CN101719752B - Method and device for detecting rotor position of brushless motor - Google Patents

Method and device for detecting rotor position of brushless motor Download PDF

Info

Publication number
CN101719752B
CN101719752B CN2009102191642A CN200910219164A CN101719752B CN 101719752 B CN101719752 B CN 101719752B CN 2009102191642 A CN2009102191642 A CN 2009102191642A CN 200910219164 A CN200910219164 A CN 200910219164A CN 101719752 B CN101719752 B CN 101719752B
Authority
CN
China
Prior art keywords
signal
rotor position
refs
cosine
resolver
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN2009102191642A
Other languages
Chinese (zh)
Other versions
CN101719752A (en
Inventor
周奇勋
李声晋
卢刚
刘鹏
周勇
季新杰
张举中
赵凯
张玉峰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NANTONG WANBAO INDUSTRY Co Ltd
Northwestern Polytechnical University
Original Assignee
Northwestern Polytechnical University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northwestern Polytechnical University filed Critical Northwestern Polytechnical University
Priority to CN2009102191642A priority Critical patent/CN101719752B/en
Publication of CN101719752A publication Critical patent/CN101719752A/en
Application granted granted Critical
Publication of CN101719752B publication Critical patent/CN101719752B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Transmission And Conversion Of Sensor Element Output (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

The invention relates to a method and a device for detecting the position of a rotor of a brushless motor, which are characterized in that a rotary transformer and the rotor of a tested brushless motor are arranged coaxially, the rotary transformer outputs two paths of orthogonal high-frequency sine-cosine signals containing information about the position of the rotor, and the information about the position of the rotor is obtained by the methods such as signal conditioning or resolving and the like. The most widely applied integrated chip at present adopting a special Resolver-to-Digital converter (RDC for short) and the like and a peripheral configuration circuit are used for performing resolving, and a special resolving chip of the type is sensitive to signals and has no fault-tolerantfunction, so the reliability is difficult to guarantee. The device of the invention is provided with a simple signal conditioning circuit on the basis of an RDC functional circuit to realize the detection of the position of the rotor of the brushless motor with self-monitoring and fault tolerance functions.

Description

一种检测无刷电机转子位置的方法及装置Method and device for detecting rotor position of brushless motor

技术领域technical field

本发明涉及一种检测无刷电机转子位置的方法及装置,属于无刷电机控制系统的转子位置的检测方法及其装置。The invention relates to a method and a device for detecting the rotor position of a brushless motor, belonging to a method and a device for detecting the rotor position of a brushless motor control system.

背景技术Background technique

无刷电机控制系统的关键技术之一是转子位置的检测,只有检测出转子实际空间位置(绝对位置)后,控制系统才能决定逆变器的通电方式、控制模式及输出电流的频率和相位,以保证无刷电机的正常工作。因而,精确的转子位置检测装置是非常重要的。位置检测装置一旦出现故障,电机换相逻辑就会出现混乱,输出转矩降低、速度下降直至停转。在一些可靠性要求高或者某些特定的场合,如:国防、航空航天等,电机的停转可能造成人身伤亡和财产的损失。这就要求在位置信号出现故障时,尽可能的让电机能够继续正常工作,而不影响整个系统的功能,在停机时再进行故障处理。因此,提高无刷电机转子位置信号的可靠性是十分必要的。One of the key technologies of the brushless motor control system is the detection of the rotor position. Only after the actual spatial position (absolute position) of the rotor is detected, the control system can determine the power-on mode, control mode, and frequency and phase of the output current of the inverter. To ensure the normal operation of the brushless motor. Therefore, an accurate rotor position detection device is very important. Once the position detection device fails, the commutation logic of the motor will be confused, the output torque will decrease, the speed will decrease until it stops. In some occasions with high reliability requirements or certain specific occasions, such as: national defense, aerospace, etc., the stalling of the motor may cause personal injury and property loss. This requires that when the position signal fails, the motor can continue to work as much as possible without affecting the function of the entire system, and then troubleshoot when it is shut down. Therefore, it is very necessary to improve the reliability of the brushless motor rotor position signal.

常用的检测无刷电机转子位置的传感器有绝对式光栅编码器、霍尔传感器和旋转变压器。绝对式光栅编码器直接将转轴角度转换成数字信号,应用简单方便,但因环境适应性、价格等因素致使难以广泛应用;霍尔传感器结构简单,但难以达到高精度角度测量要求而受到限制,旋转变压器因结构可靠、实时性好、环境适应性强等优点而广泛应用于高精度伺服系统中。Commonly used sensors for detecting the rotor position of brushless motors include absolute grating encoders, Hall sensors and resolvers. The absolute grating encoder directly converts the angle of the rotating shaft into a digital signal, which is simple and convenient to use, but it is difficult to be widely used due to factors such as environmental adaptability and price; the Hall sensor has a simple structure, but it is difficult to meet the requirements of high-precision angle measurement and is limited. Due to the advantages of reliable structure, good real-time performance, and strong environmental adaptability, resolvers are widely used in high-precision servo systems.

目前国内外的大量文献与专利中,对无刷电机转子位置检测的研究只局限于位置信号的调理方法,对无刷电机转子位置检测可靠性的研究仅限于霍尔位置传感器,而对于采用旋转变压器的无刷电机转子位置检测方法难以满足国防以及航空航天等高可靠些要求的领域。At present, in a large number of documents and patents at home and abroad, the research on the rotor position detection of brushless motors is limited to the conditioning method of the position signal, and the research on the reliability of the rotor position detection of brushless motors is limited to the Hall position sensor. The transformer brushless motor rotor position detection method is difficult to meet the high reliability requirements of national defense and aerospace.

采用旋转变压器作为无刷电机转子位置检测装置时,旋转变压器输出两路包含转子位置信息并正交的高频正余弦信号,必须通过信号调理或解算等方法才能获得转子位置信息,目前应用最为广泛的是采用专用轴角数字转换器(Resolver-to-DigitalConverter,简为RDC)等集成芯片加外围配置电路进行解算,此类专用解算芯片对信号较为敏感并无容错功能,因此可靠性难以保障。When a resolver is used as the rotor position detection device of a brushless motor, the resolver outputs two high-frequency sinusoidal signals that contain rotor position information and are orthogonal to each other. The rotor position information must be obtained through signal conditioning or calculation methods, which is currently the most widely used. It is widely used integrated chips such as dedicated Resolver-to-Digital Converter (RDC) plus peripheral configuration circuits for solving. This kind of special solving chip is sensitive to signals and has no fault tolerance function, so the reliability Difficult to guarantee.

发明内容Contents of the invention

要解决的技术问题technical problem to be solved

为了避免现有技术的不足之处,本发明提出一种检测无刷电机转子位置的方法及装置,具有自监测与容错功能,大大提高了无刷电机伺服系统的可靠性。In order to avoid the deficiencies of the prior art, the present invention proposes a method and device for detecting the rotor position of a brushless motor, which has self-monitoring and fault tolerance functions, and greatly improves the reliability of the brushless motor servo system.

技术方案Technical solutions

一种检测无刷电机转子位置的方法,其特征在于将旋转变压器与被测无刷电机的转子同轴安装,检测无刷电机转子位置的具体步骤如下:A method for detecting the rotor position of a brushless motor, characterized in that a resolver is installed coaxially with the rotor of the brushless motor to be tested, and the specific steps for detecting the rotor position of the brushless motor are as follows:

步骤1:将旋转变压器副边输出的两路包含转子位置角θ信息并正交的信号进行差分转单端,得到单端正弦信号Es(t,θ)=Esin(ωt)sin(θ)和单端余弦信号Ec(t,θ)=Esin(ωt)cos(θ);所述的两路包含转子位置角θ信息并正交的信号为:高频正弦差分信号Es+(t,θ)和Es-(t,θ),高频余弦差分信号Ec+(t,θ)和Ec-(t,θ);其中:E为信号的有效值,ω为正弦激励电路产生的参考信号Refs的角频率;Step 1: Convert the two quadrature signals output by the secondary side of the resolver containing the information of the rotor position angle θ to differential to single-ended to obtain a single-ended sinusoidal signal E s (t, θ) = Esin(ωt)sin(θ) and single-ended cosine signal E c (t, θ)=Esin(ωt)cos(θ); the two-way signals containing rotor position angle θ information and orthogonal signals are: high-frequency sinusoidal differential signal E s+ (t, θ) and E s- (t, θ), high-frequency cosine differential signals E c+ (t, θ) and E c- (t, θ); where: E is the effective value of the signal, ω is the signal generated by the sine excitation circuit the angular frequency of the reference signal Refs;

步骤2:将输入到旋转变压器的由正弦激励电路产生的正弦差分信号Refs+和Refs-转变为单端正弦参考信号-Refs=Esin(ωt);Step 2: Convert the sinusoidal differential signals Refs+ and Refs- generated by the sinusoidal excitation circuit input to the resolver into a single-ended sinusoidal reference signal -Refs=Esin(ωt);

步骤3:将单端正弦信号Es(t,θ)与参考信号Refs进行叠加得到信号Refs+Es(t,θ),将单端余弦信号Ec(t,θ)与Refs叠加得到信号Refs+Ec(t,θ);Step 3: superimpose the single-ended sine signal E s (t, θ) and the reference signal Refs to obtain the signal Refs+E s (t, θ), and superimpose the single-ended cosine signal E c (t, θ) and Refs to obtain the signal Refs+E c (t, θ);

步骤4:将Refs+Es(t,θ)和Refs+Ec(t,θ)中的高频部分进行滤除,得到包含转子位置信息的模拟低频正弦信号Es(θ)=Esin(θ)+E和低频余弦信号Ec(θ)=Ecos(θ)+E;Step 4: Filter out the high-frequency part in Refs+E s (t, θ) and Refs+E c (t, θ) to obtain an analog low-frequency sinusoidal signal E s (θ)=Esin( θ)+E and low frequency cosine signal E c (θ)=Ecos(θ)+E;

步骤5:将模拟低频正弦信号Es(θ)=Esin(θ)+E和余弦信号Ec(θ)=Ecos(θ)+E转换成数字正弦信号Es *(θ)和数字余弦信号Ec *(θ);Step 5: Convert the analog low-frequency sinusoidal signal E s (θ) = Esin(θ) + E and cosine signal E c (θ) = Ecos(θ) + E into digital sine signal E s * (θ) and digital cosine signal E c * (θ);

步骤6:求取数字信号Es *(θ)和Ec *(θ)的平均值U;Step 6: Calculate the average U of the digital signals E s * (θ) and E c * (θ);

步骤7:将数字正弦信号Es *(θ)减去U,得到正弦信号输入量Y,将数字余弦信号Ec *(θ)减去U,得到余弦信号输入量X;Step 7: Subtract U from the digital sine signal E s * (θ) to obtain the input quantity Y of the sine signal, and subtract U from the digital cosine signal E c * (θ) to obtain the input quantity X of the cosine signal;

步骤8:根据正弦信号输入量Y和余弦信号输入量X判断电机转子位置所在象限:Step 8: Determine the quadrant of the rotor position of the motor according to the sine signal input value Y and the cosine signal input value X:

当X≥0且Y≥0时,电机转子位置θ落在0~90°范围内;When X≥0 and Y≥0, the rotor position θ of the motor falls within the range of 0° to 90°;

当X<0且Y≥0时,电机转子位置θ落在90°~180°范围内;When X<0 and Y≥0, the motor rotor position θ falls within the range of 90°~180°;

当X<0且Y<0时,电机转子位置θ落在180°~270°范围内;When X<0 and Y<0, the motor rotor position θ falls within the range of 180°~270°;

当X≥0且Y<0时,电机转子位置θ落在270°~360°范围内;When X≥0 and Y<0, the motor rotor position θ falls within the range of 270°~360°;

步骤9:将X、Y映射到第一象限,利用CORDIC算法计算出角度值

Figure G2009102191642D00031
然后根据上一步骤中θ所在的象限确定电机转子位置θ:Step 9: Map X and Y to the first quadrant, and use the CORDIC algorithm to calculate the angle value
Figure G2009102191642D00031
Then determine the motor rotor position θ according to the quadrant where θ is located in the previous step:

当0<θ≤90°时,电机转子位置

Figure G2009102191642D00032
When 0<θ≤90°, the motor rotor position
Figure G2009102191642D00032

当90°<θ≤180°时,电机转子位置

Figure G2009102191642D00033
When 90°<θ≤180°, the motor rotor position
Figure G2009102191642D00033

当180°<θ≤270°时,电机转子位置 When 180°<θ≤270°, the motor rotor position

当270°<θ≤360°时,电机转子位置

Figure G2009102191642D00035
When 270°<θ≤360°, the motor rotor position
Figure G2009102191642D00035

当旋转变压器输出信号发生故障时,检测无刷电机转子位置的具体步骤如下:When the resolver output signal fails, the specific steps to detect the rotor position of the brushless motor are as follows:

步骤a:计算电机在两次采样间隔中旋转的角度Δθ=ωrΔT,其中ωr为电机转速,单位为rad/s,模数转换的采样频率为f,两次采样的时间间隔为ΔT=1/f;Step a: Calculate the rotation angle of the motor in the two sampling intervals Δθ=ω r ΔT, where ω r is the motor speed, the unit is rad/s, the sampling frequency of analog-to-digital conversion is f, and the time interval between two samplings is ΔT = 1/f;

步骤b:采用CORDIC求逆算法得到θG=θ+Δθ的正弦值EsG *G)和余弦值EcG *G),若 &epsiv; s 1 = E sG * ( &theta; G ) - E s * ( &theta; ) &epsiv; c 1 = E cG * ( &theta; G ) - E c * ( &theta; ) 未全部超出误差限,若 &epsiv; s 1 = E sG * ( &theta; G ) - E s * ( &theta; ) 超出误差限,旋转变压器输出的正弦信号有故障;若 &epsiv; c 1 = E cG * ( &theta; G ) - E c * ( &theta; ) 超出误差限,则说明旋转变压器输出的余弦信号有故障;所述的误差限取数字信号的平均值U的

Figure G2009102191642D00042
执行步骤4~5;Step b: Use the CORDIC inversion algorithm to obtain the sine value E sG * ( θ G ) and the cosine value E cG *G ) of θ G = θ+Δθ, if &epsiv; the s 1 = E. sG * ( &theta; G ) - E. the s * ( &theta; ) and &epsiv; c 1 = E. cG * ( &theta; G ) - E. c * ( &theta; ) Not all exceed the error limit, if &epsiv; the s 1 = E. sG * ( &theta; G ) - E. the s * ( &theta; ) If the error limit is exceeded, the sinusoidal signal output by the resolver is faulty; if &epsiv; c 1 = E. cG * ( &theta; G ) - E. c * ( &theta; ) If it exceeds the error limit, it means that the cosine signal output by the resolver is faulty; the error limit is taken as the average value U of the digital signal
Figure G2009102191642D00042
Execute steps 4 to 5;

步骤c:若 &epsiv; s 1 = E sG * ( &theta; G ) - E s * ( &theta; ) &epsiv; c 1 = E cG * ( &theta; G ) - E c * ( &theta; ) 全部超出误差限,利用CORDIC求逆算法得到θ′G=θ-Δθ的正弦值EsG *(θ′G)和余弦值EcG *(θ′G),若 &epsiv; s 1 &prime; = E sG * ( &theta; G &prime; ) - E s * ( &theta; ) 超出误差限,旋转变压器输出的正弦信号有故障;若 &epsiv; c 1 &prime; = E cG * ( &theta; G &prime; ) - E c * ( &theta; ) 超出误差限,则说明旋转变压器输出的余弦有故障;所述的误差限取数字信号的平均值U的

Figure G2009102191642D00048
Step c: If &epsiv; the s 1 = E. sG * ( &theta; G ) - E. the s * ( &theta; ) and &epsiv; c 1 = E. cG * ( &theta; G ) - E. c * ( &theta; ) All exceed the error limit, use the CORDIC inversion algorithm to get the sine value E sG * (θ′ G ) and the cosine value E cG * (θ′ G ) of θ′ G = θ-Δθ, if &epsiv; the s 1 &prime; = E. sG * ( &theta; G &prime; ) - E. the s * ( &theta; ) If the error limit is exceeded, the sinusoidal signal output by the resolver is faulty; if &epsiv; c 1 &prime; = E. cG * ( &theta; G &prime; ) - E. c * ( &theta; ) If it exceeds the error limit, it means that the cosine output of the resolver is faulty; the error limit is taken as the average value U of the digital signal
Figure G2009102191642D00048

步骤d:若旋转变压器输出的正弦信号出现故障,将步骤5的数字余弦信号Ec *(θ),利用Ec *(θ)与Es *(θ)的正交关系转换得到Es **(θ),并以Es **(θ)替代数字正弦信号Es *(θ);若旋转变压器输出的余弦信号出现故障,将步骤5的数字正弦信号Es *(θ),利用Es *(θ)与Ec *(θ)的正交关系转换得到Ec **(θ),并以Ec **(θ)替代数字余弦信号Ec *(θ);Step d: If the sine signal output by the resolver fails, convert the digital cosine signal E c * (θ) in step 5 to obtain E s * by using the orthogonal relationship between E c * (θ) and E s * (θ) * (θ), and replace the digital sine signal E s * (θ) with E s ** (θ); if the cosine signal output by the resolver fails, the digital sine signal E s * (θ) in step 5 is used The orthogonal relationship between E s * (θ) and E c * (θ) is converted to E c ** (θ), and E c ** (θ) is used to replace the digital cosine signal E c * (θ);

步骤e:继续步骤6~9,得到电机转子位置θ。Step e: Continue steps 6-9 to obtain the motor rotor position θ.

一种实现上述的任一种检测无刷电机转子位置的方法的装置,其特征在于包括旋转变压器、正弦激励电路、差分信号转换器、精密绝对值加法器、反相器和低通滤波器;旋转变压器与被测无刷电机转子同轴安装,正弦激励电路产生的高频正弦差分信号Refs+,一路输入到旋转变压器的原边,旋转变压器副边输出的包含电机转子位置角θ的Es+(t,θ)和Es-(t,θ),Ec+(t,θ)和Ec-(t,θ)分别经过两个差分信号转换器得到单端正弦信号Es(t,θ)和单端余弦信号Ec(t,θ);另一路,正弦激励电路输出的高频正弦差分信号Refs+经过差分信号转换器转变为单端正弦参考信号-Refs输入反相器,反相器输出的Refs分别与两个差分信号转换器的输出信号输入至各自的精密绝对值加法器,通过精密绝对值加法器的叠加得到输出信号Refs+Es(t,θ)和Refs+Ec(t,θ);两路精密绝对值加法器的输出信号输入至各自的低通滤波器,经过低通滤波器的滤波输出与转子位置有关的低频正弦信号Es(θ)=Esin(θ)+E和余弦信号Ec(θ)=Ecos(θ)+E;低通滤波器的输出经过A/D模块转换为数字信号后输入至DSP。A device for realizing any of the above methods for detecting the rotor position of a brushless motor, characterized in that it includes a resolver, a sinusoidal excitation circuit, a differential signal converter, a precision absolute value adder, an inverter and a low-pass filter; The resolver is installed coaxially with the rotor of the brushless motor under test, and the high-frequency sinusoidal differential signal Refs+ generated by the sinusoidal excitation circuit is input to the primary side of the resolver, and the secondary side of the resolver outputs E s+ ( t, θ) and E s- (t, θ), E c+ (t, θ) and E c- (t, θ) respectively pass through two differential signal converters to obtain a single-ended sinusoidal signal E s (t, θ) and single-ended cosine signal E c (t, θ); the other way, the high-frequency sinusoidal differential signal Refs+ output by the sinusoidal excitation circuit is transformed into a single-ended sinusoidal reference signal-Refs input inverter through a differential signal converter, and the inverter outputs The Refs and the output signals of the two differential signal converters are respectively input to the respective precision absolute value adders, and the output signals Refs+E s (t, θ) and Refs+E c (t , θ); the output signals of the two precision absolute value adders are input to their respective low-pass filters, and the low-frequency sinusoidal signal E s (θ)=Esin(θ)+ which is filtered by the low-pass filter and related to the rotor position E and cosine signal E c (θ) = Ecos (θ) + E; the output of the low-pass filter is converted into a digital signal by the A/D module and then input to the DSP.

有益效果Beneficial effect

本发明提出的一种检测无刷电机转子位置的方法及装置,采用旋转变压器作为无刷电机转子位置检测装置时,旋转变压器输出两路包含转子位置信息并正交的高频正余弦信号,通过信号调理或解算等方法获得转子位置信息。与目前应用最为广泛的是采用专用轴角数字转换器(Resolver-to-Digital Converter,简为RDC)等集成芯片加外围配置电路进行解算,此类专用解算芯片对信号较为敏感并无容错功能,因此可靠性难以保障。本发明在RDC解算电路的基础上,外加一个简单的信号调理电路,便可实现具有自监测与容错功能的无刷电机转子位置检测。具体内容包括检测装置以及自监测与容错方法两大部分。A method and device for detecting the rotor position of a brushless motor proposed by the present invention. When a rotary transformer is used as the rotor position detection device of a brushless motor, the rotary transformer outputs two high-frequency sinusoidal signals that contain rotor position information and are orthogonal to each other. The rotor position information can be obtained by means of signal conditioning or solution. The most widely used at present is the use of integrated chips such as a dedicated Resolver-to-Digital Converter (RDC) plus peripheral configuration circuits for resolution. This type of dedicated resolution chip is sensitive to signals and has no fault tolerance. function, so reliability is difficult to guarantee. Based on the RDC solving circuit, the present invention adds a simple signal conditioning circuit to realize the rotor position detection of the brushless motor with self-monitoring and fault-tolerant functions. The specific content includes two parts: detection device, self-monitoring and fault-tolerant method.

本发明装置的优越性在于:(1)硬件电路简单、成本低,系统的可靠性得到很大的提高;(2)CORDIC解算算法高效实用,经过简单的迭代与加减运算便可实现电机转子位置的容错检测。The advantages of the device of the present invention are: (1) the hardware circuit is simple, the cost is low, and the reliability of the system is greatly improved; (2) the CORDIC calculation algorithm is efficient and practical, and the motor can be realized through simple iteration and addition and subtraction operations. Fault-tolerant detection of rotor position.

附图说明Description of drawings

图1:本发明的电路原理图Figure 1: Circuit schematic diagram of the present invention

图2:旋转变压器原理示意图Figure 2: Schematic diagram of resolver principle

图3:本发明实施例的正弦激励电路Fig. 3: the sinusoidal excitation circuit of the embodiment of the present invention

图4:本发明实施例的差分信号转换器Figure 4: Differential signal converter of an embodiment of the present invention

图5:本发明实施例的精密绝对值加法器Figure 5: Precision absolute value adder of an embodiment of the present invention

图6:本发明实施例的反相器Figure 6: Inverter of an embodiment of the present invention

图7:本发明实施例的低通滤波电路Figure 7: Low-pass filter circuit of the embodiment of the present invention

具体实施方式Detailed ways

现结合实施例、附图对本发明作进一步描述:Now in conjunction with embodiment, accompanying drawing, the present invention will be further described:

本发明装置的实施示例:Implementation example of the device of the present invention:

检测装置分为与被测无刷电机转子同轴安装的旋转变压器以及旋转变压器信号调理电路两大部分,旋转变压器信号调理电路包括作为旋转变压器信号源的正弦激励电路以及自监测与容错算法信号调理电路(包含差分信号转换器、精密绝对值加法器、反相器和低通滤波器)。The detection device is divided into two parts: a resolver installed coaxially with the rotor of the brushless motor under test and a resolver signal conditioning circuit. The resolver signal conditioning circuit includes a sinusoidal excitation circuit as a resolver signal source and self-monitoring and fault-tolerant algorithm signal conditioning. circuit (contains differential signal converter, precision absolute value adder, inverter, and low-pass filter).

旋转变压器原理示意图如图2所示,将旋转变压器转子r1与电机转子同轴安装,Ur为激励信号的输入端,U1和U2分别为正弦信号和余弦信号的输出端。The principle diagram of the resolver is shown in Figure 2. The resolver rotor r1 is coaxially installed with the motor rotor, Ur is the input terminal of the excitation signal, and U1 and U2 are the output terminals of the sine signal and cosine signal respectively.

正弦激励电路采用改进型文氏桥振荡器,如图3所示,U34A和U34B构成振荡电路,U36A和U36B构成射极跟随器,U35B、U37A和U37B构成输出Refs-的电路。输出的正弦激励信号Refs=(Refs+)-(Refs-)为频率为16kHz,峰值5V的正弦波。The sinusoidal excitation circuit adopts an improved Wien bridge oscillator, as shown in Figure 3, U34A and U34B form an oscillation circuit, U36A and U36B form an emitter follower, and U35B, U37A and U37B form a circuit that outputs Refs-. The output sinusoidal excitation signal Refs=(Refs+)−(Refs−) is a sine wave with a frequency of 16 kHz and a peak value of 5V.

差分信号转换器由运算放大器TL082构成,如图4所示,差分信号x-和x+分别经过电阻R3和R4接到运算放大器的正负输入端,R1=R2=R3=R4,经过转换后可得到单端信号x,x=(x-)-(x+)。The differential signal converter consists of an operational amplifier TL082, as shown in Figure 4, the differential signals x- and x+ are respectively connected to the positive and negative input terminals of the operational amplifier through resistors R3 and R4, R1=R2=R3=R4, after conversion, they can A single-ended signal x is obtained, x=(x-)-(x+).

精密绝对值加法器如图5所示,信号x和信号y通过运算放大器U1A和U1B及其外围电路后可完成精密绝对值加法运算,得到信号z,z=|x+y|。The precision absolute value adder is shown in Fig. 5, after the signal x and signal y pass through the operational amplifiers U1A and U1B and their peripheral circuits, the precision absolute value addition operation can be completed to obtain the signal z, z=|x+y|.

反相器非常简单,由一个运算放大器构成,电路如图6所示,输入信号x,R2=R3输出信号y,y=-x。The inverter is very simple and consists of an operational amplifier. The circuit is shown in Figure 6. Input signal x, R2=R3 output signal y, y=-x.

低通滤波器采用一阶有源滤波器,电路如图7所示,带宽设置在0~2kHz,x为输入信号,输出信号y为x的包络信号。The low-pass filter adopts a first-order active filter. The circuit is shown in Figure 7. The bandwidth is set at 0-2kHz, x is the input signal, and the output signal y is the envelope signal of x.

通过上述的硬件电路可将旋转变压器的输出信号调理成数字信号处理器能够识别的低频模拟信号,DSP使用TMS320系列的芯片如TMS320F2812,DSP内部的AD转换器对输入的两路模拟信号进行采样转换成数字信号,再通过固化在数字信号处理器的程序便可完成对电机转子位置的检测。Through the above hardware circuit, the output signal of the resolver can be adjusted into a low-frequency analog signal that can be recognized by the digital signal processor. The DSP uses TMS320 series chips such as TMS320F2812, and the AD converter inside the DSP samples and converts the two input analog signals. It can be converted into a digital signal, and then the detection of the rotor position of the motor can be completed through the program solidified in the digital signal processor.

根据本装置实现本发明方法的实施示例:Realize the implementation example of the inventive method according to this device:

步骤1:将旋转变压器与被测无刷电机的转子同轴安装,电机旋转时,旋转变压器副边输出两路正交的差分信号通过差分转换器可得到单端正弦信号Es(t,θ)=Esin(ωt)sin(θ)和单端余弦信号Ec(t,θ)=Esin(ωt)cos(θ),其中:E=5V,ω=16kHz;θ的范围为0~360度,以下步骤中的取值与此步相同;Step 1: Install the resolver coaxially with the rotor of the brushless motor under test. When the motor rotates, the secondary side of the resolver outputs two orthogonal differential signals, and through the differential converter, a single-ended sinusoidal signal E s (t, θ )=Esin(ωt)sin(θ) and single-ended cosine signal E c (t, θ)=Esin(ωt)cos(θ), where: E=5V, ω=16kHz; θ ranges from 0 to 360 degrees , the values in the following steps are the same as in this step;

步骤2:将输入到旋转变压器的由正弦激励电路产生的正弦差分信号Refs+和Refs-转变为单端参考信号-Refs=Esin(ωt);Step 2: Convert the sinusoidal differential signals Refs+ and Refs- generated by the sinusoidal excitation circuit input to the resolver into a single-ended reference signal -Refs=Esin(ωt);

步骤3:将信号Es(t,θ)与Refs进行叠加得到信号Refs+Es(t,θ),将信号Ec(t,θ)与Refs叠加得到信号Refs+Ec(t,θ);Step 3: superimpose the signal E s (t, θ) and Refs to obtain the signal Refs+E s (t, θ), and superimpose the signal E c (t, θ) and Refs to obtain the signal Refs+E c (t, θ );

步骤4:将Refs+Es(t,θ)和Refs+Ec(t,θ)中的高频部分进行滤除,得到包含转子位置信息的模拟低频正弦信号Es(θ)=Esin(θ)+E和低频余弦信号Ec(θ)=Ecos(θ)+E,其中Es(θ)和Ec(θ)的最大值均为10V,最小值均为0V。Step 4: Filter out the high-frequency part in Refs+E s (t, θ) and Refs+E c (t, θ) to obtain an analog low-frequency sinusoidal signal E s (θ)=Esin( θ)+E and low-frequency cosine signal E c (θ)=Ecos(θ)+E, where the maximum values of E s (θ) and E c (θ) are both 10V and the minimum values are 0V.

步骤5:将模拟的低频正弦信号Es(θ)=Esin(θ)+E和余弦信号Ec(θ)=Ecos(θ)+E转换成数字正弦信号Es *(θ)和数字余弦信号Ec *(θ),Es *(θ)取0~65535的整数对应Es(θ)的0~10V,Ec *(θ)取0~65535的整数对应Ec(θ)的0~10V;Step 5: Convert the analog low-frequency sine signal E s (θ)=Esin(θ)+E and cosine signal E c (θ)=Ecos(θ)+E into digital sine signal E s * (θ) and digital cosine Signal E c * (θ), the integer of E s * (θ) from 0 to 65535 corresponds to 0 to 10V of E s (θ), and the integer of E c * (θ) from 0 to 65535 corresponds to the value of E c (θ) 0~10V;

步骤6:求取数字信号的平均值U=32768;Step 6: Find the average U=32768 of the digital signal;

步骤7:将数字正弦信号Es *(θ)减去U,得到正弦信号输入量Y,Y范围为-32768~32767,将数字余弦信号Ec *(θ)减去U,得到余弦信号输入量X,X范围为-32768~32767;Step 7: Subtract U from the digital sine signal E s * (θ) to obtain the sine signal input Y, and the range of Y is -32768 to 32767, and subtract U from the digital cosine signal E c * (θ) to obtain the cosine signal input Quantity X, the range of X is -32768~32767;

步骤8:根据正弦信号输入量Y和余弦信号输入量X判断电机转子位置所在象限:Step 8: Determine the quadrant of the rotor position of the motor according to the sine signal input value Y and the cosine signal input value X:

当X≥0且Y≥0时,电机转子位置θ位于第一象限;When X≥0 and Y≥0, the motor rotor position θ is in the first quadrant;

当X<0且Y≥0时,电机转子位置θ位于第二象限;When X<0 and Y≥0, the motor rotor position θ is in the second quadrant;

当X<0且Y<0时,电机转子位置θ位于第三象限;When X<0 and Y<0, the motor rotor position θ is in the third quadrant;

当X≥0且Y<0时,电机转子位置θ位于第四象限;When X≥0 and Y<0, the motor rotor position θ is in the fourth quadrant;

步骤9:将X、Y映射到第一象限,利用CORDIC算法计算出角度值

Figure G2009102191642D00081
取0~1023的整数代表角度0~360度,然后根据上一步骤中θ所在的象限确定电机转子位置θ,θ取0~1023的整数代表角度0~360度:Step 9: Map X and Y to the first quadrant, and use the CORDIC algorithm to calculate the angle value
Figure G2009102191642D00081
Take an integer from 0 to 1023 to represent an angle of 0 to 360 degrees, and then determine the motor rotor position θ according to the quadrant where θ is located in the previous step, and take an integer from 0 to 1023 to represent an angle of 0 to 360 degrees:

当θ位于第一象限时,电机转子位置

Figure G2009102191642D00082
When θ is in the first quadrant, the motor rotor position
Figure G2009102191642D00082

当θ位于第二象限时,电机转子位置

Figure G2009102191642D00083
When θ is in the second quadrant, the motor rotor position
Figure G2009102191642D00083

当θ位于第三象限时,电机转子位置

Figure G2009102191642D00084
When θ is in the third quadrant, the motor rotor position
Figure G2009102191642D00084

当θ位于第四象限时,电机转子位置

Figure G2009102191642D00085
When θ is in the fourth quadrant, the motor rotor position
Figure G2009102191642D00085

当旋转变压器输出信号发生故障时,检测无刷电机转子位置的具体步骤如下:When the resolver output signal fails, the specific steps to detect the rotor position of the brushless motor are as follows:

步骤a:计算电机在两次采样间隔中旋转的角度Δθ=ωrΔT,其中ωr为电机转速,单位为rad/s,模数转换的采样频率为f=100kHz,两次采样的时间间隔为ΔT=1/f=10us;Step a: Calculate the rotation angle of the motor in the two sampling intervals Δθ=ω r ΔT, where ω r is the motor speed, the unit is rad/s, the sampling frequency of analog-to-digital conversion is f=100kHz, and the time interval between two sampling ΔT=1/f=10us;

步骤b:采用CORDIC求逆算法得到θG=θ+Δθ的正弦值EsG *G)和余弦值EcG *G),若 &epsiv; s 1 = E sG * ( &theta; G ) - E s * ( &theta; ) &epsiv; c 1 = E cG * ( &theta; G ) - E c * ( &theta; ) 未全部超出误差限,若 &epsiv; s 1 = E sG * ( &theta; G ) - E s * ( &theta; ) 超出误差限,旋转变压器输出的正弦信号有故障;若 &epsiv; c 1 = E cG * ( &theta; G ) - E c * ( &theta; ) 超出误差限,则说明旋转变压器输出的余弦信号有故障;所述的误差限取300,执行步骤4~5;Step b: Use the CORDIC inversion algorithm to obtain the sine value E sG * ( θ G ) and the cosine value E cG *G ) of θ G = θ+Δθ, if &epsiv; the s 1 = E. sG * ( &theta; G ) - E. the s * ( &theta; ) and &epsiv; c 1 = E. cG * ( &theta; G ) - E. c * ( &theta; ) Not all exceed the error limit, if &epsiv; the s 1 = E. sG * ( &theta; G ) - E. the s * ( &theta; ) If the error limit is exceeded, the sinusoidal signal output by the resolver is faulty; if &epsiv; c 1 = E. cG * ( &theta; G ) - E. c * ( &theta; ) If the error limit is exceeded, it means that the cosine signal output by the resolver is faulty; the error limit is set to 300, and steps 4 to 5 are performed;

步骤c:若 &epsiv; s 1 = E sG * ( &theta; G ) - E s * ( &theta; ) &epsiv; c 1 = E cG * ( &theta; G ) - E c * ( &theta; ) 全部超出误差限,利用CORDIC求逆算法得到θ′G=θ-Δθ的正弦值EsG *(θ′G)和余弦值EcG *(θ′G),若 &epsiv; s 1 &prime; = E sG * ( &theta; G &prime; ) - E s * ( &theta; ) 超出误差限,旋转变压器输出的正弦信号有故障;若 &epsiv; c 1 &prime; = E cG * ( &theta; G &prime; &prime; ) - E c * ( &theta; ) 超出误差限,则说明旋转变压器输出的余弦有故障;所述的误差限取300;Step c: If &epsiv; the s 1 = E. sG * ( &theta; G ) - E. the s * ( &theta; ) and &epsiv; c 1 = E. cG * ( &theta; G ) - E. c * ( &theta; ) All exceed the error limit, use the CORDIC inversion algorithm to get the sine value E sG * (θ′ G ) and the cosine value E cG * (θ′ G ) of θ′ G = θ-Δθ, if &epsiv; the s 1 &prime; = E. sG * ( &theta; G &prime; ) - E. the s * ( &theta; ) If the error limit is exceeded, the sinusoidal signal output by the resolver is faulty; if &epsiv; c 1 &prime; = E. cG * ( &theta; G &prime; &prime; ) - E. c * ( &theta; ) If it exceeds the error limit, it means that the cosine output by the resolver is faulty; the error limit is 300;

步骤d:若旋转变压器输出的正弦信号出现故障,将步骤5的数字余弦信号Ec *(θ),利用Ec *(θ)与Es *(θ)的正交关系转换得到Es **(θ),并以Es **(θ)替代数字正弦信号Es *(θ);若旋转变压器输出的余弦信号出现故障,将步骤5的数字正弦信号Es *(θ),利用Es *(θ)与Ec *(θ)的正交关系转换得到Ec **(θ),并以Ec **(θ)替代数字余弦信号Ec *(θ);Step d: If the sine signal output by the resolver fails, convert the digital cosine signal E c * (θ) in step 5 to obtain E s * by using the orthogonal relationship between E c * (θ) and E s * (θ) * (θ), and replace the digital sine signal E s * (θ) with E s ** (θ); if the cosine signal output by the resolver fails, the digital sine signal E s * (θ) in step 5 is used The orthogonal relationship between E s * (θ) and E c * (θ) is converted to E c ** (θ), and E c ** (θ) is used to replace the digital cosine signal E c * (θ);

步骤e:继续步骤6~9,得到电机转子位置θ。Step e: Continue steps 6-9 to obtain the motor rotor position θ.

Claims (3)

1.一种检测无刷电机转子位置的方法,其特征在于将旋转变压器与被测无刷电机的转子同轴安装,检测无刷电机转子位置的具体步骤如下:1. A method for detecting the rotor position of a brushless motor, characterized in that the rotor coaxial installation of the rotary transformer and the brushless motor under test, the concrete steps of detecting the rotor position of the brushless motor are as follows: 步骤1:将旋转变压器副边输出的两路包含转子位置角θ信息并正交的信号进行差分转单端,得到单端正弦信号Es(t,θ)=Esin(ωt)sin(θ)和单端余弦信号Ec(t,θ)=Esin(ωt)cos(θ);所述的两路包含转子位置角θ信息并正交的信号为:高频正弦差分信号Es+(t,θ)和Es-(t,θ),高频余弦差分信号Ec+(t,θ)和Ec-(t,θ);其中:E为信号的有效值,ω为正弦激励电路产生的参考信号Refs的角频率;Step 1: Convert the two quadrature signals output by the secondary side of the resolver containing the information of the rotor position angle θ to differential to single-ended to obtain a single-ended sinusoidal signal E s (t, θ) = Esin(ωt)sin(θ) and single-ended cosine signal E c (t, θ)=Esin(ωt)cos(θ); the two-way signals containing rotor position angle θ information and orthogonal signals are: high-frequency sinusoidal differential signal E s+ (t, θ) and E s- (t, θ), high-frequency cosine differential signals E c+ (t, θ) and E c- (t, θ); where: E is the effective value of the signal, ω is the signal generated by the sine excitation circuit the angular frequency of the reference signal Refs; 步骤2:将输入到旋转变压器的由正弦激励电路产生的正弦差分信号Refs+和Refs-转变为单端正弦参考信号-Refs=Esin(ωt);Step 2: Convert the sinusoidal differential signals Refs+ and Refs- generated by the sinusoidal excitation circuit input to the resolver into a single-ended sinusoidal reference signal -Refs=Esin(ωt); 步骤3:将单端正弦信号Es(t,θ)与参考信号Refs进行叠加得到信号Refs+Es(t,θ),将单端余弦信号Ec(t,θ)与Refs叠加得到信号Refs+Ec(t,θ);Step 3: superimpose the single-ended sine signal E s (t, θ) and the reference signal Refs to obtain the signal Refs+E s (t, θ), and superimpose the single-ended cosine signal E c (t, θ) and Refs to obtain the signal Refs+E c (t, θ); 步骤4:将Refs+Es(t,θ)和Refs+Ec(t,θ)中的高频部分进行滤除,得到包含转子位置信息的模拟低频正弦信号Es(θ)=Esin(θ)+E和低频余弦信号Ec(θ)=Ecos(θ)+E;Step 4: Filter out the high-frequency part in Refs+E s (t, θ) and Refs+E c (t, θ) to obtain an analog low-frequency sinusoidal signal E s (θ)=Esin( θ)+E and low frequency cosine signal E c (θ)=Ecos(θ)+E; 步骤5:将模拟低频正弦信号Es(θ)=Esin(θ)+E和余弦信号Ec(θ)=Ecos(θ)+E转换成数字正弦信号Es *(θ)和数字余弦信号Ec *(θ);Step 5: Convert the analog low-frequency sinusoidal signal E s (θ) = Esin(θ) + E and cosine signal E c (θ) = Ecos(θ) + E into digital sine signal E s * (θ) and digital cosine signal E c * (θ); 步骤6:求取数字信号Es *(θ)和Ec *(θ)的平均值U;Step 6: Calculate the average U of the digital signals E s * (θ) and E c * (θ); 步骤7:将数字正弦信号Es *(θ)减去U,得到正弦信号输入量Y,将数字余弦信号Ec *(θ)减去U,得到余弦信号输入量X;Step 7: Subtract U from the digital sine signal E s * (θ) to obtain the input quantity Y of the sine signal, and subtract U from the digital cosine signal E c * (θ) to obtain the input quantity X of the cosine signal; 步骤8:根据正弦信号输入量Y和余弦信号输入量X判断电机转子位置所在象限:Step 8: Determine the quadrant of the rotor position of the motor according to the sine signal input value Y and the cosine signal input value X: 当X≥0且Y≥0时,电机转子位置θ落在0~90°范围内;When X≥0 and Y≥0, the rotor position θ of the motor falls within the range of 0° to 90°; 当X<0且Y≥0时,电机转子位置θ落在90°~180°范围内;When X<0 and Y≥0, the motor rotor position θ falls within the range of 90°~180°; 当X<0且Y<0时,电机转子位置θ落在180°~270°范围内; When X<0 and Y<0, the motor rotor position θ falls within the range of 180°~270°; 当X≥0且Y<0时,电机转子位置θ落在270°~360°范围内;When X≥0 and Y<0, the motor rotor position θ falls within the range of 270°~360°; 步骤9:将X、Y映射到第一象限,利用CORDIC算法计算出角度值 
Figure F2009102191642C00021
然后根据上一步骤中θ所在的象限确定电机转子位置θ:
Step 9: Map X and Y to the first quadrant, and use the CORDIC algorithm to calculate the angle value
Figure F2009102191642C00021
Then determine the motor rotor position θ according to the quadrant where θ is located in the previous step:
当0<θ≤90°时,电机转子位置 
Figure F2009102191642C00022
When 0<θ≤90°, the motor rotor position
Figure F2009102191642C00022
当90°<θ≤180°时,电机转子位置  When 90°<θ≤180°, the motor rotor position 当180°<θ≤270°时,电机转子位置 
Figure F2009102191642C00024
When 180°<θ≤270°, the motor rotor position
Figure F2009102191642C00024
当270°<θ≤360°时,电机转子位置  When 270°<θ≤360°, the motor rotor position
2.根据权利要求1所述的检测无刷电机转子位置的方法,其特征在于:当旋转变压器输出信号发生故障时,检测无刷电机转子位置的具体步骤如下:2. The method for detecting the rotor position of a brushless motor according to claim 1, wherein the specific steps for detecting the rotor position of a brushless motor are as follows: 步骤a:计算电机在两次采样间隔中旋转的角度Δθ=ωrΔT,其中ωr为电机转速,单位为rad/s,模数转换的采样频率为f,两次采样的时间间隔为ΔT=1/f;Step a: Calculate the rotation angle of the motor in the two sampling intervals Δθ=ω r ΔT, where ω r is the motor speed, the unit is rad/s, the sampling frequency of analog-to-digital conversion is f, and the time interval between two samplings is ΔT = 1/f; 步骤b:采用CORDIC求逆算法得到θG=θ+Δθ的正弦值EsG *G)和余弦值EcG *G),若
Figure F2009102191642C00026
Figure F2009102191642C00027
未全部超出误差限,若超出误差限,旋转变压器输出的正弦信号有故障;若超出误差限,则说明旋转变压器输出的余弦信号有故障;所述的误差限取数字信号的平均值U的 
Figure F2009102191642C000210
执行步骤4~5;
Step b: Use the CORDIC inversion algorithm to obtain the sine value E sG * ( θ G ) and the cosine value E cG *G ) of θ G = θ+Δθ, if
Figure F2009102191642C00026
and
Figure F2009102191642C00027
Not all exceed the error limit, if If the error limit is exceeded, the sinusoidal signal output by the resolver is faulty; if If the error limit is exceeded, it means that the cosine signal output by the resolver is faulty; the error limit is taken as the average value U of the digital signal
Figure F2009102191642C000210
Execute steps 4 to 5;
步骤c:若
Figure F2009102191642C000211
Figure F2009102191642C000212
全部超出误差限,利用CORDIC求逆算法得到θ′G=θ-Δθ的正弦值EsG *(θ′G)和余弦值EcG *(θ′G),若
Figure F2009102191642C000213
超出误差限,旋转变压器输出的正弦信号有故障;若超出误差限,则说明旋转变压器输出的余弦有故障;所述的误差限取数字信号的平均值U的 
Figure F2009102191642C000215
Step c: If
Figure F2009102191642C000211
and
Figure F2009102191642C000212
All exceed the error limit, use the CORDIC inversion algorithm to get the sine value E sG * (θ′ G ) and the cosine value E cG * (θ′ G ) of θ′ G = θ-Δθ, if
Figure F2009102191642C000213
If the error limit is exceeded, the sinusoidal signal output by the resolver is faulty; if If it exceeds the error limit, it means that the cosine output of the resolver is faulty; the error limit is taken as the average value U of the digital signal
Figure F2009102191642C000215
步骤d:若旋转变压器输出的正弦信号出现故障,将步骤5的数字余弦信号Ec *(θ),利用Ec *(θ)与Es *(θ)的正交关系转换得到Es **(θ),并以Es **(θ)替代数字正弦信号Es *(θ); 若旋转变压器输出的余弦信号出现故障,将步骤5的数字正弦信号Es *(θ),利用Es *(θ)与Ec *(θ)的正交关系转换得到Ec **(θ),并以Ec **(θ)替代数字余弦信号Ec *(θ);Step d: If the sine signal output by the resolver fails, convert the digital cosine signal E c * (θ) in step 5 to obtain E s * by using the orthogonal relationship between E c * (θ) and E s * (θ) * (θ), and replace the digital sine signal E s * (θ) with E s ** (θ); if the cosine signal output by the resolver fails, the digital sine signal E s * (θ) in step 5 is used The orthogonal relationship between E s * (θ) and E c * (θ) is converted to E c ** (θ), and E c ** (θ) is used to replace the digital cosine signal E c * (θ); 步骤e:继续步骤6~9,得到电机转子位置θ。Step e: Continue steps 6-9 to obtain the motor rotor position θ.
3.一种实现权利要求1和2所述的任一种检测无刷电机转子位置的方法的装置,其特征在于包括旋转变压器、正弦激励电路、差分信号转换器、精密绝对值加法器、反相器和低通滤波器;旋转变压器与被测无刷电机转子同轴安装,正弦激励电路产生的高频正弦差分信号Refs+和Refs-,一路输入到旋转变压器的原边,旋转变压器副边输出的包含电机转子位置角θ的Es+(t,θ)和Es-(t,θ),Ec+(t,θ)和Ec-(t,θ)分别经过两个差分信号转换器得到单端正弦信号Es(t,θ)和单端余弦信号Ec(t,θ);另一路,正弦激励电路输出的高频正弦差分信号Refs+和Refs-经过差分信号转换器转变为单端正弦参考信号-Refs输入反相器,反相器输出的Refs分别与两个差分信号转换器的输出信号输入至各自的精密绝对值加法器,通过精密绝对值加法器的叠加得到输出信号Refs+Es(t,θ)和Refs+Ec(t,θ);两路精密绝对值加法器的输出信号输入至各自的低通滤波器,经过低通滤波器的滤波输出与转子位置有关的低频正弦信号Es(θ)=Esin(θ)+E和余弦信号Ec(θ)=Ecos(θ)+E;低通滤波器的输出经过A/D模块转换为数字信号后输入至DSP。 3. A device for realizing any method for detecting the rotor position of a brushless motor according to claims 1 and 2, characterized in that it includes a rotary transformer, a sinusoidal excitation circuit, a differential signal converter, a precision absolute value adder, an inverter Phase device and low-pass filter; the resolver is installed coaxially with the rotor of the brushless motor under test, and the high-frequency sinusoidal differential signals Refs+ and Refs- generated by the sinusoidal excitation circuit are input to the primary side of the resolver and output from the secondary side of the resolver E s+ (t, θ) and E s- (t, θ), E c+ (t, θ) and E c- (t, θ) containing the motor rotor position angle θ are respectively obtained by two differential signal converters Single-ended sine signal E s (t, θ) and single-ended cosine signal E c (t, θ); on the other hand, the high-frequency sinusoidal differential signals Refs+ and Refs- output by the sinusoidal excitation circuit are transformed into single-ended positive The string reference signal-Refs is input to the inverter, and the Refs output by the inverter and the output signals of the two differential signal converters are respectively input to the respective precision absolute value adders, and the output signal Refs+ is obtained by superposition of the precision absolute value adders E s (t, θ) and Refs+E c (t, θ); the output signals of the two precision absolute value adders are input to their respective low-pass filters, and the filtered output of the low-pass filters is related to the rotor position Low-frequency sine signal E s (θ) = Esin (θ) + E and cosine signal E c (θ) = Ecos (θ) + E; the output of the low-pass filter is converted into a digital signal by the A/D module and then input to the DSP .
CN2009102191642A 2009-11-26 2009-11-26 Method and device for detecting rotor position of brushless motor Expired - Fee Related CN101719752B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2009102191642A CN101719752B (en) 2009-11-26 2009-11-26 Method and device for detecting rotor position of brushless motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2009102191642A CN101719752B (en) 2009-11-26 2009-11-26 Method and device for detecting rotor position of brushless motor

Publications (2)

Publication Number Publication Date
CN101719752A CN101719752A (en) 2010-06-02
CN101719752B true CN101719752B (en) 2011-08-03

Family

ID=42434279

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2009102191642A Expired - Fee Related CN101719752B (en) 2009-11-26 2009-11-26 Method and device for detecting rotor position of brushless motor

Country Status (1)

Country Link
CN (1) CN101719752B (en)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102087296B (en) * 2010-12-01 2012-07-04 南京工程学院 Motor speed measurement sensor
CN102291067B (en) * 2011-08-19 2014-03-26 联合汽车电子有限公司 Motor position detecting circuit utilizing isolating type rotating transformer
CN102393215B (en) * 2011-08-25 2014-03-26 联合汽车电子有限公司 Position detection circuit of non-isolation sine and cosine resolver
EP3056867B1 (en) * 2015-02-16 2017-06-21 Visedo Oy A device for producing a rotational position signal and a method for producing rotational position signals
KR101795380B1 (en) * 2015-04-16 2017-11-09 현대자동차 주식회사 System and method for reducing torque motor speed ripple of eco-friendly vehicles
CN104796053B (en) * 2015-05-11 2017-06-16 哈尔滨工业大学 DC motor controller and control method based on rotary transformer
CN105897078A (en) * 2016-04-08 2016-08-24 合肥工业大学 Rotary transformer signal hardware decoding circuit applied to EPS (Electric Power Steering) system
CN105958894B (en) * 2016-06-08 2018-09-11 北京新能源汽车股份有限公司 Motor rotation transformer intelligent identification system and control method thereof
CN106374931B (en) * 2016-09-27 2019-05-21 湖南工业大学 A kind of signals of rotating transformer coding/decoding method using unifrequency point S-transformation
CN106403806B (en) * 2016-10-14 2020-08-28 联合汽车电子有限公司 Angular position sensor, angular position measuring system and method
CN106385259B (en) * 2016-10-26 2019-08-09 连云港杰瑞电子有限公司 A kind of single-chip internal reference axes-angle conversion circuit and method
CN107402311B (en) * 2017-07-11 2019-07-23 浙江零跑科技有限公司 Motor soft decoding intelligent speed measuring method
CN107505473B (en) * 2017-07-11 2019-07-23 浙江零跑科技有限公司 Motor Soft Decoding Speed Measurement Algorithm Based on Phase Locked Loop
CN107356268B (en) * 2017-07-11 2020-07-14 连云港杰瑞电子有限公司 Differential conversion method from rotary transformer to digit
CN108107232B (en) * 2017-11-06 2020-08-11 武汉航空仪表有限责任公司 Method for digitizing angle signal
CN108063572B (en) * 2017-12-01 2020-03-03 浙江零跑科技有限公司 Failure control method for position sensor of permanent magnet motor for vehicle
CN108199627B (en) * 2017-12-26 2021-03-09 清华大学 A distributed motor drive control system
CN110022097B (en) * 2019-04-10 2020-11-13 南京工程学院 Resolver angular position calculating device and method for rotary transformer
CN110794343B (en) * 2019-10-14 2021-10-26 中车永济电机有限公司 Rotary transformer wiring self-detection system
CN111106775A (en) * 2020-01-14 2020-05-05 中国铁道科学研究院集团有限公司 Angle filtering method and system for permanent magnet synchronous motor
CN113359026A (en) 2020-03-06 2021-09-07 比亚迪股份有限公司 Motor parameter diagnosis device and system
CN116264465A (en) * 2022-12-27 2023-06-16 菲仕绿能科技(宁波)有限公司 VADC-based rotation-modification soft decoding method and system
CN119543743A (en) * 2024-11-08 2025-02-28 上海拿森汽车电子有限公司 Vehicle motor control method, system and vehicle

Also Published As

Publication number Publication date
CN101719752A (en) 2010-06-02

Similar Documents

Publication Publication Date Title
CN101719752B (en) Method and device for detecting rotor position of brushless motor
CN108155910B (en) High-speed sine and cosine encoder decoding method based on FPGA
CN101521480B (en) Resolution method and resolver for signals of rotating transformer
CN102721362B (en) Rotating transformer position measuring system and method
CN101852818B (en) Accelerometer error calibration and compensation method based on rotary mechanism
CN102095431B (en) Digital converter of magnetic encoder
CN102435133A (en) Rotary transformer angle measurement system based on FPGA
CN100575884C (en) A Resolver Signal-to-Digital Conversion Method
CN102937787B (en) Bispin varying signal disposal system
CN101924510A (en) Compensation method for rotor position angle of permanent-magnet motor
CN105915127A (en) Motor rotor position redundant measuring method and system and electronic device
CN106326608A (en) Sine and cosine modulating signal model for simulating rotary transformation motor
CN110022097B (en) Resolver angular position calculating device and method for rotary transformer
CN102032867B (en) Method for measuring relative rotation angle and relative rotation speed of two rotors of coaxial dual rotor motor and sensor for implementing same
CN207780217U (en) A kind of zero-bit angle test device of rotary transformer
CN116793197A (en) An absolute position detection system and method for a magnetic levitation conveyor system
CN103776471A (en) Magnetic encoder based on double synchronous rotation coordinate systems
CN110243401B (en) Photoelectric cell of optical encoder and decoding device of optical magnetic encoder
CN106500584B (en) An angle measurement system and measurement method based on a linear hall sensor
Reddy et al. Inverse tangent based resolver to digital converter-A software approach
CN119354016A (en) A single-chip resolver/LVDT signal-to-digital conversion method and circuit
CN106052546A (en) Multi-blade capacitive angular displacement sensor
CN105703773A (en) Rotary transformer decoding method
Banerjee et al. A novel FPGA-based LVDT signal conditioner
CN115589180B (en) A quadrature error compensation method based on sine-cosine position encoder

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
ASS Succession or assignment of patent right

Owner name: NANTONG WANBAO INDUSTRY CO., LTD.

Free format text: FORMER OWNER: NORTHWESTERN POLYTECHNICAL UNIVERSITY

Effective date: 20140813

Owner name: NORTHWESTERN POLYTECHNICAL UNIVERSITY

Effective date: 20140813

C41 Transfer of patent application or patent right or utility model
COR Change of bibliographic data

Free format text: CORRECT: ADDRESS; FROM: 710072 XI'AN, SHAANXI PROVINCE TO: 226600 NANTONG, JIANGSU PROVINCE

TR01 Transfer of patent right

Effective date of registration: 20140813

Address after: 226600 Nantong, Haian Province, Haian County town of Yellow River Road, No. 88, No.

Patentee after: Nantong Wanbao Industry Co., Ltd.

Patentee after: Northwestern Polytechnical University

Address before: 710072 Xi'an friendship West Road, Shaanxi, No. 127

Patentee before: Northwestern Polytechnical University

CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20110803

Termination date: 20181126