CN101702702B - Symbol synchronizing method and device and symbol receiving processing system - Google Patents
Symbol synchronizing method and device and symbol receiving processing system Download PDFInfo
- Publication number
- CN101702702B CN101702702B CN2009102218700A CN200910221870A CN101702702B CN 101702702 B CN101702702 B CN 101702702B CN 2009102218700 A CN2009102218700 A CN 2009102218700A CN 200910221870 A CN200910221870 A CN 200910221870A CN 101702702 B CN101702702 B CN 101702702B
- Authority
- CN
- China
- Prior art keywords
- symbol
- ofdm symbol
- interference energy
- path
- total residual
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Noise Elimination (AREA)
Abstract
本发明实施例公开了一种符号同步方法与装置、接收处理系统,方法包括:接收由发送端发送的信号,获取当前OFDM符号中各径的位置信息与功率信息,并获取针对所有OFDM符号反馈的估计方差;根据预设起始位置集合或者量化后的起始位置集合中的所有FFT积分区间的起始位置ms、获取的各径的位置信息与功率信息和针对所有OFDM符号反馈的估计方差,获取当前OFDM符号中所有径的总残留干扰能量;获取总残留干扰能量中最小干扰能量对应的起始位置;以最小干扰能量对应的起始位置作为符号定时值,对发送端发送的信号进行符号同步。本发明实施例可以在信道时延扩展超过CP长度的情况下,减小IBI消除和ICI重构补偿后的残留干扰能量。
The embodiment of the present invention discloses a symbol synchronization method and device, and a receiving and processing system. The method includes: receiving the signal sent by the transmitting end, obtaining the position information and power information of each path in the current OFDM symbol, and obtaining the feedback for all OFDM symbols The estimated variance of ; according to the preset start position set or the start position ms of all FFT integration intervals in the quantized start position set, the obtained position information and power information of each path and the estimated variance for all OFDM symbol feedback , to obtain the total residual interference energy of all paths in the current OFDM symbol; obtain the starting position corresponding to the minimum interference energy in the total residual interference energy; use the starting position corresponding to the minimum interference energy as the symbol timing value, and perform Symbol synchronization. The embodiment of the present invention can reduce the residual interference energy after IBI cancellation and ICI reconstruction compensation in the case that the channel delay extension exceeds the CP length.
Description
技术领域 technical field
本发明涉及通信技术,尤其是一种符号同步方法与装置、接收处理系统。 The invention relates to communication technology, in particular to a symbol synchronization method and device, and a receiving and processing system. the
背景技术 Background technique
正交频分复用(Orthogonal Frequency Division Multiplexing,以下简称:OFDM)通过将频率选择性多径衰落信道在频域内转换为平坦信道,从而减少多径衰落的影响,同时提高频谱利用率。但是OFDM系统对同步误差极为敏感,对时间同步的要求很高。频率同步方面,频率偏移会引入载波间干扰(Internal Channel Interference,以下简称:ICI),恶化每个子载波的信噪比,从而恶化整个通信系统的传输性能。帧同步的误差会引入符号间干扰(InterSymbol Interference,以下简称:ISI),也即:码间干扰,同时还会对信道估计带来严重的影响。现有的OFDM系统中,主要采用以下三类同步方式:符号定时同步、载波同步与采样钟同步。 Orthogonal Frequency Division Multiplexing (OFDM) converts the frequency-selective multipath fading channel into a flat channel in the frequency domain, thereby reducing the impact of multipath fading and improving spectrum utilization. However, the OFDM system is extremely sensitive to synchronization errors and has high requirements for time synchronization. In terms of frequency synchronization, frequency offset will introduce Internal Channel Interference (ICI) and deteriorate the signal-to-noise ratio of each subcarrier, thus deteriorating the transmission performance of the entire communication system. Errors in frame synchronization will introduce InterSymbol Interference (InterSymbol Interference, hereinafter referred to as: ISI), that is, intersymbol interference, and will also have a serious impact on channel estimation. In the existing OFDM system, the following three types of synchronization methods are mainly adopted: symbol timing synchronization, carrier synchronization and sampling clock synchronization. the
要实现OFDM信号的同步,就需要找到OFDM符号的起始位置与载波偏移。OFDM调制技术是一种多载波技术,多载波系统对于定时偏差比单载波系统较为敏感。在OFDM系统与频域均衡的单载波(single carrierfrequency domain equalization,以下简称:SC-FDE)系统中,通过插入循环前缀(Cyclic Prefix,以下简称:CP)来消除多径带来的ISI。由于OFDM系统与SC-FDE系统采用了CP,当CP的长度大于信道的多径时延扩展时,在CP中将存在一个非干扰区,即无ISI区,在非干扰区中可以采用频域估计的方法校正有用信号的相位旋转。因此,在该非干扰区范围内,OFDM符号不会受到多径信道引起的来自上一个OFDM符号的ISI影响。在该非干扰区外,定时误差都会对OFDM系统与SC-FDE系统造成块间干扰(Inter Block Interference,以下简称:IBI)和ICI。与此同时,还会造成有用信号的衰减和相位旋转。更严重的是,它会严重影响信道估计器的性能,从而增加信道估计方差。 To realize OFDM signal synchronization, it is necessary to find the starting position and carrier offset of OFDM symbols. OFDM modulation technology is a multi-carrier technology, and multi-carrier systems are more sensitive to timing deviations than single-carrier systems. In the single carrier frequency domain equalization (single carrier frequency domain equalization, hereinafter referred to as: SC-FDE) system of the OFDM system and frequency domain equalization, the ISI caused by multipath is eliminated by inserting a cyclic prefix (Cyclic Prefix, hereinafter referred to as: CP). Since OFDM system and SC-FDE system adopt CP, when the length of CP is greater than the multipath delay extension of the channel, there will be a non-interference area in CP, that is, no ISI area, and frequency domain can be used in the non-interference area. The estimated method corrects for the phase rotation of the desired signal. Therefore, within the scope of the non-interference zone, the OFDM symbol will not be affected by the ISI from the previous OFDM symbol caused by the multipath channel. Outside the non-interference zone, timing errors will cause inter-block interference (Inter Block Interference, hereinafter referred to as: IBI) and ICI to the OFDM system and the SC-FDE system. At the same time, it will cause attenuation and phase rotation of useful signals. More seriously, it will seriously affect the performance of the channel estimator, thus increasing the channel estimation variance. the
现有技术中,通常采用残留符号间干扰消除(Residual Inter SymbolInterference Clutter,以下简称:RISIC)算法,将前后OFDM符号导致的IBI重构出来,并从相应的积分区间中的当前OFDM符号接收信号中减掉,以及将当前OFDM符号缺失的部分重构出来,并补入相应的积分区间的信号,从而抑制IBI与ICI。 In the prior art, the Residual Inter Symbol Interference Clutter (Residual Inter Symbol Interference Clutter, hereinafter referred to as: RISIC) algorithm is usually used to reconstruct the IBI caused by the preceding and following OFDM symbols, and from the received signal of the current OFDM symbol in the corresponding integration interval Subtract, and reconstruct the missing part of the current OFDM symbol, and fill in the signal of the corresponding integration interval, thereby suppressing IBI and ICI. the
但是现有技术采用RISIC算法抑制IBI与ICI时,在信道时延扩展超过CP长度的情况下,便无法有效实现OFDM符号的同步,从而降低了接收机的接收性能,例如:数据传输的误码率、误符号率或误块率性能。 However, when the existing technology uses the RISIC algorithm to suppress IBI and ICI, when the channel delay extension exceeds the CP length, the synchronization of OFDM symbols cannot be effectively realized, thereby reducing the receiving performance of the receiver, such as: bit errors in data transmission rate, symbol error rate, or block error rate performance. the
发明内容Contents of the invention
本发明实施例提供一种符号同步方法与装置、接收处理系统,在信道时延扩展超过CP长度的情况下,减小IBI消除和ICI重构补偿后的残留干扰能量,从而有效实现OFDM符号的同步,提高接收机的接收性能。 Embodiments of the present invention provide a symbol synchronization method and device, and a receiving and processing system. When the channel delay extension exceeds the CP length, the residual interference energy after IBI cancellation and ICI reconstruction compensation is reduced, thereby effectively realizing OFDM symbols. synchronization to improve receiver performance. the
本发明实施例提供的一种符号同步方法,主要包括: A symbol synchronization method provided by an embodiment of the present invention mainly includes:
接收由发送端发送的信号,获取所述信号中当前正交频分复用OFDM符号中各径的位置信息与功率信息,并获取针对所有OFDM符号反馈的估计方差; Receive the signal sent by the sending end, obtain the position information and power information of each path in the current OFDM symbol in the signal, and obtain the estimated variance for all OFDM symbol feedback;
根据预设起始位置集合或者量化后的起始位置集合中的所有快速傅立叶变换积分区间的起始位置、所述获取的各径的位置信息与功率信息和针对所有OFDM符号反馈的估计方差,获取所述当前OFDM符号中所有径的总残留干扰能量; According to the preset start position set or the start position of all fast Fourier transform integration intervals in the quantized start position set, the obtained position information and power information of each path and the estimated variance for all OFDM symbol feedback, Obtain the total residual interference energy of all paths in the current OFDM symbol;
获取总残留干扰能量中最小干扰能量对应的起始位置; Obtain the starting position corresponding to the minimum interference energy in the total residual interference energy;
以最小干扰能量对应的起始位置作为符号定时值,对所述发送端发送 的信号进行符号同步。 The starting position corresponding to the minimum interference energy is used as the symbol timing value to perform symbol synchronization on the signal sent by the transmitting end. the
本发明实施例提供的一种符号同步装置,主要包括: A symbol synchronization device provided in an embodiment of the present invention mainly includes:
第一获取模块,用于接收由发送端发送的信号,获取所述信号中当前正交频分复用OFDM符号中各径的位置信息与功率信息,以及针对所有OFDM符号反馈的估计方差; The first obtaining module is used to receive the signal sent by the transmitting end, obtain the position information and power information of each path in the current OFDM symbol in the signal, and the estimated variance for all OFDM symbol feedback;
第二获取模块,用于根据预设起始位置集合或者量化后的起始位置集合中的所有积分区间的起始位置、所述第一获取模块获取的各径的位置信息与功率信息,以及针对所有OFDM符号反馈的估计方差,获取所述当前OFDM符号中所有径的总残留干扰能量; The second acquisition module is configured to use the preset start position set or the start position of all integration intervals in the quantized start position set, the position information and power information of each path acquired by the first acquisition module, and For the estimated variance of all OFDM symbol feedback, obtain the total residual interference energy of all paths in the current OFDM symbol;
第三获取模块,用于获取所述总残留干扰能量中最小干扰能量对应的起始位置; The third acquisition module is used to acquire the starting position corresponding to the minimum interference energy in the total residual interference energy;
符号同步模块,用于以所述最小干扰能量对应的起始位置作为符号定时值,对所述发送端发送的信号进行符号同步。 A symbol synchronization module, configured to use the starting position corresponding to the minimum interference energy as a symbol timing value to perform symbol synchronization on the signal sent by the transmitting end. the
本发明实施例提供的一种接收处理系统,包括信道估计装置、块间干扰消除装置、循环前缀重构装置、接收机以及本发明上述实施例提供的符号同步装置,其中, A reception processing system provided by an embodiment of the present invention includes a channel estimation device, an inter-block interference elimination device, a cyclic prefix reconstruction device, a receiver, and the symbol synchronization device provided by the above-mentioned embodiments of the present invention, wherein,
所述信道估计装置,用于利用接收端接收到的信号进行信道估计,得到各径的时域信道信息,该时域信道信息包括各径的位置信息与信道因子; The channel estimation device is used to perform channel estimation using signals received by the receiving end to obtain time-domain channel information of each path, the time-domain channel information including position information and channel factors of each path;
所述块间干扰消除装置,用于根据所述各径的时域信道信息、所述接收机针对当前正交频分复用OFDM符号的前一个、后一个OFDM符号的判决值,对所述符号同步装置进行符号同步后的信号进行块间干扰IBI消除; The inter-block interference elimination device is configured to, according to the time-domain channel information of each path and the decision value of the receiver for the previous OFDM symbol and the subsequent OFDM symbol of the current Orthogonal Frequency Division Multiplexing OFDM symbol, to the The symbol synchronization device performs inter-block interference IBI elimination on the signal after symbol synchronization;
所述循环前缀重构装置,用于根据所述各径的时域信道信息、所述接收机发送的针对所述当前OFDM符号的判决值,对IBI消除后的信号进行CP重构与补偿; The cyclic prefix reconstruction device is configured to perform CP reconstruction and compensation on the signal after IBI cancellation according to the time-domain channel information of each path and the decision value sent by the receiver for the current OFDM symbol;
所述接收机,用于将CP重构与补偿后的时域信号变换到频域并进行接收处理,产生针对所有OFDM符号反馈的估计方差并发送给所述符号同步装置,产生所述当前OFDM符号的前、后OFDM符号的判决值并发送给所述块间干扰消除装置,以及产生所述当前OFDM符号的判决值并发送给所述循环前缀重构装置。 The receiver is used to transform the time-domain signal after CP reconstruction and compensation into the frequency domain and perform receiving processing, generate the estimated variance for all OFDM symbol feedback and send it to the symbol synchronization device, and generate the current OFDM The judgment values of the previous and subsequent OFDM symbols of the symbol are sent to the inter-block interference elimination device, and the judgment value of the current OFDM symbol is generated and sent to the cyclic prefix reconstruction device. the
基于本发明上述实施例提供的符号同步方法与装置、接收处理系统,通过获取总残留干扰能量中最小干扰能量对应的起始位置,并以该最小干扰能量对应的起始位置作为符号定时值,对发送端发送的信号进行符号同步,与现有技术相比,可以在信道时延扩展超过CP长度的情况下,减小IBI消除和ICI重构补偿后的残留干扰能量,从而有效实现OFDM符号的同步,提高接收机的接收性能。 Based on the symbol synchronization method and device and receiving processing system provided by the above embodiments of the present invention, by obtaining the starting position corresponding to the minimum interference energy in the total residual interference energy, and using the starting position corresponding to the minimum interference energy as the symbol timing value, Symbol synchronization is performed on the signal sent by the transmitting end. Compared with the existing technology, the residual interference energy after IBI cancellation and ICI reconstruction compensation can be reduced when the channel delay extension exceeds the CP length, so as to effectively realize OFDM symbols Synchronization, improve the receiving performance of the receiver. the
下面通过附图和实施例,对本发明的技术方案做进一步的详细描述。 The technical solutions of the present invention will be described in further detail below with reference to the accompanying drawings and embodiments. the
附图说明 Description of drawings
图1为多径信道接收信号的一个时序示意图; Fig. 1 is a timing schematic diagram of multipath channel receiving signal;
图2为本发明符号同步方法一个实施例的流程图; Fig. 2 is a flowchart of an embodiment of the symbol synchronization method of the present invention;
图3为本发明符号同步方法另一个实施例的流程图; Fig. 3 is the flow chart of another embodiment of symbol synchronization method of the present invention;
图4为本发明符号同步装置一个实施例的结构示意图; Fig. 4 is a schematic structural diagram of an embodiment of the symbol synchronization device of the present invention;
图5为本发明符号同步装置另一个实施例的结构示意图; Fig. 5 is a schematic structural diagram of another embodiment of the symbol synchronization device of the present invention;
图6为本发明接收处理系统一个实施例的结构示意图; Fig. 6 is a schematic structural diagram of an embodiment of the receiving and processing system of the present invention;
图7为本发明接收处理系统另一个实施例的结构示意图; Fig. 7 is the structural representation of another embodiment of the receiving processing system of the present invention;
图8为采用本发明符号同步方法实施例后的一个误符号率性能提升示意图; Fig. 8 is a schematic diagram of a symbol error rate performance improvement after adopting the embodiment of the symbol synchronization method of the present invention;
图9为采用本发明符号同步方法实施例后的一个的误块率性能提升示意图。 FIG. 9 is a schematic diagram of a block error rate performance improvement after adopting an embodiment of the symbol synchronization method of the present invention. the
具体实施方式 Detailed ways
如图1所示,为多径信道接收信号的一个时序示意图。该图1以3条 径信号为例,给出了多径时延扩展下多径信道接收信号中的有用信号构成,并示出了前一个OFDM符号与后一个OFDM符号对当前OFDM符号造成的IBI。图1中,纵坐标h[m]表示多径信道,多径时延扩展最小径位置为mmin,最大的径位置为mmax。图1中,信号101、信号102与信号103分别表示径101、径102与径103对应的信号,为发送信号经过与各径时延相应的延迟所得。假设ms为第n个OFDM符号的快速傅里叶变换(fastFourier transform,以下简称:FFT)积分区间的起始位置,也即:符号定时位置,其中第n个OFDM符号也称为当前OFDM符号。图1中,横虚线104与105表示当前OFDM符号的前一个OFDM符号,横虚线106与107表示当前OFDM符号的后一个OFDM符号,横虚线104与105在[ms,ms+K-1]范围内构成的积分区间部分即为前一个OFDM符号对当前OFDM符号带来的IBI,横虚线106与107在[ms,ms+K-1]范围内构成的积分区间部分即为后一个OFDM符号对当前OFDM符号带来的IBI,对当前OFDM符号而言,上述两部分积分区间就是缺失的,从而使得该径对应的信号(也称为径信号)无法获得完整积分区间长度的当前OFDM符号,或者说对该径信号而言,CP就是残缺的,这就不能保证发送信号和信道间的循环卷积特性,这将会在频域导致ICI。对于径102对应的信号,由于在积分区间[ms,ms+K-1]内不存在前、后OFDM符号,因此不存在IBI和ICI。而对径101和径103对应的信号,则分别受到前一个OFDM符号和后一个OFDM符号的IBI,同时在频域都存在ICI。 As shown in FIG. 1 , it is a schematic diagram of a timing sequence of a signal received by a multipath channel. Taking three-path signals as an example, Figure 1 shows the composition of useful signals in multi-path channel received signals under multi-path delay extension, and shows the effect of the previous OFDM symbol and the next OFDM symbol on the current OFDM symbol IBI. In FIG. 1 , the ordinate h[m] represents a multipath channel, the minimum path position of the multipath delay spread is m min , and the maximum path position is m max . In FIG. 1 , signal 101 , signal 102 and signal 103 respectively represent signals corresponding to path 101 , path 102 and path 103 , which are obtained by delaying the transmission signal corresponding to the time delay of each path. Suppose m s is the starting position of the fast Fourier transform (fastFourier transform, hereinafter referred to as: FFT) integration interval of the nth OFDM symbol, that is, the symbol timing position, where the nth OFDM symbol is also called the current OFDM symbol . In Fig. 1, horizontal dashed lines 104 and 105 represent the previous OFDM symbol of the current OFDM symbol, horizontal dashed lines 106 and 107 represent the next OFDM symbol of the current OFDM symbol, horizontal dashed lines 104 and 105 are in [m s , m s +K-1 ] is the IBI brought by the previous OFDM symbol to the current OFDM symbol, and the integral interval formed by the horizontal dotted lines 106 and 107 within the range of [m s , m s +K-1] is the subsequent For the IBI brought by an OFDM symbol to the current OFDM symbol, for the current OFDM symbol, the above two parts of the integration interval are missing, so that the signal corresponding to the path (also called the path signal) cannot obtain the current value of the complete integration interval length. OFDM symbols, or in other words, for the path signal, the CP is incomplete, which cannot guarantee the circular convolution characteristics between the transmitted signal and the channel, which will cause ICI in the frequency domain. For the signal corresponding to path 102, since there are no front and back OFDM symbols in the integration interval [m s , m s +K-1], there is no IBI and ICI. The signals corresponding to path 101 and path 103 are subjected to the IBI of the previous OFDM symbol and the next OFDM symbol respectively, and ICI exists in the frequency domain at the same time.
本发明的实施例中,以总残留干扰能量中最小干扰能量对应的起始位置作为符号定时值,对发送端发送的信号进行符号同步,从而在信道时延扩展超过CP长度的情况下,减小IBI消除和ICI重构补偿后的残留干扰能量,从而有效实现OFDM符号的同步,提高接收机的接收性能,例如:提高数据传输的误码率、误符号率或误块率性能等。本发明实施例提供的 方法、装置和系统可以适用于任意通信系统,例如:OFDM系统或SC-FDE系统中,由于多径时延扩展长度大于CP长度导致CP不足且接收机中采用了RISIC算法时的符号同步。 In the embodiment of the present invention, the starting position corresponding to the minimum interference energy in the total residual interference energy is used as the symbol timing value to perform symbol synchronization on the signal sent by the transmitting end, so that when the channel delay extension exceeds the CP length, the The residual interference energy after small IBI elimination and ICI reconstruction compensation can effectively realize the synchronization of OFDM symbols and improve the receiving performance of the receiver, such as improving the bit error rate, symbol error rate or block error rate performance of data transmission. The method, device and system provided by the embodiments of the present invention can be applied to any communication system, for example: in an OFDM system or a SC-FDE system, due to the fact that the multipath delay extension length is greater than the CP length, the CP is insufficient and the RISIC algorithm is used in the receiver Symbol synchronization at time. the
图2为本发明符号同步方法一个实施例的流程图,该实施例的流程具体可以由符号同步装置实现。如图2所示,该实施例的符号同步方法可以包括: Fig. 2 is a flow chart of an embodiment of a symbol synchronization method according to the present invention, and the flow of this embodiment may be specifically implemented by a symbol synchronization device. As shown in Figure 2, the symbol synchronization method of this embodiment may include:
201,接收由发送端发送的信号,并获取该信号中当前OFDM符号中各径的位置信息与功率信息,以及针对所有OFDM符号反馈的估计方差。 201. Receive a signal sent by a transmitting end, and acquire position information and power information of each path in a current OFDM symbol in the signal, and estimated variances fed back for all OFDM symbols. the
具体地,针对所有OFDM符号反馈的估计方差也即针对所有OFDM符号的判决反馈时域符号的估计方差,其中,判决反馈时域符号也称为判决反馈值。 Specifically, the estimated variance for feedback of all OFDM symbols is also the estimated variance of decision feedback time-domain symbols for all OFDM symbols, where the decision feedback time-domain symbols are also referred to as decision feedback values. the
具体地,可以通过多径搜索方法或者跟踪方法获取各径的位置信息与功率信息。 Specifically, the position information and power information of each path may be acquired through a multipath search method or a tracking method. the
202,根据预设起始位置集合或者量化后的起始位置集合中的所有FFT积分区间的起始位置ms、获取的各径的位置信息与功率信息,以及针对所有OFDM符号反馈的估计方差,获取当前OFDM符号中所有径的总残留干扰能量。 202. According to the preset start position set or the start position m s of all FFT integration intervals in the quantized start position set, the obtained position information and power information of each path, and the estimated variance for all OFDM symbol feedback , to obtain the total residual interference energy of all paths in the current OFDM symbol.
203,获取总残留干扰能量中最小干扰能量对应的起始位置。 203. Obtain a starting position corresponding to the minimum interference energy in the total residual interference energy. the
204,以最小干扰能量对应的起始位置作为符号定时值,对发送端发送的信号进行符号同步。 204. Using the starting position corresponding to the minimum interference energy as the symbol timing value, perform symbol synchronization on the signal sent by the sending end. the
具体的,可以根据最小干扰能量对应的起始位置作为的符号定时值,将发送端发送的信号中对应OFDM符号抽取出来,来实现对发送端发送的信号的符号同步。 Specifically, the symbol timing value corresponding to the start position corresponding to the minimum interference energy can be used to extract the corresponding OFDM symbol from the signal sent by the sender, so as to realize the symbol synchronization of the signal sent by the sender. the
本发明实施例的符号同步方法中,以总残留干扰能量中最小干扰能量对应的起始位置作为符号定时值,对发送端发送的信号进行符号同步,从而在信道时延扩展超过CP长度的情况下,减小IBI消除和ICI重构补偿 后的残留干扰能量,从而有效实现OFDM符号的同步,提高接收机的接收性能,例如:提高数据传输的误码率、误符号率或误块率性能等。 In the symbol synchronization method of the embodiment of the present invention, the starting position corresponding to the minimum interference energy in the total residual interference energy is used as the symbol timing value to perform symbol synchronization on the signal sent by the transmitting end, so that when the channel delay extension exceeds the CP length Under this condition, the residual interference energy after IBI elimination and ICI reconstruction compensation is reduced, so as to effectively realize the synchronization of OFDM symbols and improve the receiving performance of the receiver, such as: improving the bit error rate, symbol error rate or block error rate performance of data transmission wait. the
图3为本发明符号同步方法另一个实施例的流程图,该实施例的流程具体也可以由符号同步装置实现。如图3所示,该实施例的符号同步方法可以包括: Fig. 3 is a flow chart of another embodiment of the symbol synchronization method according to the present invention, and the flow of this embodiment may also be specifically implemented by a symbol synchronization device. As shown in Figure 3, the symbol synchronization method of this embodiment may include:
301,接收由发送端发送的信号。 301. Receive a signal sent by a sending end. the
其中,可以将该接收到的信号称为接收信号。对于OFDM系统,接收信号包括有用信号和噪声。具体地,该接收信号可以表示为: Wherein, the received signal may be referred to as a received signal. For OFDM systems, the received signal includes useful signal and noise. Specifically, the received signal can be expressed as:
rn[m]=zn[m]+n[m] (1) r n [m] = z n [m] + n [m] (1)
式(1)中,rn[m]表示接收信号中第m个采样时刻的第n个OFDM符号,zn[m]表示发送端发送的第m个采样时刻的第n个OFDM符号中的有用信号,n[m]表示第m个采样时刻的第n个OFDM符号中的噪声。其中,zn[m]可以通过以下方式表示: In formula (1), r n [m] represents the n-th OFDM symbol at the m-th sampling time in the received signal, and z n [m] represents the n-th OFDM symbol at the m-th sampling time sent by the sender useful signal, n[m] represents the noise in the nth OFDM symbol at the mth sampling moment. where z n [m] can be represented by:
式(2)中,xn[m]表示第n个OFDM符号对应的第m个时域样点信号, 表示后续符号块带来的IBI,N表示OFDM符号的符号块长度,h[m]为等效离散信道因子,可以表示为: In formula (2), x n [m] represents the mth time-domain sample point signal corresponding to the nth OFDM symbol, Represents the IBI brought by subsequent symbol blocks, N represents the symbol block length of OFDM symbols, h[m] is the equivalent discrete channel factor, which can be expressed as:
式(3)中,mi为第i径的时延,γi为第i径的信道因子,δ表示冲击函数。 In formula (3), m i is the time delay of the i-th path, γ i is the channel factor of the i-th path, and δ represents the impact function.
302,通过信道估计获取当前OFDM符号中各径的位置信息mi与信道因子γi,并根据信道因子γi获取相应各径的功率信息|γi|2。其中,i表示第i个径,为大于零的整数。 302. Acquire position information m i and channel factor γ i of each path in the current OFDM symbol through channel estimation, and acquire power information |γ i | 2 of each corresponding path according to channel factor γ i . Among them, i represents the i-th path, which is an integer greater than zero.
303,接收接收机针对所有OFDM符号反馈的估计方差。 303. Receive estimated variances fed back by the receiver for all OFDM symbols. the
以σn 2作为接收机针对第n个OFDM符号反馈的估计方差。本发明该实施例中以第n个OFDM符号作为当前OFDM符号。 Take σ n 2 as the estimated variance fed back by the receiver for the nth OFDM symbol. In this embodiment of the present invention, the nth OFDM symbol is used as the current OFDM symbol.
而针对OFDM符号反馈的估计方差也称为判决反馈符号的估计方差。其中,接收机可以通过多种检测方法获得针对所有OFDM符号反馈的估计方差,例如:通过判决反馈方法,可以同时得到OFDM符号反馈的估计方差,该估计方差可用以表征该接收机判决反馈的可靠性。具体地,本实施例中的接收机可以是OFDM接收机。 The estimated variance for OFDM symbol feedback is also referred to as the estimated variance of decision feedback symbols. Among them, the receiver can obtain the estimated variance for all OFDM symbol feedback through a variety of detection methods, for example: through the decision feedback method, the estimated variance of the OFDM symbol feedback can be obtained at the same time, and the estimated variance can be used to characterize the reliability of the receiver decision feedback sex. Specifically, the receiver in this embodiment may be an OFDM receiver. the
OFDM接收机一般由检测器和译码器两部分组成,因此,接收机一般有两种相应的反馈方式:一种是“迭代接收机”反馈,也即译码反馈,可以称为外迭代;一种是块判决反馈,也即检测器内迭代。 OFDM receivers are generally composed of detectors and decoders. Therefore, receivers generally have two corresponding feedback methods: one is "iterative receiver" feedback, that is, decoding feedback, which can be called outer iteration; One is block decision feedback, that is, iteration within the detector. the
以下以译码反馈为例,说明判决反馈符号的估计方差的获得方式。其中,判决反馈符号的估计方差也称为OFDM符号的判决反馈值。在初次迭代中,除当前OFDM符号是第一个OFDM符号外,对当前第n个OFDM符号,可以获得其前一个OFDM符号的判决反馈值。前一个OFDM符号的估计方差σn-1 2可以由OFDM接收机中的检测器在判决该前一个OFDM符号时的同时估计得到。此时,当前OFDM符号和其后一个OFDM符号的判决反馈值还无法得到,可以假设
此外,需要说明的是,对第一个OFDM符号,可以不进行IBI消除。 In addition, it should be noted that for the first OFDM symbol, IBI elimination may not be performed. the
304,根据预设起始位置集合或者量化后的起始位置集合中的所有FFT 积分区间的起始位置ms、各径的位置信息与功率信息以及针对所有OFDM符号反馈的估计方差,分别获取当前OFDM符号中所有径的总残留干扰能量。 304. According to the preset start position set or the start position m s of all FFT integration intervals in the quantized start position set, the position information and power information of each path, and the estimated variance for all OFDM symbol feedback, respectively obtain The total residual interference energy of all paths in the current OFDM symbol.
针对预设起始位置集合或者量化后的起始位置集合中的所有FFT积分区间的每一个起始位置ms,可以分别获得一个当前OFDM符号中所有径的总残留干扰能量。 For each starting position m s of all FFT integration intervals in the preset starting position set or the quantized starting position set, the total residual interference energy of all paths in a current OFDM symbol can be obtained respectively.
本发明实施例中,获取当前OFDM符号中所有径的总残留干扰能量的方式有多种,可以是
式(4)中,ε(ms)为当前OFDM符号中所有径的总残留干扰能量,ms为第n个OFDM符号的符号定时位置,li(ms)表示符号定时位置为ms时第i径的干扰能量,NG为循环前缀CP长度。 In formula (4), ε(m s ) is the total residual interference energy of all paths in the current OFDM symbol, m s is the symbol timing position of the nth OFDM symbol, l i (m s ) means that the symbol timing position is m s When is the interference energy of the i-th path, N G is the length of the cyclic prefix CP.
305,获取总残留干扰能量中的最小干扰能量minε(mi),并根据io=argminε(mi),获取该最小干扰能量minε(mi)对应的起始位置mo。 305. Obtain the minimum interference energy minε(m i ) in the total residual interference energy, and obtain the starting position m o corresponding to the minimum interference energy minε(m i ) according to i o =argminε(m i ).
其中,
306,以总残留干扰能量中最小干扰能量对应的起始位置mo作为符号定时值,对接收信号进行符号同步。 306. Using the starting position m o corresponding to the minimum interference energy in the total residual interference energy as the symbol timing value, perform symbol synchronization on the received signal.
通过本发明上述实施例所示的符号同步方法,对接收信号进行后续的IBI消除、接收信号中缺失的CP部分的重构与补偿、以及接收处理等一系列操作处理。 Through the symbol synchronization method shown in the above-mentioned embodiments of the present invention, a series of operations such as subsequent IBI elimination, reconstruction and compensation of the missing CP part in the received signal, and receiving processing are performed on the received signal. the
如果仅考虑当前OFDM符号的前一个OFDM符号、后一个OFDM符号所导致的IBI,则接收信号可以表示为: If only considering the IBI caused by the previous OFDM symbol and the next OFDM symbol of the current OFDM symbol, the received signal can be expressed as:
式(5)中,n[g]表示高斯白噪声。 In formula (5), n[g] represents Gaussian white noise. the
设 为基于第n个OFDM符号的频域判决反馈值 经过快速反傅立叶变换(inverse fast Fourier transform,以下简称:IFFT)变换得到的时域信号,即: set up is the frequency domain decision feedback value based on the nth OFDM symbol The time-domain signal obtained by inverse fast Fourier transform (hereinafter referred to as: IFFT) transformation, namely:
式(6)中,0≤m<N,其中,N=K+NG其中,K为FFT积分区间长度,NG为CP长度。符号同步就是在0≤m<N中确定FFT积分区间的起始位置。 In formula (6), 0≦m<N, where N=K+N G where K is the length of the FFT integration interval, and N G is the length of the CP. Symbol synchronization is to determine the starting position of the FFT integration interval in 0≤m<N.
首先利用除当前OFDM符号外的其它OFDM符号的判决反馈值 重构出当前OFDM符号所受到的IBI,公式(1)中的 并从第n个OFDM符号的接收信号中减去所受到的IBI,得到: First, use the decision feedback values of other OFDM symbols except the current OFDM symbol Reconstruct the IBI received by the current OFDM symbol, in the formula (1) and subtract the experienced IBI from the received signal of the nth OFDM symbol to obtain:
式(7)中,m的范围为-N1≤m<N+N2,其中-N1和N2分别为等效离散信道的首径位置与末径位置。需要说明的是,判决反馈值 一般由接收机通过块判决反馈或迭代接收技术获得,一般情况下,当前OFDM符号所受到的IBI主要是其前、后OFDM符号导致的IBI,同时,当m<0或 m>N时,xl[m]和 均为0,因此式(7)可以简化为: In formula (7), the range of m is -N 1 ≤ m<N+N 2 , where -N 1 and N 2 are the head path position and the end path position of the equivalent discrete channel respectively. It should be noted that the decision feedback value Generally, it is obtained by the receiver through block decision feedback or iterative receiving technology. Generally, the IBI received by the current OFDM symbol is mainly the IBI caused by its previous and subsequent OFDM symbols. At the same time, when m<0 or m>N, x l [m] and are all 0, so formula (7) can be simplified as:
将式(5)代入式(8),可以得到IBI消除后的接收信号: Substituting formula (5) into formula (8), the received signal after IBI cancellation can be obtained:
式(9)中,el[m]表示针对n个OFDM符号中第l个OFDM符号的第m个判决反馈符号的估计方差,可以通过
进一步的,由于OFDM系统通过CP作用,保证了时域信道矩阵的循环矩阵特性,从而进一步保证了频域不存在ICI。以图1为例,由于径101和径103对应的信号101和信号103中的CP是残缺的,这在频域导致了ICI。RISIC算法利用当前OFDM符号自身的判决反馈值 该判决值 具体可以由接收机通过块判决反馈或迭代接收技术获得,重构出信号中缺失的CP部分,并补入如式(9)所示IBI消除后的接收信号中,进一步得到CP补偿后的接收信号,该接收信号为时域信号: Furthermore, since the OFDM system guarantees the cyclic matrix characteristic of the channel matrix in the time domain through the function of the CP, it further ensures that there is no ICI in the frequency domain. Taking FIG. 1 as an example, since the CPs in signals 101 and 103 corresponding to paths 101 and 103 are incomplete, this leads to ICI in the frequency domain. The RISIC algorithm uses the decision feedback value of the current OFDM symbol itself the judgment value Specifically, it can be obtained by the receiver through block decision feedback or iterative reception technology, reconstruct the missing CP part in the signal, and fill it into the received signal after IBI cancellation as shown in equation (9), and further obtain the received signal after CP compensation signal, the received signal is a time-domain signal:
式(10)中,第一个等号右边第二项与第三项分别为缺失的CP部分 在当前OFDM符号左端和右端的重构项。第二个等号右边第二项为对来自当前OFDM符号的前一个OFDM符号的IBI消除以及对左端缺失的CP部分进行的重构补偿,第三项表示对来自当前OFDM符号的后一个OFDM符号的IBI消除以及对右端缺失的CP部分进行的重构补偿。其中,ms≤m<ms+K,对应着FFT积分窗内的符号。具体地,可以由循环前缀重构装置,通过式(10)进行CP的重构与补偿,并将CP重构、补偿后的时域信号发送给接收机。 In formula (10), the second and third items on the right side of the first equal sign are respectively the reconstruction items of the missing CP part at the left end and right end of the current OFDM symbol. The second item on the right side of the second equal sign is the IBI cancellation of the previous OFDM symbol from the current OFDM symbol and the reconstruction compensation for the missing CP part at the left end, and the third item represents the next OFDM symbol from the current OFDM symbol The IBI elimination and reconstruction compensation for the missing CP part at the right end. Among them, m s ≤ m<m s +K corresponds to the sign in the FFT integration window. Specifically, the CP reconstruction and compensation can be performed by the CP reconstruction device through formula (10), and the time-domain signal after the CP reconstruction and compensation is sent to the receiver.
对接收信号进行CP重构与补偿后,接收机可以CP补偿后的信号进行FFT,将时域信号转换为频域信号,并对该频域信号进行接收处理,例如:解调、译码等,产生针对所有OFDM符号反馈的估计方差以用于符号同步,产生当前OFDM符号的前、后OFDM符号的判决值以用于IBI的重构与消除,以及产生当前OFDM符号的判决值以用于CP的重构与补偿。 After CP reconstruction and compensation of the received signal, the receiver can perform FFT on the CP compensated signal, convert the time domain signal into a frequency domain signal, and perform reception processing on the frequency domain signal, such as demodulation, decoding, etc. , generate the estimated variance for all OFDM symbol feedback for symbol synchronization, generate the decision value of the front and rear OFDM symbols of the current OFDM symbol for the reconstruction and elimination of IBI, and generate the decision value of the current OFDM symbol for CP reconstruction and compensation. the
首先来分析一下由于反馈的针对所有OFDM符号反馈的估计方差对式(10)中IBI消除和CP重构、补偿性能的影响。引入
式(11)中,等号右边的第一行表示目标信号部分,即:第n个符号,由于该目标信号部分中不存在IBI,同时对缺失的CP部分也进行了重构、补偿,因此满足了循环卷积特性。其它部分,也即:第二行与第三行所示部分,是由于判决反馈值存在错误或误差所导致的残留IBI和非理想CP重构部分。在理想信道估计的前提下,如果反馈的判决值完全准确,则第 二行与第三行所示部分可以完全消除,也就是说IBI和ICI能够被理想消除。但实际应用中,反馈符号的估计方差是不可避免的。本发明实施例可以在一定的反馈符号的估计方差的情况下,最小化残留的IBI和ICI能量,最大化地消除IBI和ICI。 In formula (11), the first line on the right side of the equal sign represents the target signal part, that is, the nth symbol. Since there is no IBI in the target signal part, and the missing CP part is also reconstructed and compensated, so Satisfies the circular convolution property. The other parts, that is, the parts shown in the second row and the third row, are residual IBI and non-ideal CP reconstruction parts caused by errors or errors in decision feedback values. On the premise of ideal channel estimation, if the feedback decision value is completely accurate, the parts shown in the second row and the third row can be completely eliminated, that is to say, IBI and ICI can be ideally eliminated. But in practical applications, the estimated variance of the feedback symbols is unavoidable. The embodiments of the present invention can minimize the residual IBI and ICI energy and maximize the elimination of the IBI and ICI under the condition of a certain estimated variance of the feedback symbols. the
根据式(11),可以得到各径信号中的残留干扰能量,对时延为mi个样点的径信号,其残留干扰能量为: According to formula (11), the residual interference energy in each path signal can be obtained. For a path signal with a time delay of m i samples, the residual interference energy is:
由式(12)可知各径残留干扰能量是符号定时位置ms的函数。其中,σn 2为第n个OFDM符号的估计方差,也称为误差,依此类推。 It can be seen from formula (12) that the residual interference energy of each path is a function of the symbol timing position m s . Among them, σ n 2 is the estimated variance of the nth OFDM symbol, also called error, and so on.
由此可以得到当前OFDM符号中所有径总的残留干扰能量如式(4)所示。由于估计方差σn-1 2、σn 2和σn+1 2由接收机的检测性能决定,信道因子γi获取各径的功率信息|γi|2由信道估计装置的性能决定,因此,总的残留的IBI和ICI能量由当前OFDM符号的定时位置ms唯一确定。将总残留干扰能量ε(ms)最小时的定时位置ms作为确定的符号定时
由于迭代需要保证收敛性,通常情况下,在RISIC的迭代处理方法中,本次迭代中当前OFDM符号块及其后一个OFDM符号块的估计方差相同,而与其前一个OFDM符号块的符号估计方差不同,即:
此时,可以通过式(13)获取当前OFDM符号中所有径的总残留干 扰能量。然后通过io=argminε(mi)获取总残留干扰能量中的最小干扰能量,并获取该最小干扰能量对应的起始位置位置mo作为符号定时值,对接收信号进行符号同步。 At this time, the total residual interference energy of all paths in the current OFDM symbol can be obtained by formula (13). Then obtain the minimum interference energy in the total residual interference energy by i o =argminε(m i ), and obtain the starting position m o corresponding to the minimum interference energy as the symbol timing value, and perform symbol synchronization on the received signal.
图4为本发明符号同步装置一个实施例的结构示意图,该实施例的符号同步装置可用于实现本发明上述各实施例的符号同步方法。如图4所示,该实施例的符号同步装置包括第一获取模块401、第二获取模块402、第三获取模块403与符号同步模块404。其中,第一获取模块401用于接收由发送端发送的信号,该信号也称为接收信号,获取接收信号中当前OFDM符号中各径的位置信息与功率信息,以及针对所有OFDM符号反馈的估计方差。第二获取模块402用于根据预设起始位置集合或者量化后的起始位置集合中的所有FFT积分区间的起始位置ms、第一获取模块401获取到的各径的位置信息与功率信息,以及针对所有OFDM符号反馈的估计方差,获取当前OFDM符号中所有径的总残留干扰能量。第三获取模块403用于获取第二获取模块402获取到的总残留干扰能量中最小干扰能量对应的起始位置ms。符号同步模块404用于以第三获取模块403获取到的最小干扰能量对应的起始位置ms作为符号定时值,对接收信号进行符号同步。
FIG. 4 is a schematic structural diagram of an embodiment of a symbol synchronization device according to the present invention. The symbol synchronization device of this embodiment can be used to implement the symbol synchronization methods of the above-mentioned embodiments of the present invention. As shown in FIG. 4 , the symbol synchronization device of this embodiment includes a
具体地,本发明实施例中的符号同步装置中各个模块的处理过程可以参考方法实施例中的相关描述。 Specifically, for the processing process of each module in the symbol synchronization device in the embodiment of the present invention, reference may be made to the relevant description in the method embodiment. the
本发明实施例的符号同步装置,可以以总残留干扰能量中最小干扰能量对应的起始位置作为符号定时值,对发送端发送的信号进行符号同步,从而在信道时延扩展超过CP长度的情况下,减小IBI消除和ICI重构补偿后的残留干扰能量,从而有效实现OFDM符号的同步,提高接收机的接收性能,例如:提高数据传输的误码率、误符号率或误块率性能等。 The symbol synchronization device of the embodiment of the present invention can use the starting position corresponding to the minimum interference energy in the total residual interference energy as the symbol timing value to perform symbol synchronization on the signal sent by the transmitting end, so that when the channel delay extension exceeds the CP length Under this condition, the residual interference energy after IBI elimination and ICI reconstruction compensation is reduced, so as to effectively realize the synchronization of OFDM symbols and improve the receiving performance of the receiver, for example: improve the bit error rate, symbol error rate or block error rate performance of data transmission wait. the
图5为本发明符号同步装置另一个实施例的结构示意图,该实施例中,第一获取模块401包括接收单元501与计算单元502。其中,接收单元501用于接收由发送端发送的信号,也即:接收信号,和接收信号中当前OFDM符号中各径的位置信息mi与信道因子γi,以及接收机针对所有OFDM符号 反馈的估计方差σn 2。计算单元502用于根据接收单元501接收到的信道因子γi获取各径的功率信息|γi|2。其中,i表示第i个径,为大于零的整数,σn 2为针对第n个OFDM符号反馈的估计方差。根据一个具体实施例,接收信号中当前OFDM符号中各径的位置信息mi与信道因子γi具体可以由一个信道估计装置通过信道估计得到。
FIG. 5 is a schematic structural diagram of another embodiment of the symbol synchronization device according to the present invention. In this embodiment, the first obtaining
作为本发明的一个实施例,在上述图4或图5所示实施例的符号同步装置中,第二获取模块402具体根据各径的位置信息mi与功率信息|γi|2,以及针对所有OFDM符号反馈的估计方差σn 2,基于
作为本发明的另一个实施例,在上述图4或图5所示实施例的符号同步装置中,第三获取模块403具体获取总残留干扰能量中的最小干扰能量,并根据io=argminε(mi)获取该最小干扰能量对应的径位置mo,其中,
作为本发明的又一个实施例,在上述图4或图5所示实施例的符号同步装置中,
图6为本发明接收处理系统一个实施例的结构示意图。如图6所示,该实施例的接收处理系统,包括信道估计装置601、符号同步装置602、块间干扰消除装置603、循环前缀重构装置604与接收机605。其中,信道估计装置601用于利用接收端接收到的信号进行信道估计,得到各径的时域信道信息,该时域信道信息包括各径的位置信息与信道因子。符号同步装置602用于接收由发送端发送的信号,根据各径的时域信道信息,获取当前OFDM符号中各径的位置信息与功率信息,以及接收由接收机605针对所有OFDM符号反馈的估计方差,根据各径的位置信息与功率信息,以及针对所有OFDM符号反馈的估计方差,对预设起始位置集合或者量化后的起 始位置集合中的所有FFT积分区间的起始位置ms,获取当前OFDM符号中所有径的总残留干扰能量,并获取总残留干扰能量中最小干扰能量对应的起始位置,以及以该最小干扰能量对应的起始位置作为符号定时值,对发送端发送的信号进行符号同步。块间干扰消除装置603用于根据信道估计装置601发送的各径的时域信道信息、接收机605针对当前OFDM符号的前一个、后一个OFDM符号的判决值,对经过符号同步装置602进行符号同步后的接收信号进行IBI消除。循环前缀重构装置604用于根据信道估计装置601发送的各径的时域信道信息、接收机605发送的针对当前OFDM符号的判决值,对经过块间干扰消除装置603进行IBI消除后的信号进行CP重构与补偿。其中,信道估计装置601、符号同步装置602、块间干扰消除装置603与循环前缀重构装置604处理的接收信号都为时域信号,因此,循环前缀重构装置604进行CP重构与补偿后的信号也是时域信号。接收机605用于对循环前缀重构装置604发送的时域信号进行FFT,将CP重构与补偿后的时域信号变换为频域信号,并对该频域信号进行接收处理,例如:解调、译码等,产生针对所有OFDM符号反馈的估计方差并发送给符号同步装置602以用于符号同步,产生当前OFDM符号的前、后OFDM符号的判决值并发送给块间干扰消除装置603以用于IBI的重构与消除,以及产生当前OFDM符号的判决值并发送给循环前缀重构装置604以用于CP的重构与补偿。具体地,符号同步装置602可以通过图4或图5所示实施例的符号同步装置实现。
Fig. 6 is a schematic structural diagram of an embodiment of the receiving processing system of the present invention. As shown in FIG. 6 , the receiving processing system of this embodiment includes a
本发明实施例的接收处理系统中,符号同步装置可以以总残留干扰能量中最小干扰能量对应的起始位置作为符号定时值,对发送端发送的信号进行符号同步,从而在信道时延扩展超过CP长度的情况下,减小IBI消除和ICI重构补偿后的残留干扰能量,从而有效实现OFDM符号的同步,提高接收机的接收性能,例如:提高数据传输的误码率、误符号率或误块率性能等。 In the receiving processing system of the embodiment of the present invention, the symbol synchronization device can use the starting position corresponding to the minimum interference energy in the total residual interference energy as the symbol timing value to perform symbol synchronization on the signal sent by the transmitting end, so that when the channel delay extends beyond In the case of CP length, the residual interference energy after IBI elimination and ICI reconstruction compensation is reduced, so as to effectively realize the synchronization of OFDM symbols and improve the receiving performance of the receiver, for example: improve the bit error rate of data transmission, symbol error rate or Block error rate performance, etc. the
如图7所示,为本发明接收处理系统另一个实施例的结构示意图,该实施例中,符号同步装置602通过图4所示实施例的符号同步装置实现。其中,第一获取模块401用于接收由发送端发送的信号,根据信道估计装置601发送的各径的时域信道信息,获取当前OFDM符号中各径的位置信息与功率信息,以及接收接收机605针对所有OFDM符号反馈的估计方差。第二获取模块402用于根据预设起始位置集合或者量化后的起始位置集合中的所有FFT积分区间的起始位置ms、第一获取模块401获取的各径的位置信息与功率信息,以及接收机605针对所有OFDM符号反馈的估计方差,获取当前OFDM符号中所有径的总残留干扰能量。第三获取模块403用于获取第二获取模块402获取到的总残留干扰能量中最小干扰能量对应的起始位置。符号同步模块404用于以第三获取模块403获取到的最小干扰能量对应的径位置作为符号定时值,对发送端发送的信号进行符号同步。
As shown in FIG. 7 , it is a schematic structural diagram of another embodiment of the receiving processing system of the present invention. In this embodiment, the
作为本发明的进一步实施例,信道估计装置601可以与符号同步装置602一体设置。
As a further embodiment of the present invention, the
本领域普通技术人员可以理解:实现上述方法实施例的全部或部分步骤可以通过程序指令相关的硬件来完成,前述的程序可以存储于一计算机可读取存储介质中,该程序在执行时,执行包括上述方法实施例的步骤;而前述的存储介质包括:ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。 Those of ordinary skill in the art can understand that all or part of the steps for realizing the above-mentioned method embodiments can be completed by hardware related to program instructions, and the aforementioned program can be stored in a computer-readable storage medium. When the program is executed, the It includes the steps of the above method embodiments; and the aforementioned storage medium includes: ROM, RAM, magnetic disk or optical disk and other various media that can store program codes. the
本发明实施例以总残留干扰能量中最小干扰能量对应的起始位置作为符号定时值,对发送端发送的信号进行符号同步,可以在信道时延扩展超过CP长度的情况下,减小IBI消除和ICI重构补偿后的残留干扰能量,从而有效实现OFDM符号的同步,提高接收机的接收性能。 In the embodiment of the present invention, the starting position corresponding to the minimum interference energy in the total residual interference energy is used as the symbol timing value to perform symbol synchronization on the signal sent by the transmitting end, which can reduce IBI elimination when the channel delay extension exceeds the CP length and ICI to reconstruct the compensated residual interference energy, thereby effectively realizing the synchronization of OFDM symbols and improving the receiving performance of the receiver. the
本发明实施例在同等条件下,分别测试了采用现有技术与本发明实施例时,基于微波存取全球互通技术(Worldwide Interoperability forMicrowave Access,以下简称:WIMAX)标准中的OFDM系统中的IBI 与ICI抑制性能,以更为明确的说明本发明实施例的有益技术效果。该OFDM系统的子载波间隔为10.94kHz,总带宽为10MHz,每个OFDM符号块的子载波数为914,CP长度为1/8符号周期长度,采用的无线信道为等强两径信道,两径信道的功率相同,时延扩展长度为17.8微秒,发送OFDM符号的调制方式为4正交幅度调制(Quadrature AmplitudeModulation,以下简称:QAM),信道编码为(50,33)所罗门码(Reed-Solomon codes,以下简称:RS)。测试结果如图8与图9所示。图8为采用本发明符号同步方法实施例后的一个误符号率性能提升示意图。图9为采用本发明符号同步方法实施例后的一个的误块率性能提升示意图。图8和图9中,“迭代一次的优化方法”表示采用本发明实施例的符号同步方法测试所得的RISIC迭代一次性能;“迭代二次的优化方法”表示采用本发明实施例的符号同步方法测试所得的RISIC迭代二次性能;“迭代一次的原RISIC方法”表示采用现有技术符号同步方法的RISIC迭代一次性能;“理想判决反馈的RISIC方法”表示假定判决反馈完全正确时的RISIC性能。 The embodiment of the present invention tested respectively the IBI and IBI in the OFDM system based on the Worldwide Interoperability for Microwave Access (Worldwide Interoperability for Microwave Access, hereinafter referred to as: WIMAX) standard when using the prior art and the embodiment of the present invention under the same conditions. The ICI suppression performance is used to more clearly illustrate the beneficial technical effects of the embodiments of the present invention. The subcarrier spacing of the OFDM system is 10.94kHz, the total bandwidth is 10MHz, the number of subcarriers in each OFDM symbol block is 914, and the CP length is 1/8 symbol period length. The power of the path channel is the same, the delay extension length is 17.8 microseconds, the modulation method of sending OFDM symbols is 4 quadrature amplitude modulation (Quadrature Amplitude Modulation, hereinafter referred to as: QAM), and the channel code is (50, 33) Solomon code (Reed- Solomon codes, hereinafter referred to as: RS). The test results are shown in Figure 8 and Figure 9. Fig. 8 is a schematic diagram of a symbol error rate performance improvement after adopting the embodiment of the symbol synchronization method of the present invention. FIG. 9 is a schematic diagram of a block error rate performance improvement after adopting an embodiment of the symbol synchronization method of the present invention. In Fig. 8 and Fig. 9, "optimization method for one iteration" means the RISIC iterative performance once tested by using the symbol synchronization method of the embodiment of the present invention; "optimization method for two iterations" means using the symbol synchronization method of the embodiment of the present invention The tested RISIC iterative secondary performance; "the original RISIC method of one iteration" means the RISIC iterative performance of the prior art symbol synchronization method; "the RISIC method of ideal decision feedback" means the RISIC performance when the decision feedback is assumed to be completely correct. the
通常情况下,选取1%作为误符号率的工作点。由图8可知,在相同的信噪比条件下,“迭代一次的优化方法”与“迭代二次的优化方法”的误符号率均低于“迭代一次的原RISIC方法”,因此,具有较好的RISIC性能,并且,随着信噪比的增加,“迭代一次的优化方法”与“迭代二次的优化方法”带来的RISIC性能优势比“迭代一次的原RISIC方法”更为明显。在1%的工作点上,“迭代一次的优化方法”与“迭代二次的优化方法”的RISIC性能逼近“理想判决反馈的RISIC方法”这个性能上界。 Usually, 1% is selected as the working point of the symbol error rate. It can be seen from Figure 8 that under the same SNR condition, the symbol error rate of the "optimization method with one iteration" and the "optimization method with two iterations" are lower than the "original RISIC method with one iteration", therefore, they have relatively Good RISIC performance, and, as the signal-to-noise ratio increases, the RISIC performance advantages brought by the "iterative optimization method" and "iterative second optimization method" are more obvious than the "original RISIC method of iterative once". At the 1% working point, the RISIC performance of the "iterative optimization method" and "iterative quadratic optimization method" is close to the performance upper bound of the "ideal decision feedback RISIC method". the
通常情况下,选取10%作为误块率的工作点。由图9可知,在相同的信噪比条件下,“迭代一次的优化方法”与“迭代二次的优化方法”的误块率均低于“迭代一次的原RISIC方法”,因此,具有较好的RISIC性能,并且,随着信噪比的增加,“迭代一次的优化方法”与“迭代二次的优化方法”带来 的RISIC性能优势比“迭代一次的原RISIC方法”更为明显。在10%的工作点上,“迭代一次的优化方法”与“迭代二次的优化方法”的RISIC性能逼近“理想判决反馈的RISIC方法”这个性能上界。 Normally, 10% is selected as the working point of the block error rate. It can be seen from Fig. 9 that under the same SNR condition, the block error rate of the "optimization method with one iteration" and the "optimization method with two iterations" are lower than the "original RISIC method with one iteration", therefore, they have relatively Good RISIC performance, and, as the signal-to-noise ratio increases, the RISIC performance advantages brought by the "iterative optimization method" and "iterative second optimization method" are more obvious than the "original RISIC method of iterative once". At the 10% working point, the RISIC performance of the "optimization method with one iteration" and "the optimization method with two iterations" approaches the performance upper bound of "the RISIC method with ideal decision feedback". the
由图8与图9可知,采用了本发明实施例的符号同步方法后,在信道时延扩展大于CP的场景下,大大提升了原有典型IBI/ICI算法的RISIC性能,从而提高了相应接收机的性能和鲁棒性。 It can be seen from Fig. 8 and Fig. 9 that after adopting the symbol synchronization method of the embodiment of the present invention, in the scenario where the channel delay spread is greater than CP, the RISIC performance of the original typical IBI/ICI algorithm is greatly improved, thereby improving the corresponding reception machine performance and robustness. the
最后所应说明的是:以上实施例仅用以说明本发明的技术方案,而非对本发明作限制性理解。尽管参照上述较佳实施例对本发明进行了详细说明,本领域的普通技术人员应当理解:其依然可以对本发明的技术方案进行修改或者等同替换,而这种修改或者等同替换并不脱离本发明技术方案的精神和范围。 Finally, it should be noted that: the above examples are only used to illustrate the technical solutions of the present invention, rather than limiting the understanding of the present invention. Although the present invention has been described in detail with reference to the above-mentioned preferred embodiments, those skilled in the art should understand that: it can still modify or replace the technical solution of the present invention, and such modification or replacement does not depart from the technology of the present invention. The spirit and scope of the programme. the
Claims (13)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2009102218700A CN101702702B (en) | 2009-11-19 | 2009-11-19 | Symbol synchronizing method and device and symbol receiving processing system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2009102218700A CN101702702B (en) | 2009-11-19 | 2009-11-19 | Symbol synchronizing method and device and symbol receiving processing system |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101702702A CN101702702A (en) | 2010-05-05 |
CN101702702B true CN101702702B (en) | 2012-04-25 |
Family
ID=42157596
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2009102218700A Expired - Fee Related CN101702702B (en) | 2009-11-19 | 2009-11-19 | Symbol synchronizing method and device and symbol receiving processing system |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN101702702B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20120126448A (en) * | 2011-05-11 | 2012-11-21 | 한국전자통신연구원 | Apparatus and method for synchronizing in wireless network systems |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1226108A (en) * | 1998-02-13 | 1999-08-18 | 日本胜利株式会社 | Method and apparatus for receiving orthogonal frequency division multiplexed signal |
CN101079863A (en) * | 2007-06-26 | 2007-11-28 | 上海大学 | Frequency domain balancer design method in orthogonal frequency division multiplexing system |
CN101156323A (en) * | 2005-04-13 | 2008-04-02 | 艾利森电话股份有限公司 | Simultaneous channel estimation of a carrier and an interferer |
-
2009
- 2009-11-19 CN CN2009102218700A patent/CN101702702B/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1226108A (en) * | 1998-02-13 | 1999-08-18 | 日本胜利株式会社 | Method and apparatus for receiving orthogonal frequency division multiplexed signal |
CN101156323A (en) * | 2005-04-13 | 2008-04-02 | 艾利森电话股份有限公司 | Simultaneous channel estimation of a carrier and an interferer |
CN101079863A (en) * | 2007-06-26 | 2007-11-28 | 上海大学 | Frequency domain balancer design method in orthogonal frequency division multiplexing system |
Also Published As
Publication number | Publication date |
---|---|
CN101702702A (en) | 2010-05-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7706428B2 (en) | Low complexity inter-carrier interference cancellation | |
EP1894378B1 (en) | Receiver apparatus for receiving a multicarrier signal | |
CN101507219B (en) | Method and system for time error estimation for data symbols | |
US8085859B2 (en) | Platform noise mitigation | |
KR101241824B1 (en) | A receiver of communication system for orthogonal frequency division multiplexing and Method for mitigate a phase noise in thereof | |
US20060159196A1 (en) | Apparatus and method for channel estimation and cyclic prefix reconstruction in an OFDM-STBC mobile communication system | |
EP2031815A2 (en) | Method and apparatus for ICI cancellation in communication systems | |
US8565295B1 (en) | Low-complexity channel noise reduction method and apparatus for multi-carrier mode in wireless LANS | |
US10924248B2 (en) | Signal-to-noise ratio determining method and device, and channel equalization method and device | |
CN101364831B (en) | Method for channel estimation | |
CN105791182B (en) | IQ imbalances and channel joint estimation method suitable for MIMO-OFDM systems | |
CN101267419A (en) | A method and device for adjusting time advance amount for OFDM symbol timing | |
US20070058734A1 (en) | Circuit for improving channel impulse response estimation and compensating for remnant frequency offset in the orthogonal frequency division multiplexing baseband receiver for IEEE 802.11a/g wireless LAN standard standard | |
US20110310999A1 (en) | Dynamic Optimization of Overlap-and-Add Length | |
CN105721361A (en) | Novel OFDM channel estimation method based on LS algorithm and frequency domain FIR filtering | |
CN102045285B (en) | Channel estimation method and device and communication system | |
CN102752243B (en) | Method supportive for estimating frequency offset of high-speed scenes of LTE (line termination equipment) system | |
US20060285482A1 (en) | OFDM demodulation apparatus, method and computer readable medium | |
JP2012503424A (en) | Channel estimation in OFDM receiver | |
Wu | Iterative compressive sensing for the cancellation of clipping noise in underwater acoustic OFDM system | |
US8891706B2 (en) | System and method for optimizing use of channel state information | |
US9094243B2 (en) | Method, apparatus, receiver and communication device for estimating phase noise | |
CN101702702B (en) | Symbol synchronizing method and device and symbol receiving processing system | |
CN109889286B (en) | Signal-to-noise ratio estimation method based on pilot signal | |
CN105991489B (en) | The method of channel equalization is realized using frequency domain over-sampling |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20120425 |
|
CF01 | Termination of patent right due to non-payment of annual fee |