CN101692481B - Solar cell having integrated structure of plane-bulk heterojunction and preparation method thereof - Google Patents
Solar cell having integrated structure of plane-bulk heterojunction and preparation method thereof Download PDFInfo
- Publication number
- CN101692481B CN101692481B CN 200910093531 CN200910093531A CN101692481B CN 101692481 B CN101692481 B CN 101692481B CN 200910093531 CN200910093531 CN 200910093531 CN 200910093531 A CN200910093531 A CN 200910093531A CN 101692481 B CN101692481 B CN 101692481B
- Authority
- CN
- China
- Prior art keywords
- conjugated polymer
- solar cell
- bulk heterojunction
- poly
- electron donor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000002360 preparation method Methods 0.000 title abstract description 6
- 229920000547 conjugated polymer Polymers 0.000 claims abstract description 44
- 239000000463 material Substances 0.000 claims abstract description 35
- 239000000758 substrate Substances 0.000 claims abstract description 18
- 230000004048 modification Effects 0.000 claims abstract description 15
- 238000012986 modification Methods 0.000 claims abstract description 15
- 239000011521 glass Substances 0.000 claims abstract description 12
- 238000000034 method Methods 0.000 claims abstract description 12
- 239000004065 semiconductor Substances 0.000 claims abstract description 12
- 238000007641 inkjet printing Methods 0.000 claims abstract description 7
- 238000004528 spin coating Methods 0.000 claims abstract description 7
- 239000011248 coating agent Substances 0.000 claims abstract description 4
- 238000000576 coating method Methods 0.000 claims abstract description 4
- -1 poly (p-phenylene vinylene) Polymers 0.000 claims description 11
- 238000001035 drying Methods 0.000 claims description 9
- 239000004054 semiconductor nanocrystal Substances 0.000 claims description 9
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 claims description 6
- 229920000144 PEDOT:PSS Polymers 0.000 claims description 6
- 229910052782 aluminium Inorganic materials 0.000 claims description 6
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 6
- 239000011259 mixed solution Substances 0.000 claims description 6
- 229920000412 polyarylene Polymers 0.000 claims description 6
- 229920000123 polythiophene Polymers 0.000 claims description 5
- 229920000265 Polyparaphenylene Polymers 0.000 claims description 4
- 229920000292 Polyquinoline Polymers 0.000 claims description 4
- 229910052751 metal Inorganic materials 0.000 claims description 4
- 239000002184 metal Substances 0.000 claims description 4
- 239000002904 solvent Substances 0.000 claims description 4
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 2
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 claims description 2
- 229910052783 alkali metal Inorganic materials 0.000 claims description 2
- 150000001340 alkali metals Chemical class 0.000 claims description 2
- 229910052784 alkaline earth metal Inorganic materials 0.000 claims description 2
- 150000001342 alkaline earth metals Chemical class 0.000 claims description 2
- 239000000956 alloy Substances 0.000 claims description 2
- 229910045601 alloy Inorganic materials 0.000 claims description 2
- 150000001875 compounds Chemical class 0.000 claims description 2
- 229910052802 copper Inorganic materials 0.000 claims description 2
- 239000010949 copper Substances 0.000 claims description 2
- 238000001704 evaporation Methods 0.000 claims description 2
- 150000002739 metals Chemical class 0.000 claims description 2
- 229910052709 silver Inorganic materials 0.000 claims description 2
- 239000004332 silver Substances 0.000 claims description 2
- 229920000553 poly(phenylenevinylene) Polymers 0.000 claims 3
- 125000001140 1,4-phenylene group Chemical group [H]C1=C([H])C([*:2])=C([H])C([H])=C1[*:1] 0.000 claims 1
- 125000000732 arylene group Chemical group 0.000 claims 1
- 239000002585 base Substances 0.000 claims 1
- 239000007888 film coating Substances 0.000 claims 1
- 238000009501 film coating Methods 0.000 claims 1
- 238000006243 chemical reaction Methods 0.000 abstract description 14
- 238000010129 solution processing Methods 0.000 abstract description 2
- 229920001688 coating polymer Polymers 0.000 abstract 1
- 238000004519 manufacturing process Methods 0.000 abstract 1
- MVPPADPHJFYWMZ-UHFFFAOYSA-N chlorobenzene Chemical compound ClC1=CC=CC=C1 MVPPADPHJFYWMZ-UHFFFAOYSA-N 0.000 description 28
- 229920000301 poly(3-hexylthiophene-2,5-diyl) polymer Polymers 0.000 description 25
- 239000000243 solution Substances 0.000 description 14
- YBNMDCCMCLUHBL-UHFFFAOYSA-N (2,5-dioxopyrrolidin-1-yl) 4-pyren-1-ylbutanoate Chemical compound C=1C=C(C2=C34)C=CC3=CC=CC4=CC=C2C=1CCCC(=O)ON1C(=O)CCC1=O YBNMDCCMCLUHBL-UHFFFAOYSA-N 0.000 description 10
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 8
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 8
- 230000000052 comparative effect Effects 0.000 description 8
- 238000005286 illumination Methods 0.000 description 6
- 239000008367 deionised water Substances 0.000 description 4
- 229910021641 deionized water Inorganic materials 0.000 description 4
- 239000003599 detergent Substances 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- 230000005693 optoelectronics Effects 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- UHYPYGJEEGLRJD-UHFFFAOYSA-N cadmium(2+);selenium(2-) Chemical compound [Se-2].[Cd+2] UHYPYGJEEGLRJD-UHFFFAOYSA-N 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 125000005678 ethenylene group Chemical group [H]C([*:1])=C([H])[*:2] 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 230000031700 light absorption Effects 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 239000002096 quantum dot Substances 0.000 description 1
- 238000005215 recombination Methods 0.000 description 1
- 230000006798 recombination Effects 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/549—Organic PV cells
Landscapes
- Photovoltaic Devices (AREA)
Abstract
本发明公开了属于太阳能电池技术领域的一种平面-本体异质结集成结构太阳能电池及其制备方法。本发明太阳能电池包括依次层叠的玻璃衬底、阳极、阳极修饰层、光电活化层、阴极,其特征在于在阳极修饰层和光电活化层之间设有厚度为2-30nm的共轭聚合物电子给体材料层,用旋转涂膜或喷墨打印的方法制备共轭聚合物电子给体材料涂层和共轭聚合物电子给体材料与半导体纳米晶电子受体材料混合而成的光电活化层。本发明兼备平面结构和本体异质结结构电池的优点,具有制作工艺简单、控制容易,重现性好,可溶液加工等多种优点,同时使用该结构的太阳能电池较普通本体异质结结构的能量转换效率有显著提高。
The invention discloses a plane-bulk heterojunction integrated solar cell and a preparation method thereof, which belong to the technical field of solar cells. The solar cell of the present invention includes a glass substrate, an anode, an anode modification layer, a photoelectric active layer, and a cathode stacked in sequence, and is characterized in that a conjugated polymer electron layer with a thickness of 2-30 nm is arranged between the anode modification layer and the photoelectric active layer. Donor material layer, prepared by spin coating or inkjet printing method of conjugated polymer electron donor material coating and conjugated polymer electron donor material and semiconductor nanocrystalline electron acceptor material mixed photoelectric active layer . The invention combines the advantages of planar structure and body heterojunction structure battery, and has many advantages such as simple manufacturing process, easy control, good reproducibility, solution processing, etc. The energy conversion efficiency has been significantly improved.
Description
技术领域 technical field
本发明属于太阳能电池技术领域,特别涉及一种平面-本体异质结集成结构太阳能电池及其制备方法。The invention belongs to the technical field of solar cells, in particular to a solar cell with a plane-bulk heterojunction integrated structure and a preparation method thereof.
背景技术 Background technique
为了最大限度的利用太阳光的整个光谱范围,最近提出了用窄带隙的半导体纳米晶量子点(如CdSe、PbS、PbSe)来敏化共轭聚合物的有机/无机杂化太阳能电池的结构,该结构中在大于650nm的长波长方向表现出增强的光吸收性能(1:S.A.Mcdonald,G.Konstantatos,S.Zhang,P.W.Cyr,E.J.D.Klem,L.Levina,and E.H.Sargent,Nature Mater.2005,4,138;2:D.Cui,J.Xu,T.Zhu,G.Paradee,and S.Ashok,Appl.Phys.Lett.2006,88,183111)。同时,有机/无机杂化太阳能电池具有制备工艺简单、重量轻、造价低廉、容易制备大面积柔性器件等优点而得到广泛的关注(1:W.U.Huynh,J.J.Dittmer,and A.P.Alivisotos,Science 2002,295,2425;2:X.Jiang,R.D.Schaller,S.B.Lee,J.M.Pietryga,V.I.Klimov,and A.A.Zakhidov,J.Mater.Res.2007,22,2204;3:D.Qi,M.Fischbein,M.Drndic,and S.Selmic,Appl.Phys.Lett.2005,86,093103;4:S.Kumar and G.D.Scholes,Microchim.Acta 2008,160,315;5:G.Konstantatos,I.Howard,A.Fischer,S.Hoogland,J.Clifford,E.Klem,L.Levina,and E.H.Sargent,Nature 2006,442,180)。几乎所有的有机/无机杂化太阳能电池结构应用的都是本体异质结结构,这是由于在本体异质结结构中共轭聚合物中的光生激子能够有效的在给受体界面分离,有很高的光生载流子效率。然而,研究表明在共轭聚合物/半导体纳米晶共混而成的本体异质结中,空穴和电子在复合前的迁移距离要小于在纯聚合物中的距离(1:W.U.Huynh,J.J.Dittmer,N.Teclemariam,D.J.Milliron,A.P.Alivisatos,and K.W.J.Bamham,Phys.Rev.B 2003,67,115326)。如果能用溶液加工的方法将平面异质结和本体异质结集成在一起,不仅能够改善载流子的传输和收集效率,而且能够进一步充分利用太阳光全光谱。In order to maximize the use of the entire spectral range of sunlight, the structure of organic/inorganic hybrid solar cells sensitized with conjugated polymers using narrow-bandgap semiconductor nanocrystalline quantum dots (such as CdSe, PbS, PbSe) has recently been proposed, The structure shows enhanced light absorption performance in the long wavelength direction greater than 650nm (1: S.A.Mcdonald, G.Konstantatos, S.Zhang, P.W.Cyr, E.J.D.Klem, L.Levina, and E.H.Sargent, Nature Mater.2005, 4, 138; 2: D. Cui, J. Xu, T. Zhu, G. Paradee, and S. Ashok, Appl. Phys. Lett. 2006, 88, 183111). At the same time, organic/inorganic hybrid solar cells have attracted widespread attention due to their advantages such as simple preparation process, light weight, low cost, and easy preparation of large-area flexible devices (1: W.U.Huynh, J.J.Dittmer, and A.P. Alivisotos, Science 2002, 295 , 2425; 2: X.Jiang, R.D.Schaller, S.B.Lee, J.M.Pietryga, V.I.Klimov, and A.A.Zakhidov, J.Mater.Res.2007, 22, 2204; 3: D.Qi, M.Fischbein, M.Drndic , and S.Selmic, Appl.Phys.Lett.2005, 86, 093103; 4: S.Kumar and G.D.Scholes, Microchim.Acta 2008, 160, 315; 5: G.Konstantatos, I.Howard, A.Fischer, S. Hoogland, J. Clifford, E. Klem, L. Levina, and E. H. Sargent, Nature 2006, 442, 180). Almost all organic/inorganic hybrid solar cell structures are applied to the bulk heterojunction structure, because the photogenerated excitons in the conjugated polymer in the bulk heterojunction structure can be effectively separated at the donor-acceptor interface. High photogenerated carrier efficiency. However, studies have shown that in bulk heterojunctions of conjugated polymer/semiconductor nanocrystal blends, holes and electrons migrate less before recombination than in pure polymers (1: W.U.Huynh, J.J. Dittmer, N. Teclemariam, D.J. Milliron, A.P. Alivisatos, and K.W.J. Bamham, Phys. Rev. B 2003, 67, 115326). If the planar heterojunction and bulk heterojunction can be integrated by solution processing, it will not only improve the carrier transport and collection efficiency, but also make full use of the full spectrum of sunlight.
发明内容 Contents of the invention
本发明的目的是提供一种平面-本体异质结集成结构太阳能电池及其制备方法。The object of the present invention is to provide a planar-bulk heterojunction integrated solar cell and a preparation method thereof.
一种平面-本体异质结集成结构太阳能电池,包括依次层叠的玻璃衬底1、阳极2、阳极修饰层3、光电活化层4、阴极5,其特征在于在阳极修饰层3和光电活化层4之间设有共轭聚合物电子给体材料层6,所述共轭聚合物电子给体材料层厚度为2-30nm。A planar-bulk heterojunction integrated structure solar cell, comprising a
所述共轭聚合物电子给体材料选自:聚对亚苯基亚乙烯类、聚亚芳基亚乙烯基类、聚对亚苯基类、聚亚芳基类、聚噻吩类、聚喹啉类。The conjugated polymer electron donor material is selected from: polyparaphenylene vinylene, polyarylene vinylene, polyparaphenylene, polyarylene, polythiophene, polyquinone morphines.
所述光电活化层4为共轭聚合物电子给体材料与半导体纳米晶电子受体材料混合而成的光电活化层,其中,所述共轭聚合物电子给体材料选自:聚(对亚苯基亚乙烯)类、聚(亚芳基亚乙烯基)类、聚(对亚苯基)类、聚(亚芳基)类、聚噻吩类、聚喹啉类,所述半导体纳米晶电子受体材料是从III-V族、II-VI族和IV-VI族化合物半导体的组中选取的。The photoelectric active layer 4 is a photoactive layer formed by mixing a conjugated polymer electron donor material and a semiconductor nanocrystalline electron acceptor material, wherein the conjugated polymer electron donor material is selected from the group consisting of: poly( Phenylvinylene), poly(arylenevinylene), poly(p-phenylene), poly(arylene), polythiophene, polyquinoline, the semiconductor nanocrystalline electronics The acceptor material is selected from the group of III-V, II-VI and IV-VI compound semiconductors.
所述阴极包括碱金属、碱土金属、铝、银、铜、或者上述金属组成的合金。The cathode includes alkali metal, alkaline earth metal, aluminum, silver, copper, or an alloy composed of the above metals.
一种平面-本体异质结集成结构太阳能电池的制备方法,其特征在于该方法步骤如下:A method for preparing a planar-bulk heterojunction integrated solar cell, characterized in that the steps of the method are as follows:
(1)超声清洗溅射有ITO阳极的透明导电玻璃,然后用臭氧处理基片表面;(1) ultrasonically clean the transparent conductive glass sputtered with ITO anode, and then treat the substrate surface with ozone;
(2)再旋转涂上30纳米厚的PEDOT:PSS作为阳极修饰薄膜,干燥;(2) Spin coat 30 nanometers of thick PEDOT:PSS as the anode modification film again, dry;
(3)将共轭聚合物电子给体材料溶于溶剂中,用旋转涂膜或喷墨打印的方法将其涂覆在上述经阳极修饰的基片上,80-250℃下干燥10-48min,自然冷却至室温,形成厚度为2-30nm的共轭聚合物电子给体材料层;(3) dissolving the conjugated polymer electron donor material in a solvent, coating it on the above-mentioned anode-modified substrate by spin coating or inkjet printing, and drying at 80-250°C for 10-48min, Cool naturally to room temperature to form a conjugated polymer electron donor material layer with a thickness of 2-30nm;
(4)将共轭聚合物电子给体材料与半导体纳米晶电子受体材料与溶剂混合,将形成的混合溶液用旋转涂膜或喷墨打印的方法直接涂覆在共轭聚合物电子给体材料层上,干燥后自然冷却至室温,形成光电活化层;(4) The conjugated polymer electron donor material is mixed with the semiconductor nanocrystalline electron acceptor material and the solvent, and the resulting mixed solution is directly coated on the conjugated polymer electron donor by spin coating or inkjet printing. On the material layer, after drying, it is naturally cooled to room temperature to form a photoelectric active layer;
(5)通过掩模板直接在光电活化层上真空蒸镀金属形成阴极,得到共轭聚合物/半导体纳米晶平面-本体异质结集成结构太阳能电池。(5) Vacuum-evaporating metal directly on the photoelectric active layer through a mask to form a cathode to obtain a conjugated polymer/semiconductor nanocrystal planar-bulk heterojunction integrated solar cell.
所述步骤(3)中旋转涂膜时转速为1000-3000转每分。In the step (3), the rotation speed is 1000-3000 revolutions per minute when the coating is rotated.
本发明的有益效果为:The beneficial effects of the present invention are:
1.该方法能通过旋转涂膜或喷墨打印的方法直接涂敷将共轭聚合物/半导体纳米晶光电活性层直接涂覆在下层共轭聚合物上;1. This method can directly coat the conjugated polymer/semiconductor nanocrystal optoelectronic active layer on the lower conjugated polymer by spin coating or inkjet printing;
2.在旋涂或喷墨打印上层共轭聚合物/半导体纳米晶光电活性层时对下层共轭聚合物没有任何破坏;2. There is no damage to the lower conjugated polymer when spin-coating or inkjet printing the upper conjugated polymer/semiconductor nanocrystal optoelectronic active layer;
3.该方法工艺简单,成本低廉,膜厚容易控制,适合于大规模工业化生产;3. The method has simple process, low cost, easy control of film thickness, and is suitable for large-scale industrial production;
4.该方法中的共轭聚合物层需较高温度干燥,干燥温度可以从80到250摄氏度,干燥时间可以从10分钟到48小时;4. The conjugated polymer layer in this method needs to be dried at a higher temperature, the drying temperature can be from 80 to 250 degrees Celsius, and the drying time can be from 10 minutes to 48 hours;
5.以该集成结构制备的共轭聚合物/半导体纳米晶太阳能电池具有优于传统本体异质结结构器件的光电能量转换效率。5. The conjugated polymer/semiconductor nanocrystalline solar cell prepared with this integrated structure has a photoelectric energy conversion efficiency superior to that of traditional bulk heterojunction structure devices.
附图说明 Description of drawings
图1是太阳能电池的器件结构,其中,(a)为本体异质结太阳能电池,(b)为本发明的平面-本体异质结集成结构共轭聚合物/半导体纳米晶太阳能电池;Fig. 1 is the device structure of solar cell, wherein, (a) is bulk heterojunction solar cell, (b) is the plane-bulk heterojunction integrated structure conjugated polymer/semiconductor nanocrystalline solar cell of the present invention;
图2是太阳能电池的断面扫描电镜图,其中,(a)为本体异质结太阳能电池,(b)为本发明的平面-本体异质结集成结构共轭聚合物/半导体纳米晶太阳能电池;Fig. 2 is a cross-sectional scanning electron microscope diagram of a solar cell, wherein (a) is a bulk heterojunction solar cell, and (b) is a planar-bulk heterojunction integrated structure conjugated polymer/semiconductor nanocrystalline solar cell of the present invention;
图3是实施例1制备的本体异质结和平面-本体异质结集成结构(1000rpm制备P3HT)太阳能电池和对比例制备的本体异质结结构太阳能电池在100mW/cm2的532nm光照下的I-V曲线;Fig. 3 is the bulk heterojunction and planar-bulk heterojunction integrated structure (1000rpm prepares P3HT) solar cell prepared by
图4是实施例1制备的本体异质结和平面-本体异质结集成结构(1000rpm制备P3HT)太阳能电池和对比例制备的本体异质结结构太阳能电池在100mW/cm2的808nm光照下的I-V曲线;Fig. 4 is the bulk heterojunction and planar-bulk heterojunction integrated structure (1000rpm prepares P3HT) solar cell prepared by
图5是实施例2制备的本体异质结和平面-本体异质结集成结构(2000rpm制备P3HT)太阳能电池和对比例制备的本体异质结结构太阳能电池在100mW/cm2的532nm光照下的I-V曲线;Fig. 5 is the bulk heterojunction and planar-bulk heterojunction integrated structure (2000rpm prepares P3HT) solar cell prepared in
图6是实施例2制备的本体异质结和平面-本体异质结集成结构(2000rpm制备P3HT)太阳能电池和对比例制备的本体异质结结构太阳能电池在100mW/cm2的808nm光照下的I-V曲线;Fig. 6 is the bulk heterojunction and planar-bulk heterojunction integrated structure (2000rpm prepares P3HT) solar cell prepared by
图7是实施例3制备的本体异质结和平面-本体异质结集成结构(3000rpm制备P3HT)太阳能电池和对比例制备的本体异质结结构太阳能电池在100mW/cm2的532nm光照下的I-V曲线;Fig. 7 is the bulk heterojunction and planar-bulk heterojunction integrated structure (3000rpm prepares P3HT) solar cell prepared in
图8是实施例3制备的本体异质结和平面-本体异质结集成结构(3000rpm制备P3HT)太阳能电池和对比例制备的本体异质结结构太阳能电池在100mW/cm2的808nm光照下的I-V曲线;Fig. 8 is the bulk heterojunction and planar-bulk heterojunction integrated structure (3000rpm prepares P3HT) solar cell prepared in
图中标号:1-玻璃衬底;2-阳极;3-阳极修饰层;4-光电活化层;5-阴极;6共轭聚合物电子给体材料层。Symbols in the figure: 1 - glass substrate; 2 - anode; 3 - anode modification layer; 4 - photoelectric active layer; 5 - cathode; 6 conjugated polymer electron donor material layer.
具体实施方式 Detailed ways
下面结合附图对本发明作进一步说明:The present invention will be further described below in conjunction with accompanying drawing:
本体异质结结构太阳能电池如图1(a)所示,包括依次层叠的玻璃衬底1、阳极2、阳极修饰层3、光电活化层4、阴极5,本发明平面-本体异质结集成结构太阳能电池,如图1(b)所示,包括依次层叠的玻璃衬底1、阳极2、阳极修饰层3、光电活化层4、阴极5,并且在阳极修饰层3和光电活化层4之间设有共轭聚合物电子给体材料层6,所述共轭聚合物电子给体材料层厚度为2-30nm。The bulk heterojunction solar cell is shown in Figure 1(a), which includes a
对比例传统本体异质结结构太阳能电池Comparative Example Conventional Bulk Heterojunction Solar Cells
将溅射有ITO(阳极)的透明导电玻璃依次用洗洁精、去离子水、丙酮、异丙醇超声清洗,然后用臭氧处理基片表面,再旋转涂上30纳米厚的PEDOT:PSS作为阳极修饰薄膜,150℃干燥10分钟,将P3HT与PbSe溶于氯苯溶液得到的混合溶液(每毫升氯苯溶液中含10毫克P3HT,含50毫克PbSe)在1000转每分(rpm)的转速下直接旋涂于上述经阳极修饰的基片上,然后80℃干燥30分钟,自然冷却至室温,形成厚度为50nm的光电活性层;最后,通过掩模板在5×10-5帕下真空蒸镀150纳米的铝作阴极,得到本体异质结结构太阳能电池,器件结构如图1(a)所示。The transparent conductive glass sputtered with ITO (anode) was ultrasonically cleaned with detergent, deionized water, acetone, and isopropanol in sequence, and then the surface of the substrate was treated with ozone, and then spin-coated with 30 nm thick PEDOT:PSS as Anodically modified film, dried at 150°C for 10 minutes, the mixed solution obtained by dissolving P3HT and PbSe in chlorobenzene solution (containing 10 mg of P3HT and 50 mg of PbSe per milliliter of chlorobenzene solution) at a speed of 1000 revolutions per minute (rpm) Spin-coat directly on the above-mentioned anode-modified substrate, then dry at 80°C for 30 minutes, and naturally cool to room temperature to form a photoelectric active layer with a thickness of 50nm; finally, vacuum vapor deposition at 5×10 -5 Pa through a mask 150 nanometers of aluminum is used as the cathode to obtain a bulk heterojunction solar cell, and the device structure is shown in Figure 1(a).
以下实施例中做对比的本体异质结结构太阳能电池均为本对比例中制备的太阳能电池,从图中可以看出,传统的本体异质结结构太阳能电池在100毫瓦每平方厘米的532nm光照射下开路电压为0.28伏,短路电流为0.9毫安每平方厘米,填充因子为0.39,转换效率为0.1%,在100毫瓦每平方厘米的808nm光照射下开路电压为0.25伏,短路电流为1.1毫安每平方厘米,填充因子为0.36,转换效率为0.1%。The bulk heterojunction structure solar cells that are compared in the following examples are all solar cells prepared in this comparative example. As can be seen from the figure, the traditional bulk heterojunction structure solar cells have Under light irradiation, the open circuit voltage is 0.28 volts, the short-circuit current is 0.9 mA per square centimeter, the fill factor is 0.39, and the conversion efficiency is 0.1%. It is 1.1 mA per square centimeter, the fill factor is 0.36, and the conversion efficiency is 0.1%.
实施例1Example 1
将溅射有ITO(阳极)的透明导电玻璃依次用洗洁精、去离子水、丙酮、异丙醇超声清洗,然后用臭氧处理基片表面,再旋转涂上30纳米厚的PEDOT:PSS作为阳极修饰薄膜,150℃干燥10分钟,将10毫克每毫升的P3HT氯苯溶液(每毫升氯苯溶液中含10毫克P3HT)在1000转每分(rpm)的转速下直接旋涂于上述经阳极修饰的基片上,然后150℃干燥30分钟,自然冷却至室温,形成厚度为20nm的共轭聚合物电子给体材料层,将P3HT与PbSe溶于氯苯溶液得到的混合溶液(每毫升氯苯溶液中含10毫克P3HT,含50毫克PbSe)在1000转每分(rpm)的转速下直接旋涂于P3HT膜上,然后80℃干燥30分钟,自然冷却至室温,形成厚度为50nm的光电活性层;最后,通过掩模板在5×10-5帕下真空蒸镀150纳米的铝作为阴极,得到共轭聚合物/半导体纳米晶平面-本体异质结集成结构太阳能电池,器件结构如图1(b)所示。The transparent conductive glass sputtered with ITO (anode) was ultrasonically cleaned with detergent, deionized water, acetone, and isopropanol in sequence, and then the surface of the substrate was treated with ozone, and then spin-coated with 30 nm thick PEDOT:PSS as Anode modification film, 150 ℃ of drying 10 minutes, the P3HT chlorobenzene solution of 10 milligrams per milliliter (containing 10 milligrams of P3HT in every milliliter of chlorobenzene solution) is directly spin-coated under the rotating speed of 1000 revolutions per minute (rpm) on above-mentioned anode modified substrate, then dried at 150°C for 30 minutes, and naturally cooled to room temperature to form a conjugated polymer electron donor material layer with a thickness of 20nm. The mixed solution obtained by dissolving P3HT and PbSe in chlorobenzene solution (per milliliter of chlorobenzene The solution containing 10 mg P3HT, containing 50 mg PbSe) was directly spin-coated on the P3HT film at a speed of 1000 revolutions per minute (rpm), then dried at 80 °C for 30 minutes, and naturally cooled to room temperature to form a photoactive film with a thickness of 50 nm. layer; finally, 150 nanometers of aluminum was vacuum-deposited through a mask at 5×10 -5 Pa as a cathode to obtain a conjugated polymer/semiconductor nanocrystal planar-bulk heterojunction integrated solar cell, and the device structure is shown in Figure 1 (b) shown.
图2中所示的断面扫描电镜照片清晰的反映出上层的P3HT:PbSe混合膜未对下层P3HT造成任何破坏。The SEM photos of the cross-section shown in Figure 2 clearly reflect that the upper P3HT:PbSe mixed film did not cause any damage to the lower P3HT.
图3、图4表示出了本实施例制得的平面-本体异质结集成结构太阳能电池经100毫瓦每平方厘米的532nm和808nm照射下的电流-电压曲线,从图中可以看出,本实施例制得的平面-本体异质结集成结构太阳能电池在100毫瓦每平方厘米的532nm光照射下开路电压为0.39伏,短路电流为0.94毫安每平方厘米,填充因子为0.35,转换效率为0.13%,器件性能比传统本体异质结结构转换效率提高了33%;在100毫瓦每平方厘米的808nm光照射下开路电压为0.36伏,短路电流为1.36毫安每平方厘米,填充因子为0.33,转换效率为0.16%,器件性能比传统本体异质结结构转换效率提高了60%。Fig. 3, Fig. 4 have shown the current-voltage curve under the 532nm and 808nm irradiation of 100 milliwatts per square centimeter of the plane-bulk heterojunction integrated structure solar cell that the present embodiment makes, as can be seen from the figure, The planar-bulk heterojunction integrated structure solar cell prepared in this example has an open circuit voltage of 0.39 volts, a short-circuit current of 0.94 milliamps per square centimeter, and a fill factor of 0.35 under the irradiation of 532 nm light at 100 milliwatts per square centimeter. The efficiency is 0.13%, and the device performance is 33% higher than the conversion efficiency of the traditional bulk heterojunction structure; under the irradiation of 808nm light at 100 mW/cm2, the open circuit voltage is 0.36 volts, and the short circuit current is 1.36 mA/cm2. The factor is 0.33, the conversion efficiency is 0.16%, and the device performance is 60% higher than the conversion efficiency of the traditional bulk heterojunction structure.
实施例2Example 2
将溅射有ITO(阳极)的透明导电玻璃依次用洗洁精、去离子水、丙酮、异丙醇超声清洗,然后用臭氧处理基片表面,再旋转涂上30纳米厚的PEDOT:PSS作为阳极修饰薄膜,150℃干燥10分钟,将10毫克每毫升的P3HT氯苯溶液(每毫升氯苯溶液中含10毫克P3HT)在2000转每分(rpm)的转速下直接旋涂于上述经阳极修饰的基片上,然后150℃干燥30分钟,自然冷却至室温,形成厚度为15nm的共轭聚合物电子给体材料层,将P3HT与PbSe溶于氯苯溶液得到的混合溶液(每毫升氯苯溶液中含10毫克P3HT,含50毫克PbSe)在1000转每分(rpm)的转速下直接旋涂于P3HT膜上,然后80℃干燥30分钟,自然冷却至室温,形成厚度为50nm的光电活性层;最后,通过掩模板在5×10-5帕下真空蒸镀150纳米的铝作为阴极,得到共轭聚合物/半导体纳米晶平面-本体异质结集成结构太阳能电池,器件结构如图1(b)所示。The transparent conductive glass sputtered with ITO (anode) was ultrasonically cleaned with detergent, deionized water, acetone, and isopropanol in sequence, and then the surface of the substrate was treated with ozone, and then spin-coated with 30 nm thick PEDOT:PSS as Anode modification film, 150 ℃ of drying 10 minutes, the P3HT chlorobenzene solution of 10 milligrams per milliliter (containing 10 milligrams of P3HT in every milliliter of chlorobenzene solution) is directly spin-coated under the rotating speed of 2000 revolutions per minute (rpm) on above-mentioned via anode modified substrate, then dried at 150°C for 30 minutes, cooled naturally to room temperature, and formed a conjugated polymer electron donor material layer with a thickness of 15nm. The mixed solution obtained by dissolving P3HT and PbSe in chlorobenzene solution (per milliliter of chlorobenzene The solution containing 10 mg P3HT, containing 50 mg PbSe) was directly spin-coated on the P3HT film at a speed of 1000 revolutions per minute (rpm), then dried at 80 °C for 30 minutes, and naturally cooled to room temperature to form a photoactive film with a thickness of 50 nm. layer; finally, 150 nanometers of aluminum was vacuum-deposited through a mask at 5×10 -5 Pa as a cathode to obtain a conjugated polymer/semiconductor nanocrystal planar-bulk heterojunction integrated solar cell, and the device structure is shown in Figure 1 (b) shown.
图5、图6表示出了本实施例制得的平面-本体异质结集成结构太阳能电池经100毫瓦每平方厘米的532nm和808nm照射下的电流-电压曲线,从图中可以看出,本实施例制得的平面-本体异质结集成结构太阳能电池在100毫瓦每平方厘米的532nm光照射下开路电压为0.35伏,短路电流为1.35毫安每平方厘米,填充因子为0.44,转换效率为0.21%,器件性能比传统本体异质结结构转换效率提高了110%;在100毫瓦每平方厘米的808nm光照射下开路电压为0.38伏,短路电流为1.73毫安每平方厘米,填充因子为0.40,转换效率为0.26%,器件性能比传统本体异质结结构转换效率提高了160%。Fig. 5 and Fig. 6 show the current-voltage curves of the plane-bulk heterojunction integrated structure solar cell prepared in this embodiment under the irradiation of 532nm and 808nm at 100 milliwatts per square centimeter, as can be seen from the figure, The planar-bulk heterojunction integrated structure solar cell prepared in this embodiment has an open circuit voltage of 0.35 volts, a short circuit current of 1.35 milliamperes per square centimeter, and a fill factor of 0.44 under the irradiation of 532 nm light at 100 milliwatts per square centimeter. The efficiency is 0.21%, and the device performance is 110% higher than the conversion efficiency of the traditional bulk heterojunction structure; under the irradiation of 808nm light at 100 mW/cm2, the open circuit voltage is 0.38 volts, and the short circuit current is 1.73 mA/cm2. The factor is 0.40, the conversion efficiency is 0.26%, and the device performance is 160% higher than the conversion efficiency of the traditional bulk heterojunction structure.
实施例3Example 3
将溅射有ITO(阳极)的透明导电玻璃依次用洗洁精、去离子水、丙酮、异丙醇超声清洗,然后用臭氧处理基片表面,再旋转涂上30纳米厚的PEDOT:PSS作为阳极修饰薄膜,150℃干燥10分钟,将10毫克每毫升的P3HT氯苯溶液(每毫升氯苯溶液中含10毫克P3HT)在3000转每分(rpm)的转速下直接旋涂于上述经阳极修饰的基片上,然后150℃干燥30分钟,自然冷却至室温,形成厚度为10nm的共轭聚合物电子给体材料层,将P3HT与PbSe溶于氯苯溶液得到的混合溶液(每毫升氯苯溶液中含10毫克P3HT,含50毫克PbSe)在1000转每分(rpm)的转速下直接旋涂于P3HT膜上,然后80℃干燥30分钟,自然冷却至室温,形成厚度为50nm的光电活性层;最后,通过掩模板在5×10-5帕下真空蒸镀150纳米的铝作为阴极,得到共轭聚合物/半导体纳米晶平面-本体异质结集成结构太阳能电池,器件结构如图1(b)所示。The transparent conductive glass sputtered with ITO (anode) was ultrasonically cleaned with detergent, deionized water, acetone, and isopropanol in sequence, and then the surface of the substrate was treated with ozone, and then spin-coated with 30 nm thick PEDOT:PSS as Anode modification film, 150 ℃ of drying 10 minutes, the P3HT chlorobenzene solution of 10 milligrams per milliliter (containing 10 milligrams of P3HT in every milliliter of chlorobenzene solution) is directly spin-coated on above-mentioned through anode under the rotating speed of 3000 revolutions per minute (rpm). modified substrate, then dried at 150°C for 30 minutes, and cooled naturally to room temperature to form a conjugated polymer electron donor material layer with a thickness of 10nm. The mixed solution obtained by dissolving P3HT and PbSe in chlorobenzene solution (per milliliter of chlorobenzene The solution containing 10 mg P3HT, containing 50 mg PbSe) was directly spin-coated on the P3HT film at a speed of 1000 revolutions per minute (rpm), then dried at 80 °C for 30 minutes, and naturally cooled to room temperature to form a photoactive film with a thickness of 50 nm. layer; finally, 150 nanometers of aluminum was vacuum-deposited through a mask at 5×10 -5 Pa as a cathode to obtain a conjugated polymer/semiconductor nanocrystal planar-bulk heterojunction integrated solar cell, and the device structure is shown in Figure 1 (b) shown.
图7、图8表示出了本实施例制得的平面-本体异质结集成结构太阳能电池经100毫瓦每平方厘米的532nm和808nm照射下的电流-电压曲线,从图中可以看出,本实施例制得的平面-本体异质结集成结构太阳能电池在100毫瓦每平方厘米的532nm光照射下开路电压为0.38伏,短路电流为1.12毫安每平方厘米,填充因子为0.38,转换效率为0.16%,器件性能比传统本体异质结结构转换效率提高了60%;在100毫瓦每平方厘米的808nm光照射下开路电压为0.36伏,短路电流为1.57毫安每平方厘米,填充因子为0.36,转换效率为0.20%,器件性能比传统本体异质结结构转换效率提高了100%。Fig. 7 and Fig. 8 show the current-voltage curves of the plane-bulk heterojunction integrated structure solar cell prepared in this embodiment under the irradiation of 532nm and 808nm at 100 milliwatts per square centimeter, as can be seen from the figure, The planar-bulk heterojunction integrated structure solar cell prepared in this embodiment has an open circuit voltage of 0.38 volts, a short circuit current of 1.12 milliamperes per square centimeter, and a fill factor of 0.38 under the irradiation of 100 milliwatts per square centimeter of 532 nm light. The efficiency is 0.16%, and the device performance is 60% higher than the conversion efficiency of the traditional bulk heterojunction structure; under the irradiation of 808nm light at 100 mW/cm2, the open circuit voltage is 0.36 volts, and the short circuit current is 1.57 mA/cm2. The factor is 0.36, the conversion efficiency is 0.20%, and the device performance is 100% higher than the conversion efficiency of the traditional bulk heterojunction structure.
以上实施例表明,平面-本体异质结集成结构能够有效的提高器件的性能。该结构不仅提高开路电压,增大短路电流,同时也提高了填充因子,进而增加了太阳能电池的光电转换效率。其廉价的成本、简单的工艺和其卓越的性能使其在工业上具有很大的应用前景。The above examples show that the planar-bulk heterojunction integrated structure can effectively improve the performance of the device. This structure not only increases the open circuit voltage and short circuit current, but also improves the fill factor, thereby increasing the photoelectric conversion efficiency of the solar cell. Its low cost, simple process and its excellent performance make it have great application prospects in industry.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 200910093531 CN101692481B (en) | 2009-10-12 | 2009-10-12 | Solar cell having integrated structure of plane-bulk heterojunction and preparation method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 200910093531 CN101692481B (en) | 2009-10-12 | 2009-10-12 | Solar cell having integrated structure of plane-bulk heterojunction and preparation method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101692481A CN101692481A (en) | 2010-04-07 |
CN101692481B true CN101692481B (en) | 2012-07-04 |
Family
ID=42081150
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN 200910093531 Expired - Fee Related CN101692481B (en) | 2009-10-12 | 2009-10-12 | Solar cell having integrated structure of plane-bulk heterojunction and preparation method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN101692481B (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101814555B (en) * | 2010-04-12 | 2012-07-25 | 浙江大学 | Method for improving efficiency of solar cell |
CN102412370A (en) * | 2011-12-09 | 2012-04-11 | 华北电力大学 | Polymer solar battery and preparation method thereof |
CN102646794A (en) * | 2012-04-23 | 2012-08-22 | 华北电力大学 | A kind of P-I-N type polymer solar cell and preparation method thereof |
CN112366276B (en) * | 2020-10-20 | 2022-12-06 | 泰山学院 | Ultrahigh multiplication type organic photoelectric detector and preparation method thereof |
CN114141956A (en) * | 2021-11-29 | 2022-03-04 | 江南大学 | A conductive polymer/antimony selenide heterojunction and its preparation method and optoelectronic application |
-
2009
- 2009-10-12 CN CN 200910093531 patent/CN101692481B/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
CN101692481A (en) | 2010-04-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Seo et al. | Benefits of very thin PCBM and LiF layers for solution-processed p–i–n perovskite solar cells | |
Huang et al. | Applications of ZnO in organic and hybrid solar cells | |
KR100986159B1 (en) | Organic solar cell with improved energy conversion efficiency and manufacturing method thereof | |
CN100563043C (en) | A kind of polymer solar cell and preparation method thereof | |
US8742253B1 (en) | Device configurations for CIS based solar cells | |
WO2009017700A1 (en) | Polymer electronic devices by all-solution process | |
KR20110098303A (en) | Organic solar cell containing a bonded ring compound | |
Ferreira et al. | Effect of device architecture on hybrid zinc oxide nanoparticle: poly (3-hexylthiophene) blend solar cell performance and stability | |
CN101692481B (en) | Solar cell having integrated structure of plane-bulk heterojunction and preparation method thereof | |
CN102646794A (en) | A kind of P-I-N type polymer solar cell and preparation method thereof | |
Park et al. | Water-processable electron-collecting layers of a hybrid poly (ethylene oxide): Caesium carbonate composite for flexible inverted polymer solar cells | |
CN102364715B (en) | Polymer solar cell with reverse structure and preparation method thereof | |
KR101458565B1 (en) | Organic solar cell and the manufacturing method thereof | |
Yoshida et al. | Fabrication and characterization of phthalocyanine/C60 solar cells with inverted structure | |
Zhang et al. | Preparation and employment of carbon nanodots to improve electron extraction capacity of polyethylenimine interfacial layer for polymer solar cells | |
CN103928615B (en) | A kind of self assembly type polymer solar cells cathodic modification material and method of modifying thereof | |
KR101809869B1 (en) | Solar cell and method for manufacturing the same | |
KR20110098300A (en) | Organic solar cell containing biphenyl compound | |
KR101076700B1 (en) | method for producing organic solar cell and organic solar cell | |
CN103296222A (en) | High-performance polymer solar cell cathode modifying material | |
Lee et al. | Investigation performance and mechanisms of inverted polymer solar cells by pentacene doped P3HT: PCBM | |
KR102135101B1 (en) | Semi-transparent/flexible solar cell and method for manufacturing thereof | |
Suthanthiraraj | Application aspects of polymer electrolytes in solar cells | |
CN103782407B (en) | Photo-electric conversion element and manufacture method thereof | |
Deng et al. | ITO surface modification for inverted organic photovoltaics |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20120704 Termination date: 20151012 |
|
EXPY | Termination of patent right or utility model |