CN101692481B - Solar cell having integrated structure of plane-bulk heterojunction and preparation method thereof - Google Patents

Solar cell having integrated structure of plane-bulk heterojunction and preparation method thereof Download PDF

Info

Publication number
CN101692481B
CN101692481B CN 200910093531 CN200910093531A CN101692481B CN 101692481 B CN101692481 B CN 101692481B CN 200910093531 CN200910093531 CN 200910093531 CN 200910093531 A CN200910093531 A CN 200910093531A CN 101692481 B CN101692481 B CN 101692481B
Authority
CN
China
Prior art keywords
conjugated polymer
solar cell
bulk heterojunction
poly
electron donor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN 200910093531
Other languages
Chinese (zh)
Other versions
CN101692481A (en
Inventor
谭占鳌
杨勇平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
North China Electric Power University
Original Assignee
North China Electric Power University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by North China Electric Power University filed Critical North China Electric Power University
Priority to CN 200910093531 priority Critical patent/CN101692481B/en
Publication of CN101692481A publication Critical patent/CN101692481A/en
Application granted granted Critical
Publication of CN101692481B publication Critical patent/CN101692481B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

本发明公开了属于太阳能电池技术领域的一种平面-本体异质结集成结构太阳能电池及其制备方法。本发明太阳能电池包括依次层叠的玻璃衬底、阳极、阳极修饰层、光电活化层、阴极,其特征在于在阳极修饰层和光电活化层之间设有厚度为2-30nm的共轭聚合物电子给体材料层,用旋转涂膜或喷墨打印的方法制备共轭聚合物电子给体材料涂层和共轭聚合物电子给体材料与半导体纳米晶电子受体材料混合而成的光电活化层。本发明兼备平面结构和本体异质结结构电池的优点,具有制作工艺简单、控制容易,重现性好,可溶液加工等多种优点,同时使用该结构的太阳能电池较普通本体异质结结构的能量转换效率有显著提高。

Figure 200910093531

The invention discloses a plane-bulk heterojunction integrated solar cell and a preparation method thereof, which belong to the technical field of solar cells. The solar cell of the present invention includes a glass substrate, an anode, an anode modification layer, a photoelectric active layer, and a cathode stacked in sequence, and is characterized in that a conjugated polymer electron layer with a thickness of 2-30 nm is arranged between the anode modification layer and the photoelectric active layer. Donor material layer, prepared by spin coating or inkjet printing method of conjugated polymer electron donor material coating and conjugated polymer electron donor material and semiconductor nanocrystalline electron acceptor material mixed photoelectric active layer . The invention combines the advantages of planar structure and body heterojunction structure battery, and has many advantages such as simple manufacturing process, easy control, good reproducibility, solution processing, etc. The energy conversion efficiency has been significantly improved.

Figure 200910093531

Description

一种平面-本体异质结集成结构太阳能电池及其制备方法A kind of plane-bulk heterojunction integrated structure solar cell and its preparation method

技术领域 technical field

本发明属于太阳能电池技术领域,特别涉及一种平面-本体异质结集成结构太阳能电池及其制备方法。The invention belongs to the technical field of solar cells, in particular to a solar cell with a plane-bulk heterojunction integrated structure and a preparation method thereof.

背景技术 Background technique

为了最大限度的利用太阳光的整个光谱范围,最近提出了用窄带隙的半导体纳米晶量子点(如CdSe、PbS、PbSe)来敏化共轭聚合物的有机/无机杂化太阳能电池的结构,该结构中在大于650nm的长波长方向表现出增强的光吸收性能(1:S.A.Mcdonald,G.Konstantatos,S.Zhang,P.W.Cyr,E.J.D.Klem,L.Levina,and E.H.Sargent,Nature Mater.2005,4,138;2:D.Cui,J.Xu,T.Zhu,G.Paradee,and S.Ashok,Appl.Phys.Lett.2006,88,183111)。同时,有机/无机杂化太阳能电池具有制备工艺简单、重量轻、造价低廉、容易制备大面积柔性器件等优点而得到广泛的关注(1:W.U.Huynh,J.J.Dittmer,and A.P.Alivisotos,Science 2002,295,2425;2:X.Jiang,R.D.Schaller,S.B.Lee,J.M.Pietryga,V.I.Klimov,and A.A.Zakhidov,J.Mater.Res.2007,22,2204;3:D.Qi,M.Fischbein,M.Drndic,and S.Selmic,Appl.Phys.Lett.2005,86,093103;4:S.Kumar and G.D.Scholes,Microchim.Acta 2008,160,315;5:G.Konstantatos,I.Howard,A.Fischer,S.Hoogland,J.Clifford,E.Klem,L.Levina,and E.H.Sargent,Nature 2006,442,180)。几乎所有的有机/无机杂化太阳能电池结构应用的都是本体异质结结构,这是由于在本体异质结结构中共轭聚合物中的光生激子能够有效的在给受体界面分离,有很高的光生载流子效率。然而,研究表明在共轭聚合物/半导体纳米晶共混而成的本体异质结中,空穴和电子在复合前的迁移距离要小于在纯聚合物中的距离(1:W.U.Huynh,J.J.Dittmer,N.Teclemariam,D.J.Milliron,A.P.Alivisatos,and K.W.J.Bamham,Phys.Rev.B 2003,67,115326)。如果能用溶液加工的方法将平面异质结和本体异质结集成在一起,不仅能够改善载流子的传输和收集效率,而且能够进一步充分利用太阳光全光谱。In order to maximize the use of the entire spectral range of sunlight, the structure of organic/inorganic hybrid solar cells sensitized with conjugated polymers using narrow-bandgap semiconductor nanocrystalline quantum dots (such as CdSe, PbS, PbSe) has recently been proposed, The structure shows enhanced light absorption performance in the long wavelength direction greater than 650nm (1: S.A.Mcdonald, G.Konstantatos, S.Zhang, P.W.Cyr, E.J.D.Klem, L.Levina, and E.H.Sargent, Nature Mater.2005, 4, 138; 2: D. Cui, J. Xu, T. Zhu, G. Paradee, and S. Ashok, Appl. Phys. Lett. 2006, 88, 183111). At the same time, organic/inorganic hybrid solar cells have attracted widespread attention due to their advantages such as simple preparation process, light weight, low cost, and easy preparation of large-area flexible devices (1: W.U.Huynh, J.J.Dittmer, and A.P. Alivisotos, Science 2002, 295 , 2425; 2: X.Jiang, R.D.Schaller, S.B.Lee, J.M.Pietryga, V.I.Klimov, and A.A.Zakhidov, J.Mater.Res.2007, 22, 2204; 3: D.Qi, M.Fischbein, M.Drndic , and S.Selmic, Appl.Phys.Lett.2005, 86, 093103; 4: S.Kumar and G.D.Scholes, Microchim.Acta 2008, 160, 315; 5: G.Konstantatos, I.Howard, A.Fischer, S. Hoogland, J. Clifford, E. Klem, L. Levina, and E. H. Sargent, Nature 2006, 442, 180). Almost all organic/inorganic hybrid solar cell structures are applied to the bulk heterojunction structure, because the photogenerated excitons in the conjugated polymer in the bulk heterojunction structure can be effectively separated at the donor-acceptor interface. High photogenerated carrier efficiency. However, studies have shown that in bulk heterojunctions of conjugated polymer/semiconductor nanocrystal blends, holes and electrons migrate less before recombination than in pure polymers (1: W.U.Huynh, J.J. Dittmer, N. Teclemariam, D.J. Milliron, A.P. Alivisatos, and K.W.J. Bamham, Phys. Rev. B 2003, 67, 115326). If the planar heterojunction and bulk heterojunction can be integrated by solution processing, it will not only improve the carrier transport and collection efficiency, but also make full use of the full spectrum of sunlight.

发明内容 Contents of the invention

本发明的目的是提供一种平面-本体异质结集成结构太阳能电池及其制备方法。The object of the present invention is to provide a planar-bulk heterojunction integrated solar cell and a preparation method thereof.

一种平面-本体异质结集成结构太阳能电池,包括依次层叠的玻璃衬底1、阳极2、阳极修饰层3、光电活化层4、阴极5,其特征在于在阳极修饰层3和光电活化层4之间设有共轭聚合物电子给体材料层6,所述共轭聚合物电子给体材料层厚度为2-30nm。A planar-bulk heterojunction integrated structure solar cell, comprising a glass substrate 1, an anode 2, an anode modification layer 3, a photoelectric active layer 4, and a cathode 5 stacked in sequence, characterized in that the anode modification layer 3 and the photoelectric active layer A conjugated polymer electron donor material layer 6 is provided between the 4, and the thickness of the conjugated polymer electron donor material layer is 2-30 nm.

所述共轭聚合物电子给体材料选自:聚对亚苯基亚乙烯类、聚亚芳基亚乙烯基类、聚对亚苯基类、聚亚芳基类、聚噻吩类、聚喹啉类。The conjugated polymer electron donor material is selected from: polyparaphenylene vinylene, polyarylene vinylene, polyparaphenylene, polyarylene, polythiophene, polyquinone morphines.

所述光电活化层4为共轭聚合物电子给体材料与半导体纳米晶电子受体材料混合而成的光电活化层,其中,所述共轭聚合物电子给体材料选自:聚(对亚苯基亚乙烯)类、聚(亚芳基亚乙烯基)类、聚(对亚苯基)类、聚(亚芳基)类、聚噻吩类、聚喹啉类,所述半导体纳米晶电子受体材料是从III-V族、II-VI族和IV-VI族化合物半导体的组中选取的。The photoelectric active layer 4 is a photoactive layer formed by mixing a conjugated polymer electron donor material and a semiconductor nanocrystalline electron acceptor material, wherein the conjugated polymer electron donor material is selected from the group consisting of: poly( Phenylvinylene), poly(arylenevinylene), poly(p-phenylene), poly(arylene), polythiophene, polyquinoline, the semiconductor nanocrystalline electronics The acceptor material is selected from the group of III-V, II-VI and IV-VI compound semiconductors.

所述阴极包括碱金属、碱土金属、铝、银、铜、或者上述金属组成的合金。The cathode includes alkali metal, alkaline earth metal, aluminum, silver, copper, or an alloy composed of the above metals.

一种平面-本体异质结集成结构太阳能电池的制备方法,其特征在于该方法步骤如下:A method for preparing a planar-bulk heterojunction integrated solar cell, characterized in that the steps of the method are as follows:

(1)超声清洗溅射有ITO阳极的透明导电玻璃,然后用臭氧处理基片表面;(1) ultrasonically clean the transparent conductive glass sputtered with ITO anode, and then treat the substrate surface with ozone;

(2)再旋转涂上30纳米厚的PEDOT:PSS作为阳极修饰薄膜,干燥;(2) Spin coat 30 nanometers of thick PEDOT:PSS as the anode modification film again, dry;

(3)将共轭聚合物电子给体材料溶于溶剂中,用旋转涂膜或喷墨打印的方法将其涂覆在上述经阳极修饰的基片上,80-250℃下干燥10-48min,自然冷却至室温,形成厚度为2-30nm的共轭聚合物电子给体材料层;(3) dissolving the conjugated polymer electron donor material in a solvent, coating it on the above-mentioned anode-modified substrate by spin coating or inkjet printing, and drying at 80-250°C for 10-48min, Cool naturally to room temperature to form a conjugated polymer electron donor material layer with a thickness of 2-30nm;

(4)将共轭聚合物电子给体材料与半导体纳米晶电子受体材料与溶剂混合,将形成的混合溶液用旋转涂膜或喷墨打印的方法直接涂覆在共轭聚合物电子给体材料层上,干燥后自然冷却至室温,形成光电活化层;(4) The conjugated polymer electron donor material is mixed with the semiconductor nanocrystalline electron acceptor material and the solvent, and the resulting mixed solution is directly coated on the conjugated polymer electron donor by spin coating or inkjet printing. On the material layer, after drying, it is naturally cooled to room temperature to form a photoelectric active layer;

(5)通过掩模板直接在光电活化层上真空蒸镀金属形成阴极,得到共轭聚合物/半导体纳米晶平面-本体异质结集成结构太阳能电池。(5) Vacuum-evaporating metal directly on the photoelectric active layer through a mask to form a cathode to obtain a conjugated polymer/semiconductor nanocrystal planar-bulk heterojunction integrated solar cell.

所述步骤(3)中旋转涂膜时转速为1000-3000转每分。In the step (3), the rotation speed is 1000-3000 revolutions per minute when the coating is rotated.

本发明的有益效果为:The beneficial effects of the present invention are:

1.该方法能通过旋转涂膜或喷墨打印的方法直接涂敷将共轭聚合物/半导体纳米晶光电活性层直接涂覆在下层共轭聚合物上;1. This method can directly coat the conjugated polymer/semiconductor nanocrystal optoelectronic active layer on the lower conjugated polymer by spin coating or inkjet printing;

2.在旋涂或喷墨打印上层共轭聚合物/半导体纳米晶光电活性层时对下层共轭聚合物没有任何破坏;2. There is no damage to the lower conjugated polymer when spin-coating or inkjet printing the upper conjugated polymer/semiconductor nanocrystal optoelectronic active layer;

3.该方法工艺简单,成本低廉,膜厚容易控制,适合于大规模工业化生产;3. The method has simple process, low cost, easy control of film thickness, and is suitable for large-scale industrial production;

4.该方法中的共轭聚合物层需较高温度干燥,干燥温度可以从80到250摄氏度,干燥时间可以从10分钟到48小时;4. The conjugated polymer layer in this method needs to be dried at a higher temperature, the drying temperature can be from 80 to 250 degrees Celsius, and the drying time can be from 10 minutes to 48 hours;

5.以该集成结构制备的共轭聚合物/半导体纳米晶太阳能电池具有优于传统本体异质结结构器件的光电能量转换效率。5. The conjugated polymer/semiconductor nanocrystalline solar cell prepared with this integrated structure has a photoelectric energy conversion efficiency superior to that of traditional bulk heterojunction structure devices.

附图说明 Description of drawings

图1是太阳能电池的器件结构,其中,(a)为本体异质结太阳能电池,(b)为本发明的平面-本体异质结集成结构共轭聚合物/半导体纳米晶太阳能电池;Fig. 1 is the device structure of solar cell, wherein, (a) is bulk heterojunction solar cell, (b) is the plane-bulk heterojunction integrated structure conjugated polymer/semiconductor nanocrystalline solar cell of the present invention;

图2是太阳能电池的断面扫描电镜图,其中,(a)为本体异质结太阳能电池,(b)为本发明的平面-本体异质结集成结构共轭聚合物/半导体纳米晶太阳能电池;Fig. 2 is a cross-sectional scanning electron microscope diagram of a solar cell, wherein (a) is a bulk heterojunction solar cell, and (b) is a planar-bulk heterojunction integrated structure conjugated polymer/semiconductor nanocrystalline solar cell of the present invention;

图3是实施例1制备的本体异质结和平面-本体异质结集成结构(1000rpm制备P3HT)太阳能电池和对比例制备的本体异质结结构太阳能电池在100mW/cm2的532nm光照下的I-V曲线;Fig. 3 is the bulk heterojunction and planar-bulk heterojunction integrated structure (1000rpm prepares P3HT) solar cell prepared by embodiment 1 and the bulk heterojunction structure solar cell prepared by comparative example under the 532nm illumination of 100mW/ cm IV curve;

图4是实施例1制备的本体异质结和平面-本体异质结集成结构(1000rpm制备P3HT)太阳能电池和对比例制备的本体异质结结构太阳能电池在100mW/cm2的808nm光照下的I-V曲线;Fig. 4 is the bulk heterojunction and planar-bulk heterojunction integrated structure (1000rpm prepares P3HT) solar cell prepared by embodiment 1 and the bulk heterojunction structure solar cell prepared by comparative example under the 808nm illumination of 100mW/ cm IV curve;

图5是实施例2制备的本体异质结和平面-本体异质结集成结构(2000rpm制备P3HT)太阳能电池和对比例制备的本体异质结结构太阳能电池在100mW/cm2的532nm光照下的I-V曲线;Fig. 5 is the bulk heterojunction and planar-bulk heterojunction integrated structure (2000rpm prepares P3HT) solar cell prepared in embodiment 2 and the bulk heterojunction structure solar cell prepared in comparative example under the 532nm illumination of 100mW/cm IV curve;

图6是实施例2制备的本体异质结和平面-本体异质结集成结构(2000rpm制备P3HT)太阳能电池和对比例制备的本体异质结结构太阳能电池在100mW/cm2的808nm光照下的I-V曲线;Fig. 6 is the bulk heterojunction and planar-bulk heterojunction integrated structure (2000rpm prepares P3HT) solar cell prepared by embodiment 2 and the bulk heterojunction structure solar cell prepared by comparative example under the 808nm illumination of 100mW/cm IV curve;

图7是实施例3制备的本体异质结和平面-本体异质结集成结构(3000rpm制备P3HT)太阳能电池和对比例制备的本体异质结结构太阳能电池在100mW/cm2的532nm光照下的I-V曲线;Fig. 7 is the bulk heterojunction and planar-bulk heterojunction integrated structure (3000rpm prepares P3HT) solar cell prepared in embodiment 3 and the bulk heterojunction structure solar cell prepared in comparative example under the 532nm illumination of 100mW/ cm IV curve;

图8是实施例3制备的本体异质结和平面-本体异质结集成结构(3000rpm制备P3HT)太阳能电池和对比例制备的本体异质结结构太阳能电池在100mW/cm2的808nm光照下的I-V曲线;Fig. 8 is the bulk heterojunction and planar-bulk heterojunction integrated structure (3000rpm prepares P3HT) solar cell prepared in embodiment 3 and the bulk heterojunction structure solar cell prepared in comparative example under the 808nm illumination of 100mW/cm IV curve;

图中标号:1-玻璃衬底;2-阳极;3-阳极修饰层;4-光电活化层;5-阴极;6共轭聚合物电子给体材料层。Symbols in the figure: 1 - glass substrate; 2 - anode; 3 - anode modification layer; 4 - photoelectric active layer; 5 - cathode; 6 conjugated polymer electron donor material layer.

具体实施方式 Detailed ways

下面结合附图对本发明作进一步说明:The present invention will be further described below in conjunction with accompanying drawing:

本体异质结结构太阳能电池如图1(a)所示,包括依次层叠的玻璃衬底1、阳极2、阳极修饰层3、光电活化层4、阴极5,本发明平面-本体异质结集成结构太阳能电池,如图1(b)所示,包括依次层叠的玻璃衬底1、阳极2、阳极修饰层3、光电活化层4、阴极5,并且在阳极修饰层3和光电活化层4之间设有共轭聚合物电子给体材料层6,所述共轭聚合物电子给体材料层厚度为2-30nm。The bulk heterojunction solar cell is shown in Figure 1(a), which includes a glass substrate 1, anode 2, anode modification layer 3, photoelectric active layer 4, and cathode 5 stacked in sequence. The planar-bulk heterojunction integration of the present invention Structural solar cells, as shown in Figure 1(b), include a glass substrate 1, an anode 2, an anode modification layer 3, a photoelectric active layer 4, and a cathode 5 stacked in sequence, and between the anode modification layer 3 and the photoelectric active layer 4 There is a conjugated polymer electron donor material layer 6 between them, and the thickness of the conjugated polymer electron donor material layer is 2-30nm.

对比例传统本体异质结结构太阳能电池Comparative Example Conventional Bulk Heterojunction Solar Cells

将溅射有ITO(阳极)的透明导电玻璃依次用洗洁精、去离子水、丙酮、异丙醇超声清洗,然后用臭氧处理基片表面,再旋转涂上30纳米厚的PEDOT:PSS作为阳极修饰薄膜,150℃干燥10分钟,将P3HT与PbSe溶于氯苯溶液得到的混合溶液(每毫升氯苯溶液中含10毫克P3HT,含50毫克PbSe)在1000转每分(rpm)的转速下直接旋涂于上述经阳极修饰的基片上,然后80℃干燥30分钟,自然冷却至室温,形成厚度为50nm的光电活性层;最后,通过掩模板在5×10-5帕下真空蒸镀150纳米的铝作阴极,得到本体异质结结构太阳能电池,器件结构如图1(a)所示。The transparent conductive glass sputtered with ITO (anode) was ultrasonically cleaned with detergent, deionized water, acetone, and isopropanol in sequence, and then the surface of the substrate was treated with ozone, and then spin-coated with 30 nm thick PEDOT:PSS as Anodically modified film, dried at 150°C for 10 minutes, the mixed solution obtained by dissolving P3HT and PbSe in chlorobenzene solution (containing 10 mg of P3HT and 50 mg of PbSe per milliliter of chlorobenzene solution) at a speed of 1000 revolutions per minute (rpm) Spin-coat directly on the above-mentioned anode-modified substrate, then dry at 80°C for 30 minutes, and naturally cool to room temperature to form a photoelectric active layer with a thickness of 50nm; finally, vacuum vapor deposition at 5×10 -5 Pa through a mask 150 nanometers of aluminum is used as the cathode to obtain a bulk heterojunction solar cell, and the device structure is shown in Figure 1(a).

以下实施例中做对比的本体异质结结构太阳能电池均为本对比例中制备的太阳能电池,从图中可以看出,传统的本体异质结结构太阳能电池在100毫瓦每平方厘米的532nm光照射下开路电压为0.28伏,短路电流为0.9毫安每平方厘米,填充因子为0.39,转换效率为0.1%,在100毫瓦每平方厘米的808nm光照射下开路电压为0.25伏,短路电流为1.1毫安每平方厘米,填充因子为0.36,转换效率为0.1%。The bulk heterojunction structure solar cells that are compared in the following examples are all solar cells prepared in this comparative example. As can be seen from the figure, the traditional bulk heterojunction structure solar cells have Under light irradiation, the open circuit voltage is 0.28 volts, the short-circuit current is 0.9 mA per square centimeter, the fill factor is 0.39, and the conversion efficiency is 0.1%. It is 1.1 mA per square centimeter, the fill factor is 0.36, and the conversion efficiency is 0.1%.

实施例1Example 1

将溅射有ITO(阳极)的透明导电玻璃依次用洗洁精、去离子水、丙酮、异丙醇超声清洗,然后用臭氧处理基片表面,再旋转涂上30纳米厚的PEDOT:PSS作为阳极修饰薄膜,150℃干燥10分钟,将10毫克每毫升的P3HT氯苯溶液(每毫升氯苯溶液中含10毫克P3HT)在1000转每分(rpm)的转速下直接旋涂于上述经阳极修饰的基片上,然后150℃干燥30分钟,自然冷却至室温,形成厚度为20nm的共轭聚合物电子给体材料层,将P3HT与PbSe溶于氯苯溶液得到的混合溶液(每毫升氯苯溶液中含10毫克P3HT,含50毫克PbSe)在1000转每分(rpm)的转速下直接旋涂于P3HT膜上,然后80℃干燥30分钟,自然冷却至室温,形成厚度为50nm的光电活性层;最后,通过掩模板在5×10-5帕下真空蒸镀150纳米的铝作为阴极,得到共轭聚合物/半导体纳米晶平面-本体异质结集成结构太阳能电池,器件结构如图1(b)所示。The transparent conductive glass sputtered with ITO (anode) was ultrasonically cleaned with detergent, deionized water, acetone, and isopropanol in sequence, and then the surface of the substrate was treated with ozone, and then spin-coated with 30 nm thick PEDOT:PSS as Anode modification film, 150 ℃ of drying 10 minutes, the P3HT chlorobenzene solution of 10 milligrams per milliliter (containing 10 milligrams of P3HT in every milliliter of chlorobenzene solution) is directly spin-coated under the rotating speed of 1000 revolutions per minute (rpm) on above-mentioned anode modified substrate, then dried at 150°C for 30 minutes, and naturally cooled to room temperature to form a conjugated polymer electron donor material layer with a thickness of 20nm. The mixed solution obtained by dissolving P3HT and PbSe in chlorobenzene solution (per milliliter of chlorobenzene The solution containing 10 mg P3HT, containing 50 mg PbSe) was directly spin-coated on the P3HT film at a speed of 1000 revolutions per minute (rpm), then dried at 80 °C for 30 minutes, and naturally cooled to room temperature to form a photoactive film with a thickness of 50 nm. layer; finally, 150 nanometers of aluminum was vacuum-deposited through a mask at 5×10 -5 Pa as a cathode to obtain a conjugated polymer/semiconductor nanocrystal planar-bulk heterojunction integrated solar cell, and the device structure is shown in Figure 1 (b) shown.

图2中所示的断面扫描电镜照片清晰的反映出上层的P3HT:PbSe混合膜未对下层P3HT造成任何破坏。The SEM photos of the cross-section shown in Figure 2 clearly reflect that the upper P3HT:PbSe mixed film did not cause any damage to the lower P3HT.

图3、图4表示出了本实施例制得的平面-本体异质结集成结构太阳能电池经100毫瓦每平方厘米的532nm和808nm照射下的电流-电压曲线,从图中可以看出,本实施例制得的平面-本体异质结集成结构太阳能电池在100毫瓦每平方厘米的532nm光照射下开路电压为0.39伏,短路电流为0.94毫安每平方厘米,填充因子为0.35,转换效率为0.13%,器件性能比传统本体异质结结构转换效率提高了33%;在100毫瓦每平方厘米的808nm光照射下开路电压为0.36伏,短路电流为1.36毫安每平方厘米,填充因子为0.33,转换效率为0.16%,器件性能比传统本体异质结结构转换效率提高了60%。Fig. 3, Fig. 4 have shown the current-voltage curve under the 532nm and 808nm irradiation of 100 milliwatts per square centimeter of the plane-bulk heterojunction integrated structure solar cell that the present embodiment makes, as can be seen from the figure, The planar-bulk heterojunction integrated structure solar cell prepared in this example has an open circuit voltage of 0.39 volts, a short-circuit current of 0.94 milliamps per square centimeter, and a fill factor of 0.35 under the irradiation of 532 nm light at 100 milliwatts per square centimeter. The efficiency is 0.13%, and the device performance is 33% higher than the conversion efficiency of the traditional bulk heterojunction structure; under the irradiation of 808nm light at 100 mW/cm2, the open circuit voltage is 0.36 volts, and the short circuit current is 1.36 mA/cm2. The factor is 0.33, the conversion efficiency is 0.16%, and the device performance is 60% higher than the conversion efficiency of the traditional bulk heterojunction structure.

实施例2Example 2

将溅射有ITO(阳极)的透明导电玻璃依次用洗洁精、去离子水、丙酮、异丙醇超声清洗,然后用臭氧处理基片表面,再旋转涂上30纳米厚的PEDOT:PSS作为阳极修饰薄膜,150℃干燥10分钟,将10毫克每毫升的P3HT氯苯溶液(每毫升氯苯溶液中含10毫克P3HT)在2000转每分(rpm)的转速下直接旋涂于上述经阳极修饰的基片上,然后150℃干燥30分钟,自然冷却至室温,形成厚度为15nm的共轭聚合物电子给体材料层,将P3HT与PbSe溶于氯苯溶液得到的混合溶液(每毫升氯苯溶液中含10毫克P3HT,含50毫克PbSe)在1000转每分(rpm)的转速下直接旋涂于P3HT膜上,然后80℃干燥30分钟,自然冷却至室温,形成厚度为50nm的光电活性层;最后,通过掩模板在5×10-5帕下真空蒸镀150纳米的铝作为阴极,得到共轭聚合物/半导体纳米晶平面-本体异质结集成结构太阳能电池,器件结构如图1(b)所示。The transparent conductive glass sputtered with ITO (anode) was ultrasonically cleaned with detergent, deionized water, acetone, and isopropanol in sequence, and then the surface of the substrate was treated with ozone, and then spin-coated with 30 nm thick PEDOT:PSS as Anode modification film, 150 ℃ of drying 10 minutes, the P3HT chlorobenzene solution of 10 milligrams per milliliter (containing 10 milligrams of P3HT in every milliliter of chlorobenzene solution) is directly spin-coated under the rotating speed of 2000 revolutions per minute (rpm) on above-mentioned via anode modified substrate, then dried at 150°C for 30 minutes, cooled naturally to room temperature, and formed a conjugated polymer electron donor material layer with a thickness of 15nm. The mixed solution obtained by dissolving P3HT and PbSe in chlorobenzene solution (per milliliter of chlorobenzene The solution containing 10 mg P3HT, containing 50 mg PbSe) was directly spin-coated on the P3HT film at a speed of 1000 revolutions per minute (rpm), then dried at 80 °C for 30 minutes, and naturally cooled to room temperature to form a photoactive film with a thickness of 50 nm. layer; finally, 150 nanometers of aluminum was vacuum-deposited through a mask at 5×10 -5 Pa as a cathode to obtain a conjugated polymer/semiconductor nanocrystal planar-bulk heterojunction integrated solar cell, and the device structure is shown in Figure 1 (b) shown.

图5、图6表示出了本实施例制得的平面-本体异质结集成结构太阳能电池经100毫瓦每平方厘米的532nm和808nm照射下的电流-电压曲线,从图中可以看出,本实施例制得的平面-本体异质结集成结构太阳能电池在100毫瓦每平方厘米的532nm光照射下开路电压为0.35伏,短路电流为1.35毫安每平方厘米,填充因子为0.44,转换效率为0.21%,器件性能比传统本体异质结结构转换效率提高了110%;在100毫瓦每平方厘米的808nm光照射下开路电压为0.38伏,短路电流为1.73毫安每平方厘米,填充因子为0.40,转换效率为0.26%,器件性能比传统本体异质结结构转换效率提高了160%。Fig. 5 and Fig. 6 show the current-voltage curves of the plane-bulk heterojunction integrated structure solar cell prepared in this embodiment under the irradiation of 532nm and 808nm at 100 milliwatts per square centimeter, as can be seen from the figure, The planar-bulk heterojunction integrated structure solar cell prepared in this embodiment has an open circuit voltage of 0.35 volts, a short circuit current of 1.35 milliamperes per square centimeter, and a fill factor of 0.44 under the irradiation of 532 nm light at 100 milliwatts per square centimeter. The efficiency is 0.21%, and the device performance is 110% higher than the conversion efficiency of the traditional bulk heterojunction structure; under the irradiation of 808nm light at 100 mW/cm2, the open circuit voltage is 0.38 volts, and the short circuit current is 1.73 mA/cm2. The factor is 0.40, the conversion efficiency is 0.26%, and the device performance is 160% higher than the conversion efficiency of the traditional bulk heterojunction structure.

实施例3Example 3

将溅射有ITO(阳极)的透明导电玻璃依次用洗洁精、去离子水、丙酮、异丙醇超声清洗,然后用臭氧处理基片表面,再旋转涂上30纳米厚的PEDOT:PSS作为阳极修饰薄膜,150℃干燥10分钟,将10毫克每毫升的P3HT氯苯溶液(每毫升氯苯溶液中含10毫克P3HT)在3000转每分(rpm)的转速下直接旋涂于上述经阳极修饰的基片上,然后150℃干燥30分钟,自然冷却至室温,形成厚度为10nm的共轭聚合物电子给体材料层,将P3HT与PbSe溶于氯苯溶液得到的混合溶液(每毫升氯苯溶液中含10毫克P3HT,含50毫克PbSe)在1000转每分(rpm)的转速下直接旋涂于P3HT膜上,然后80℃干燥30分钟,自然冷却至室温,形成厚度为50nm的光电活性层;最后,通过掩模板在5×10-5帕下真空蒸镀150纳米的铝作为阴极,得到共轭聚合物/半导体纳米晶平面-本体异质结集成结构太阳能电池,器件结构如图1(b)所示。The transparent conductive glass sputtered with ITO (anode) was ultrasonically cleaned with detergent, deionized water, acetone, and isopropanol in sequence, and then the surface of the substrate was treated with ozone, and then spin-coated with 30 nm thick PEDOT:PSS as Anode modification film, 150 ℃ of drying 10 minutes, the P3HT chlorobenzene solution of 10 milligrams per milliliter (containing 10 milligrams of P3HT in every milliliter of chlorobenzene solution) is directly spin-coated on above-mentioned through anode under the rotating speed of 3000 revolutions per minute (rpm). modified substrate, then dried at 150°C for 30 minutes, and cooled naturally to room temperature to form a conjugated polymer electron donor material layer with a thickness of 10nm. The mixed solution obtained by dissolving P3HT and PbSe in chlorobenzene solution (per milliliter of chlorobenzene The solution containing 10 mg P3HT, containing 50 mg PbSe) was directly spin-coated on the P3HT film at a speed of 1000 revolutions per minute (rpm), then dried at 80 °C for 30 minutes, and naturally cooled to room temperature to form a photoactive film with a thickness of 50 nm. layer; finally, 150 nanometers of aluminum was vacuum-deposited through a mask at 5×10 -5 Pa as a cathode to obtain a conjugated polymer/semiconductor nanocrystal planar-bulk heterojunction integrated solar cell, and the device structure is shown in Figure 1 (b) shown.

图7、图8表示出了本实施例制得的平面-本体异质结集成结构太阳能电池经100毫瓦每平方厘米的532nm和808nm照射下的电流-电压曲线,从图中可以看出,本实施例制得的平面-本体异质结集成结构太阳能电池在100毫瓦每平方厘米的532nm光照射下开路电压为0.38伏,短路电流为1.12毫安每平方厘米,填充因子为0.38,转换效率为0.16%,器件性能比传统本体异质结结构转换效率提高了60%;在100毫瓦每平方厘米的808nm光照射下开路电压为0.36伏,短路电流为1.57毫安每平方厘米,填充因子为0.36,转换效率为0.20%,器件性能比传统本体异质结结构转换效率提高了100%。Fig. 7 and Fig. 8 show the current-voltage curves of the plane-bulk heterojunction integrated structure solar cell prepared in this embodiment under the irradiation of 532nm and 808nm at 100 milliwatts per square centimeter, as can be seen from the figure, The planar-bulk heterojunction integrated structure solar cell prepared in this embodiment has an open circuit voltage of 0.38 volts, a short circuit current of 1.12 milliamperes per square centimeter, and a fill factor of 0.38 under the irradiation of 100 milliwatts per square centimeter of 532 nm light. The efficiency is 0.16%, and the device performance is 60% higher than the conversion efficiency of the traditional bulk heterojunction structure; under the irradiation of 808nm light at 100 mW/cm2, the open circuit voltage is 0.36 volts, and the short circuit current is 1.57 mA/cm2. The factor is 0.36, the conversion efficiency is 0.20%, and the device performance is 100% higher than the conversion efficiency of the traditional bulk heterojunction structure.

以上实施例表明,平面-本体异质结集成结构能够有效的提高器件的性能。该结构不仅提高开路电压,增大短路电流,同时也提高了填充因子,进而增加了太阳能电池的光电转换效率。其廉价的成本、简单的工艺和其卓越的性能使其在工业上具有很大的应用前景。The above examples show that the planar-bulk heterojunction integrated structure can effectively improve the performance of the device. This structure not only increases the open circuit voltage and short circuit current, but also improves the fill factor, thereby increasing the photoelectric conversion efficiency of the solar cell. Its low cost, simple process and its excellent performance make it have great application prospects in industry.

Claims (5)

1.一种平面-本体异质结集成结构太阳能电池,包括依次层叠的玻璃衬底(1)、阳极(2)、阳极修饰层(3)、光电活化层(4)、阴极(5),其特征在于在阳极修饰层(3)和光电活化层(4)之间设有共轭聚合物电子给体材料层(6),所述共轭聚合物电子给体材料层厚度为2-30nm,所述共轭聚合物电子给体材料选自:聚(对亚苯基亚乙烯)类、聚(亚芳基亚乙烯基)类、聚(对亚苯基)类、聚(亚芳基)类、聚噻吩类、聚喹啉类。1. A planar-bulk heterojunction integrated structure solar cell, comprising a glass substrate (1), an anode (2), an anode modification layer (3), a photoelectric active layer (4), and a cathode (5) stacked in sequence, It is characterized in that a conjugated polymer electron donor material layer (6) is provided between the anode modification layer (3) and the photoelectric active layer (4), and the thickness of the conjugated polymer electron donor material layer is 2-30nm , the conjugated polymer electron donor material is selected from: poly (p-phenylene vinylene) class, poly (arylene vinylene) class, poly (p-phenylene) class, poly (arylene ) class, polythiophene class, polyquinoline class. 2.根据权利要求1所述的一种平面-本体异质结集成结构太阳能电池,其特征在于所述光电活化层(4)为共轭聚合物电子给体材料与半导体纳米晶电子受体材料混合而成的光电活化层,其中,所述共轭聚合物电子给体材料选自:聚(对亚苯基亚乙烯)类、聚(亚芳基亚乙烯基)类、聚(对亚苯基)类、聚(亚芳基)类、聚噻吩类、聚喹啉类,所述半导体纳米晶电子受体材料是从III-V族、II-VI族和IV-VI族化合物半导体的组中选取的。2. A kind of plane-bulk heterojunction integrated structure solar cell according to claim 1, characterized in that said photoelectric active layer (4) is a conjugated polymer electron donor material and a semiconductor nanocrystal electron acceptor material A mixed photoelectric active layer, wherein the conjugated polymer electron donor material is selected from the group consisting of poly(p-phenylene vinylene), poly(arylene vinylene), poly(p-phenylene base) class, poly(arylene) class, polythiophene class, polyquinoline class, the semiconductor nanocrystalline electron acceptor material is from the group of III-V group, II-VI group and IV-VI group compound semiconductor selected from. 3.根据权利要求1所述的一种平面-本体异质结集成结构太阳能电池,其特征在于所述阴极包括碱金属、碱土金属、铝、银、铜、或者上述金属组成的合金。3 . A planar-bulk heterojunction integrated solar cell according to claim 1 , wherein the cathode comprises alkali metal, alkaline earth metal, aluminum, silver, copper, or an alloy composed of the above metals. 4.一种平面-本体异质结集成结构太阳能电池的制备方法,其特征在于该方法步骤如下:4. A method for preparing a planar-bulk heterojunction integrated structure solar cell, characterized in that the steps of the method are as follows: (1)超声清洗溅射有ITO阳极的透明导电玻璃,然后用臭氧处理基片表面;(1) ultrasonically clean the transparent conductive glass sputtered with ITO anode, and then treat the substrate surface with ozone; (2)再旋转涂上30纳米厚的PEDOT:PSS作为阳极修饰薄膜,干燥;(2) Spin coat 30 nanometers of thick PEDOT:PSS as the anode modification film again, dry; (3)将共轭聚合物电子给体材料溶于溶剂中,用旋转涂膜或喷墨打印的方法将其涂覆在上述经阳极修饰的基片上,80-250℃下干燥10-48min,自然冷却至室温,形成厚度为2-30nm的共轭聚合物电子给体材料层,其中共轭聚合物电子给体材料选自:聚(对亚苯基亚乙烯)类、聚(亚芳基亚乙烯基)类、聚(对亚苯基)类、聚(亚芳基)类、聚噻吩类、聚喹啉类;(3) dissolving the conjugated polymer electron donor material in a solvent, coating it on the above-mentioned anode-modified substrate by spin coating or inkjet printing, and drying at 80-250°C for 10-48min, Cool naturally to room temperature to form a conjugated polymer electron donor material layer with a thickness of 2-30nm, wherein the conjugated polymer electron donor material is selected from: poly(p-phenylene vinylene), poly(arylene vinylene), poly(p-phenylene), poly(arylene), polythiophene, polyquinoline; (4)将共轭聚合物电子给体材料与半导体纳米晶电子受体材料与溶剂混合,将形成的混合溶液用旋转涂膜或喷墨打印的方法直接涂覆在共轭聚合物电子给体材料层上,干燥后自然冷却至室温,形成光电活化层;(4) The conjugated polymer electron donor material is mixed with the semiconductor nanocrystalline electron acceptor material and the solvent, and the resulting mixed solution is directly coated on the conjugated polymer electron donor by spin coating or inkjet printing. On the material layer, after drying, it is naturally cooled to room temperature to form a photoelectric active layer; (5)通过掩模板直接在光电活化层上真空蒸镀金属形成阴极,得到共轭聚合物/半导体纳米晶平面-本体异质结集成结构太阳能电池。(5) Vacuum-evaporating metal directly on the photoelectric active layer through a mask to form a cathode to obtain a conjugated polymer/semiconductor nanocrystal planar-bulk heterojunction integrated solar cell. 5.根据权利要求4所述的一种平面-本体异质结集成结构太阳能电池的制备方法,其特征在于所述步骤(3)中旋转涂膜时转速为1000-3000转每分。5 . The method for preparing a planar-bulk heterojunction integrated structure solar cell according to claim 4 , characterized in that in the step (3), the rotating speed of the film coating is 1000-3000 rpm. 6 .
CN 200910093531 2009-10-12 2009-10-12 Solar cell having integrated structure of plane-bulk heterojunction and preparation method thereof Expired - Fee Related CN101692481B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 200910093531 CN101692481B (en) 2009-10-12 2009-10-12 Solar cell having integrated structure of plane-bulk heterojunction and preparation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 200910093531 CN101692481B (en) 2009-10-12 2009-10-12 Solar cell having integrated structure of plane-bulk heterojunction and preparation method thereof

Publications (2)

Publication Number Publication Date
CN101692481A CN101692481A (en) 2010-04-07
CN101692481B true CN101692481B (en) 2012-07-04

Family

ID=42081150

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 200910093531 Expired - Fee Related CN101692481B (en) 2009-10-12 2009-10-12 Solar cell having integrated structure of plane-bulk heterojunction and preparation method thereof

Country Status (1)

Country Link
CN (1) CN101692481B (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101814555B (en) * 2010-04-12 2012-07-25 浙江大学 Method for improving efficiency of solar cell
CN102412370A (en) * 2011-12-09 2012-04-11 华北电力大学 Polymer solar battery and preparation method thereof
CN102646794A (en) * 2012-04-23 2012-08-22 华北电力大学 A kind of P-I-N type polymer solar cell and preparation method thereof
CN112366276B (en) * 2020-10-20 2022-12-06 泰山学院 Ultrahigh multiplication type organic photoelectric detector and preparation method thereof
CN114141956A (en) * 2021-11-29 2022-03-04 江南大学 A conductive polymer/antimony selenide heterojunction and its preparation method and optoelectronic application

Also Published As

Publication number Publication date
CN101692481A (en) 2010-04-07

Similar Documents

Publication Publication Date Title
Seo et al. Benefits of very thin PCBM and LiF layers for solution-processed p–i–n perovskite solar cells
Huang et al. Applications of ZnO in organic and hybrid solar cells
KR100986159B1 (en) Organic solar cell with improved energy conversion efficiency and manufacturing method thereof
CN100563043C (en) A kind of polymer solar cell and preparation method thereof
US8742253B1 (en) Device configurations for CIS based solar cells
WO2009017700A1 (en) Polymer electronic devices by all-solution process
KR20110098303A (en) Organic solar cell containing a bonded ring compound
Ferreira et al. Effect of device architecture on hybrid zinc oxide nanoparticle: poly (3-hexylthiophene) blend solar cell performance and stability
CN101692481B (en) Solar cell having integrated structure of plane-bulk heterojunction and preparation method thereof
CN102646794A (en) A kind of P-I-N type polymer solar cell and preparation method thereof
Park et al. Water-processable electron-collecting layers of a hybrid poly (ethylene oxide): Caesium carbonate composite for flexible inverted polymer solar cells
CN102364715B (en) Polymer solar cell with reverse structure and preparation method thereof
KR101458565B1 (en) Organic solar cell and the manufacturing method thereof
Yoshida et al. Fabrication and characterization of phthalocyanine/C60 solar cells with inverted structure
Zhang et al. Preparation and employment of carbon nanodots to improve electron extraction capacity of polyethylenimine interfacial layer for polymer solar cells
CN103928615B (en) A kind of self assembly type polymer solar cells cathodic modification material and method of modifying thereof
KR101809869B1 (en) Solar cell and method for manufacturing the same
KR20110098300A (en) Organic solar cell containing biphenyl compound
KR101076700B1 (en) method for producing organic solar cell and organic solar cell
CN103296222A (en) High-performance polymer solar cell cathode modifying material
Lee et al. Investigation performance and mechanisms of inverted polymer solar cells by pentacene doped P3HT: PCBM
KR102135101B1 (en) Semi-transparent/flexible solar cell and method for manufacturing thereof
Suthanthiraraj Application aspects of polymer electrolytes in solar cells
CN103782407B (en) Photo-electric conversion element and manufacture method thereof
Deng et al. ITO surface modification for inverted organic photovoltaics

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20120704

Termination date: 20151012

EXPY Termination of patent right or utility model