CN101699787B - 一种用于对等网络的蠕虫检测方法 - Google Patents
一种用于对等网络的蠕虫检测方法 Download PDFInfo
- Publication number
- CN101699787B CN101699787B CN 200910185425 CN200910185425A CN101699787B CN 101699787 B CN101699787 B CN 101699787B CN 200910185425 CN200910185425 CN 200910185425 CN 200910185425 A CN200910185425 A CN 200910185425A CN 101699787 B CN101699787 B CN 101699787B
- Authority
- CN
- China
- Prior art keywords
- peer
- worm
- network
- peer network
- flow
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000001514 detection method Methods 0.000 title claims abstract description 48
- 238000000034 method Methods 0.000 claims abstract description 33
- 238000004458 analytical method Methods 0.000 claims abstract description 19
- 238000005516 engineering process Methods 0.000 claims abstract description 18
- 239000003795 chemical substances by application Substances 0.000 claims description 33
- 230000005856 abnormality Effects 0.000 claims description 17
- 230000008878 coupling Effects 0.000 claims description 14
- 238000010168 coupling process Methods 0.000 claims description 14
- 238000005859 coupling reaction Methods 0.000 claims description 14
- 238000001914 filtration Methods 0.000 claims description 8
- 230000003542 behavioural effect Effects 0.000 claims description 7
- 239000000284 extract Substances 0.000 claims description 6
- 238000012300 Sequence Analysis Methods 0.000 claims description 4
- 238000012544 monitoring process Methods 0.000 claims description 4
- 238000012545 processing Methods 0.000 claims description 4
- 208000015181 infectious disease Diseases 0.000 claims description 3
- 206010024774 Localised infection Diseases 0.000 claims description 2
- 238000004364 calculation method Methods 0.000 claims description 2
- 230000002159 abnormal effect Effects 0.000 abstract description 4
- 230000002265 prevention Effects 0.000 abstract description 2
- 238000010792 warming Methods 0.000 abstract 1
- 230000006399 behavior Effects 0.000 description 13
- 241000700605 Viruses Species 0.000 description 11
- 230000006870 function Effects 0.000 description 9
- 230000008569 process Effects 0.000 description 8
- 238000011160 research Methods 0.000 description 8
- 238000004891 communication Methods 0.000 description 5
- 230000007246 mechanism Effects 0.000 description 5
- 238000012360 testing method Methods 0.000 description 3
- 230000006378 damage Effects 0.000 description 2
- 230000001066 destructive effect Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 206010033799 Paralysis Diseases 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000007123 defense Effects 0.000 description 1
- 230000008260 defense mechanism Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 238000005206 flow analysis Methods 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 230000009545 invasion Effects 0.000 description 1
- 230000009191 jumping Effects 0.000 description 1
- 230000004807 localization Effects 0.000 description 1
- 230000033001 locomotion Effects 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 230000006855 networking Effects 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 230000000750 progressive effect Effects 0.000 description 1
- 230000001932 seasonal effect Effects 0.000 description 1
- 230000009897 systematic effect Effects 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
Images
Landscapes
- Data Exchanges In Wide-Area Networks (AREA)
- Computer And Data Communications (AREA)
Abstract
Description
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 200910185425 CN101699787B (zh) | 2009-11-09 | 2009-11-09 | 一种用于对等网络的蠕虫检测方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 200910185425 CN101699787B (zh) | 2009-11-09 | 2009-11-09 | 一种用于对等网络的蠕虫检测方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101699787A CN101699787A (zh) | 2010-04-28 |
CN101699787B true CN101699787B (zh) | 2013-01-02 |
Family
ID=42148233
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN 200910185425 Expired - Fee Related CN101699787B (zh) | 2009-11-09 | 2009-11-09 | 一种用于对等网络的蠕虫检测方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN101699787B (zh) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101867571A (zh) * | 2010-05-12 | 2010-10-20 | 上海电机学院 | 基于协同多个移动代理的智能网络入侵防御系统 |
CN103428212A (zh) * | 2013-08-08 | 2013-12-04 | 电子科技大学 | 一种恶意代码检测及防御的方法 |
CN104901850B (zh) * | 2015-06-12 | 2018-08-31 | 国家计算机网络与信息安全管理中心广东分中心 | 一种恶意代码终端感染机器网络定位方法 |
GB2545744A (en) * | 2015-12-24 | 2017-06-28 | British Telecomm | Malicious network traffic identification |
CN107086944B (zh) * | 2017-06-22 | 2020-04-21 | 北京奇艺世纪科技有限公司 | 一种异常检测方法和装置 |
CN108173834A (zh) * | 2017-12-25 | 2018-06-15 | 北京计算机技术及应用研究所 | 终端指纹技术识别“一卡通”网络终端 |
CN111027063A (zh) * | 2019-09-12 | 2020-04-17 | 北京安天网络安全技术有限公司 | 防止终端感染蠕虫的方法、装置、电子设备及存储介质 |
CN111125703A (zh) * | 2019-12-24 | 2020-05-08 | 沈阳航空航天大学 | 一种基于幂级数rnn的多态网络蠕虫特征码提取 |
-
2009
- 2009-11-09 CN CN 200910185425 patent/CN101699787B/zh not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
CN101699787A (zh) | 2010-04-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101699787B (zh) | 一种用于对等网络的蠕虫检测方法 | |
Kumar et al. | A Distributed framework for detecting DDoS attacks in smart contract‐based Blockchain‐IoT Systems by leveraging Fog computing | |
She et al. | Blockchain trust model for malicious node detection in wireless sensor networks | |
CN108616534B (zh) | 一种基于区块链防护物联网设备DDoS攻击的方法及系统 | |
CN104509034B (zh) | 模式合并以识别恶意行为 | |
CN108616529B (zh) | 一种基于业务流的异常检测方法及系统 | |
CN104539626A (zh) | 一种基于多源报警日志的网络攻击场景生成方法 | |
CN102984140B (zh) | 基于行为片段共享的恶意软件特征融合分析方法及系统 | |
CN102333307A (zh) | 一种基于主观信念的无线传感器网络信任评估方法 | |
Rizvi et al. | Application of artificial intelligence to network forensics: Survey, challenges and future directions | |
Ding et al. | Research and implementation on snort-based hybrid intrusion detection system | |
CN103036743B (zh) | 一种窃密木马的tcp心跳行为的检测方法 | |
Cheetancheri et al. | A distributed host-based worm detection system | |
Sen et al. | Towards an approach to contextual detection of multi-stage cyber attacks in smart grids | |
Tao et al. | A hybrid alarm association method based on AP clustering and causality | |
Wang et al. | Interactive analysis of attack graphs using relational queries | |
Chen et al. | A blockchain-based security model for iot systems | |
Kenaza | An ontology-based modelling and reasoning for alerts correlation | |
Tian et al. | DS evidence theory and its data fusion application in intrusion detection | |
Maasaoui et al. | Network security traffic analysis platform-design and validation | |
Abou Haidar et al. | High perception intrusion detection system using neural networks | |
Salim et al. | Improving the quality of alerts with correlation in intrusion detection | |
Lyu et al. | Agcm: A multi-stage attack correlation and scenario reconstruction method based on graph aggregation | |
Bryniarska et al. | Ontology-based knowledge representation in the IoT cybersecurity system | |
Ye et al. | Ontology-based knowledge representation for a P2P multi-agent distributed intrusion detection system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
EE01 | Entry into force of recordation of patent licensing contract |
Application publication date: 20100428 Assignee: Jiangsu Nanyou IOT Technology Park Ltd. Assignor: NANJING University OF POSTS AND TELECOMMUNICATIONS Contract record no.: 2016320000217 Denomination of invention: Worm detection method used for peer-to-peer network Granted publication date: 20130102 License type: Common License Record date: 20161118 |
|
LICC | Enforcement, change and cancellation of record of contracts on the licence for exploitation of a patent or utility model | ||
EC01 | Cancellation of recordation of patent licensing contract | ||
EC01 | Cancellation of recordation of patent licensing contract |
Assignee: Jiangsu Nanyou IOT Technology Park Ltd. Assignor: NANJING University OF POSTS AND TELECOMMUNICATIONS Contract record no.: 2016320000217 Date of cancellation: 20180116 |
|
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20130102 |