.P<0.05 expression significant difference, P<0.01 expression difference highly significant.
Result: the synostosis rate of three class boundary faces is carried out variance analysis, F=1.070E3, p<0.01, illustrate between each group and have highly significant difference, slow release rhBMP-2 coating group and non-slow release rhBMP-2 coating group compare between organizing, F=52.481, F=27.400 is compared in p<0.01 between controlled-release coating group and HA organize, p<0.01, between organizing, non-controlled-release coating group and HA compare F=11.651, p<0.01, the difference that all has highly significant between each synostosis rate of organizing is described, the prosthese outer boundary synostosis rate height of slow release group.
Claims (6)
1. the method for strengthening joint stability by using rhBMP-2 release coating on surface of artificial joint, the method that it is characterized in that strengthening joint stability by using rhBMP-2 release coating on surface of artificial joint realizes according to the following steps: one, the ethyl cellulose of 35~60mg and the Macrogol 4000 of 8~12 mg are joined in the chloroform of 1.5~3ml, then at 25 ℃ of following ultrasonic dissolutions, the BMP-2 that adds 1 mg again gets the BMP-2 mixed liquor behind the ultra-sonic dispersion; Two, the BMP-2 mixed liquor is sprayed on the artificial femur handle, places superclean bench to dry then, be packaged in the sealed bag, cold sterilization is promptly finished; Wherein BMP 2 mixed liquor coating thickness are 30 ± 10 μ m in the step 2.
2. the method for strengthening joint stability by using rhBMP-2 release coating on surface of artificial joint according to claim 1 is characterized in that in the step 1 ethyl cellulose of 35mg and the Macrogol 4000 of 8mg being joined in the chloroform of 1.5ml.
3. the method for strengthening joint stability by using rhBMP-2 release coating on surface of artificial joint according to claim 1 is characterized in that in the step 1 ethyl cellulose of 60mg and the Macrogol 4000 of 12mg being joined in the chloroform of 3ml.
4. the method for strengthening joint stability by using rhBMP-2 release coating on surface of artificial joint according to claim 1 is characterized in that in the step 1 ethyl cellulose of 40~55mg and the Macrogol 4000 of 9~11mg being joined in the chloroform of 2~2.5ml.
5. the method for strengthening joint stability by using rhBMP-2 release coating on surface of artificial joint according to claim 1 is characterized in that in the step 1 ethyl cellulose of 45mg and the Macrogol 4000 of 10mg being joined in the chloroform of 2.8ml.
6. the method for strengthening joint stability by using rhBMP-2 release coating on surface of artificial joint according to claim 1 is characterized in that in the step 1 ethyl cellulose of 50mg and the Macrogol 4000 of 11mg being joined in the chloroform of 2ml.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN200910312220A CN101721743B (en) | 2009-12-24 | 2009-12-24 | Method for strengthening joint stability by using rhBMP-2 release coating on surface of artificial joint |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN200910312220A CN101721743B (en) | 2009-12-24 | 2009-12-24 | Method for strengthening joint stability by using rhBMP-2 release coating on surface of artificial joint |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101721743A true CN101721743A (en) | 2010-06-09 |
CN101721743B CN101721743B (en) | 2012-09-05 |
Family
ID=42443684
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN200910312220A Expired - Fee Related CN101721743B (en) | 2009-12-24 | 2009-12-24 | Method for strengthening joint stability by using rhBMP-2 release coating on surface of artificial joint |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN101721743B (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105420229A (en) * | 2016-01-08 | 2016-03-23 | 中南大学 | Lysis solution and method for extracting ancient biological bone DNA |
CN110433342A (en) * | 2019-08-20 | 2019-11-12 | 曲彦隆 | A kind of preparation method of compound VEGF and rhBMP-2 biphase coating articular prosthesis |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1086591C (en) * | 1998-12-21 | 2002-06-26 | 冶金工业部钢铁研究总院 | Artificial joint coated with bone morphogenesis protein and its making method |
CN1325124C (en) * | 2003-11-21 | 2007-07-11 | 王岩 | Artificial biological prothesis, and its prepn. method |
-
2009
- 2009-12-24 CN CN200910312220A patent/CN101721743B/en not_active Expired - Fee Related
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105420229A (en) * | 2016-01-08 | 2016-03-23 | 中南大学 | Lysis solution and method for extracting ancient biological bone DNA |
CN110433342A (en) * | 2019-08-20 | 2019-11-12 | 曲彦隆 | A kind of preparation method of compound VEGF and rhBMP-2 biphase coating articular prosthesis |
Also Published As
Publication number | Publication date |
---|---|
CN101721743B (en) | 2012-09-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Zhang et al. | Advanced biomaterials for repairing and reconstruction of mandibular defects | |
US10456450B2 (en) | Compositions and methods for treating rotator cuff injuries | |
FRAKENBURG et al. | Biomechanical and histological evaluation of a calcium phosphate cement | |
Wieding et al. | Biomechanical stability of novel mechanically adapted open-porous titanium scaffolds in metatarsal bone defects of sheep | |
Zheng et al. | Promotion of tendon growth into implant through pore-size design of a Ti-6Al-4 V porous scaffold prepared by 3D printing | |
EP3244830B1 (en) | Device for tendon and ligament reconstruction | |
CN103025335A (en) | Corrosion current-generating metal particulates and use thereof | |
CN108135702A (en) | Implantation material and application method with oxidation sterol drug loading | |
CN110180027A (en) | Demineralised bone matrix with improved operating characteristics | |
CN113749825B (en) | Frame type bone joint prosthesis and preparation method and application thereof | |
Aronin et al. | Osteogenic differentiation of dura mater stem cells cultured in vitro on three-dimensional porous scaffolds of poly (ε-caprolactone) fabricated via co-extrusion and gas foaming | |
Tabernero et al. | Supercritical carbon dioxide and biomedicine: Opening the doors towards biocompatibility | |
CN101721743B (en) | Method for strengthening joint stability by using rhBMP-2 release coating on surface of artificial joint | |
WO2018209579A1 (en) | Composite scaffold containing drug | |
Lee et al. | Modular endoprosthesis for mandibular reconstruction: a preliminary animal study | |
Rush et al. | Implantation of a titanium partial limb prosthesis in a white-naped crane (Grus vipio) | |
Cakir et al. | Retro-orbital intraconal fat injection: an experimental study in rabbits | |
CN104740613B (en) | Application of adiponectin in preparing medicine for treating fracture | |
ITOH et al. | Femoral nonunion fracture treated with recombinant human bone morphogenetic protein-2 in a dog | |
Duan et al. | Effects of mechanical loading on the degradability and mechanical properties of the nanocalcium-deficient hydroxyapatite–multi (amino acid) copolymer composite membrane tube for guided bone regeneration | |
Zhou et al. | Nanomaterials in the sports rehabilitation of basketball players after anterior cruciate ligament reconstruction | |
Weiss et al. | Graft selection in surgicalreconstruction of the multiple-ligament-injured knee | |
Gomoll et al. | Technical enhancements and update on chondrocyte implantation | |
Jordan et al. | Controversies in enucleation technique and implant selection: whether to wrap, attach muscles, and peg? | |
TW201900226A (en) | Drug-containing composite scaffold |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C17 | Cessation of patent right | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20120905 Termination date: 20131224 |