CN101687715B - 刹车和离合器片的改进 - Google Patents

刹车和离合器片的改进 Download PDF

Info

Publication number
CN101687715B
CN101687715B CN2008800104681A CN200880010468A CN101687715B CN 101687715 B CN101687715 B CN 101687715B CN 2008800104681 A CN2008800104681 A CN 2008800104681A CN 200880010468 A CN200880010468 A CN 200880010468A CN 101687715 B CN101687715 B CN 101687715B
Authority
CN
China
Prior art keywords
prefabrication
densification
carbon
silication
infiltration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN2008800104681A
Other languages
English (en)
Other versions
CN101687715A (zh
Inventor
胡里奥·J·法利亚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Surface Transforms PLC
Original Assignee
Surface Transforms PLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Surface Transforms PLC filed Critical Surface Transforms PLC
Publication of CN101687715A publication Critical patent/CN101687715A/zh
Application granted granted Critical
Publication of CN101687715B publication Critical patent/CN101687715B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/52Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • C04B35/573Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide obtained by reaction sintering or recrystallisation
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/71Ceramic products containing macroscopic reinforcing agents
    • C04B35/78Ceramic products containing macroscopic reinforcing agents containing non-metallic materials
    • C04B35/80Fibres, filaments, whiskers, platelets, or the like
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D69/00Friction linings; Attachment thereof; Selection of coacting friction substances or surfaces
    • F16D69/02Composition of linings ; Methods of manufacturing
    • F16D69/023Composite materials containing carbon and carbon fibres or fibres made of carbonizable material
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/526Fibers characterised by the length of the fibers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/608Green bodies or pre-forms with well-defined density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2200/00Materials; Production methods therefor
    • F16D2200/0034Materials; Production methods therefor non-metallic
    • F16D2200/0039Ceramics
    • F16D2200/0047Ceramic composite, e.g. C/C composite infiltrated with Si or B, or ceramic matrix infiltrated with metal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/21Circular sheet or circular blank
    • Y10T428/213Frictional

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Engineering & Computer Science (AREA)
  • Composite Materials (AREA)
  • Mechanical Engineering (AREA)
  • Braking Arrangements (AREA)
  • Mechanical Operated Clutches (AREA)

Abstract

通过硅化不完全致密化的碳-碳纤维预制品,制造碳纤维增强陶瓷刹车和离合器片,所述不完全致密化的碳-碳纤维预制品通过单个化学气相渗透步骤制得,并使硅化后致密化预制品进入碳渗透步骤,例如化学气相或液相渗透。本方法与传统的化学气相渗透方法相比,大大减少了处理时间,降低了成本,同时生产出高效的最终产品,该最终产品具有优化的结构和摩擦特性,尤其是在高温时的稳定性。

Description

刹车和离合器片的改进
技术领域
本发明涉及一种制造刹车和离合器片的方法,例如用于陆地机动车辆或航空器,以及涉及其所获得的新刹车和离合器片。特别地,本发明涉及包含碳纤维增强陶瓷材料的刹车和离合器片,该刹车和离合器片可以的获得方式是:利用化学气相渗透(chemical vapourinfiltration)在增强碳纤维的周围形成碳基体,用熔融硅浸渍碳基体,之后使硅化处理后的产品进入渗碳阶段。
背景技术
碳纤维增强陶瓷刹车片的使用受到广泛关注,尤其是硅化的碳-碳纤维复合材料,因为它们具有高强度,在高工作温度下能维持良好的物理和摩擦特性,以及与金属片相比重量较低,例如相对于标准的铸铁片重量降低50-70%。这种重量的降低对于改善性能和节约燃料非常重要;通过降低车辆的非弹簧承载重量,也可以提高车辆行驶性能、操作性能以及舒适性。机动车也同样可以从离合器片使用低重量高摩擦材料中受益。
现有的可以买到的硅化碳纤维增强陶瓷刹车片主要是“树脂碳化”方法,在该方法中,增强碳纤维和可碳化树脂(例如沥青或酚醛树脂)通过热模塑在一起获得所需形状,所获得的模制预制品进行碳化(例如在惰性气氛或真空中加热至摄氏1000℃),并可以选择石墨化(例如,加热到>2000℃)。所获得的坯体随后可以成形和/或连接在一起,以及可以进行硅化处理,例如至少部分浸入熔融的硅浴里,或者热等静压处理,在真空容器中用过量硅进行封装,之后在高温和等静压中处理。
树脂碳化程序的优点在于操作相对简单,但是也存在很多缺点。因此,模具通常填充有随机定向的纤维,典型地的平均长度少于30mm,更通常地为少于25mm。纤维可以从预先浸渍了树脂的碳纤维的火柴杆状材料砍得,例如使用毡制品,其中树脂分别注入模具中。短纤维的无规则取向最好能限制利用树脂碳化程序所获得的产品的再现性。
另一个缺点是,树脂可能收缩,并在碳化过程中碳纤维暴露在外面。这些暴露纤维的完整性可能在接下来的硅化步骤中与硅反应而遭到破坏。需要用到模具也使程序上有限制,因为产品形状的任何改变将必然导致昂贵的重新加工费用。
现有技术中,可以采用化学气相渗透来代替树脂碳化来形成碳-碳纤维复合材料,虽然通常被认为对于特别用途例如航空器的碳-碳纤维复合刹车片,过于复杂且昂贵。这些刹车片的制造通常包括生成最初的碳纤维预制品,该预制品随后进入化学气相渗透步骤,例如采用甲烷作为热解碳源。需要一系列的步骤,因为沉积碳容易堵塞增强纤维之间的小孔,并从而阻碍碳的吸附。通常在10-14天后出现初始饱和;此时,预制品的密度大约为0.9-1.6g/cm3,且将没有足够的强度或完整性来作为刹车片。因此,通常做法是从炉中去除部分致密化的预制品,并加工其表面以重新打开被阻塞的小孔,之后继续化学气相渗透。通常需要至少还有一个加工步骤和第三个化学气相渗透步骤,以获得具有密度约1.7-1.9g/cm3的刹车片;总共处理时间通常大约为150天。美国专利号6,878,331证明了化学气相渗透通常需要重复三次至五次,以获得所需的密度。
这样获得的刹车片没有硅化,且能作为航空器刹车器。尽管如此,它们不适合用于陆上车辆,因为其在室温下的摩擦性能较差,并不能用于提供突然的轻度刹车。
迄今为止,已经有想法认为即使化学气相渗透产生的刹车片随后将进行硅化,也需要至少两个化学气相渗透步骤。因此,美国专利号6,030,913中描述了如果每个过程只使用一次化学气相渗透,那么在沉积的高温碳层有微裂纹,并允许了在硅化过程中不想要的硅的渗透。可见,为了克服这个问题的多级渗透是相当昂贵的。
同时,美国专利号6,110,535描述了一种用于将熔融硅成分渗入碳复合材料的多孔基体的技术,该多孔基体通过利用化学气相渗透的致密作用来获得,这通常是两级致密化过程的第一步,并接着是树脂碳化致密化,从而在化学气相渗透之后在小孔中形成焦炭颗粒。
另外一种获得碳-碳纤维复合材料的途径是,润湿单体渗透方法(wetting monomerinfiltration),如WO-A-9964361和美国专利号6,756,112所描述。在该方法中,碳纤维预制品浸渍在一种或多种单体中,例如多环芳烃如萘,并优选有聚合催化剂例如路易斯酸(Lewis acid)。浸渍后的预制品之后被加热,以促进单体的聚合,所获得的聚合体随后进一步被加热碳化。
浸渍、聚合和碳化步骤按顺序通常重复几次,以获得所需程度的致密化。因此,总共四个循环为期4-5天用来产生密度约1.8g/cm的碳-碳纤维复合材料;在第一个循环后的典型密度约为1.4g/cm。所获得的产品据称优于通过为期6-8个月的多级化学气相渗透工艺所得到的复合材料。
在我们的PCT国际专利申请号:PCT/GB2006/002815中,描述了我们意想不到的发现,只经过单次化学气相渗透步骤获得未完全致密化的预制品,该预制品再进行硅化,可以获得高效硅化的碳-碳纤维复合材料刹车和离合片。因此,可以降低化学气相渗透的处理时间,从约150天减少到例如7天或更少;这将大大降低处理成本,并使刹车和离合片的制造比树脂碳化处理的成本低。成本的降低使产品从商业上可以买到,并用于机动陆上车辆,包括赛车、摩托车、货车、卡车、巴士、客车、军用车辆、火车头、铁路客车和铁路货车。
发明内容
本发明基于我们的发现,如果上述PCT国际申请所获得的硅化的未完全致密化预制品,经过一个碳渗透步骤,那么可以获得更好的产品。
此处理将有利于增强航空器刹车片的寿命和性能,例如耐磨特性和摩擦性能。该航空器刹车片在着陆时可以达到非常高的工作温度,有时会超过硅的熔点(1410℃)。在这种情况下,硅化的碳-碳纤维复合材料片中的游离硅可能在表面区域熔融,其中硅可能反应形成碳化硅或凝固成薄片。前面的可能性可以导致配合的刹车元件的磨损增加,这是由于碳化硅较高的研磨特性,同时后者危及刹车片摩擦特性的安全性。
根据本发明的碳渗透可以消除这个问题,通过与残留的自由硅反应和/或覆盖自由硅,或者在刹车片结构中存留有碳,以在使用过程中当刹车片超过硅的熔点时,碳与游离硅反应。同样也可以采用控制碳/硅和碳/碳化硅比例,以获得硬度、耐磨性和研磨特性的最佳平衡。
因此,根据本发明的一个方面,提供一种碳纤维增强陶瓷刹车或离合器片的制造方法,包括制造具有相应于所需刹车片形状的碳纤维预制品,通过一个化学气相渗透步骤采用碳使所述预制品致密化,通过与熔融硅反应使所述致密化的预制品硅化,以及使所述硅化后的致密化预制品经过一个碳渗透步骤。
本发明的主要优点在于,通过避免使用模具,降低了碳纤维预制品的形状限制,可以根据需要而变动,无需重新加工,因此使制造方法可以通用。
同样,碳纤维的长度没有限制。因此,预制品最好包含长的纤维,例如平均长度为至少50mm,优选至少75,100,125,150或250mm,因为长纤维提高了产品的强度和完整性。不希望受到理论方面的限制,与上述美国专利号6,030,913所述的单级化学气相渗透产生的产品相比,长纤维的存在有利于保证产品保持没有结构缺陷,例如微裂纹。
优选地,增强碳纤维为连续的,即平均纤维长度等于或超过刹车片的外边界和内边界之间的径向距离。连续的纤维预制品的一种简单制造方法是,从碳纤维织物的连续或卷切割而来,例如包含不同角度(例如0°和90°)的交叉层的织物或非织物毡。
通过单个化学气相渗透步骤使预制品致密化,可以通过现有的方式在适当的炉子中进行,优选滞后以保证加热成本尽量降低。较低的分子量的碳氢化合物,例如甲烷、丙烷或丁烷或任何这些气体的结合,可以作为热解碳源,并可以与载体气体例如氮气联合使用。考虑到成本的原因,优选使用甲烷。该过程可以在温度约1100℃下,例如1100±100℃,处理最多21天,优选7-14天,在这期间,预制品密度从最初的0.3-0.6g/cm3增至0.9-1.6g/cm3
优选地,通过适当控制操作温度和压力,可以改变化学气相渗透期间放入的碳基体形态,而这在树脂碳化方法中是不可能的。基体的反应可以这么改进:允许“微调”硅化基体的相关碳、硅和碳化硅成分,以优化最终产品的结构和摩擦特性。
如果需要,部分致密化的预制品可以在硅化前石墨化,例如通过在2000℃或以上,例如2400℃,在非氧化环境中,例如在惰性气体例如氩气或者真空中,例如在最高温度下热处理约96个小时。
硅化可以现有技术中任何适当形式实现。为了便于操作,优选有浸入处理或高温等静压处理,在所述浸入处理中,部分石墨化、部分致密化的预制品至少部分地浸入熔融硅浴中。硅化产品的密度可以为1.9-2.4g/cm3
产品可以在硅化前或后,加工成所需的最后尺寸。优选在硅化前加工,因为预硅化的中间产品硬度较小,比硅化后的最终产品更容易加工。
硅化的致密化预制品的碳渗透优选化学气相渗透或者液相渗透在单级中实现。
化学气相渗透可以通过类似于在预制品致密化阶段的描述中类似的方式进行。
液相渗透可以利用润湿单体渗透实现,如上述WO-A-9964361和美国专利号6,756,112,在此作为参考。
润湿单体包括糠醛和多环芳香烃,例如含有共2-4稠合的苯环,其中一部分苯环可以被氢化,并可以载有一个或多个环取代基,例如C1-4烷基团(例如甲基或乙基)。这些碳氢化合物的典型例子包括萘、甲基萘、四氢化萘、菲、蒽和芘;萘的使用比较有利,方便操作,并成本相对较低。优选地,具有相对较低熔融点的单体,例如不超过225℃,优选不超过175℃,方便处理,以浸渍预制品。部分氢化的碳氢化合物(在室温时为液态)的使用,例如1,2,3,4-四氢化萘,同样比较有利。
浸渍的实现可以通过使预制品浸渍或浸没在液态或熔融单体中,直到所需量的单体通过毛细管进入预制品中。浸渍时间为2-10个小时,例如1-5小时,这取决于一些因素,例如预制品的尺寸、单体的特性和温度。
浸渍单体的聚合可以通过加热实现,例如温度在300-500℃;反应时间大约为2-6小时,例如4小时。所获得的聚合物基体随后通过进一步加热碳化,例如加热温度在700-1400℃,时间为6-24小时,例如10-18小时。润湿单体渗透过程,即包括浸渍、聚合和碳化步骤,的总共处理时间约12-36小时,优选20-30小时,更优选约24小时。
作为选择,硅化的致密化预制品可以直接用液态(包括熔融的)聚合物或树脂浸渍,优选具有较低的分子量(例如少于5,000,优选少于3,000或2,500),以及相应较低的粘性,这之后通过如上述加热碳化。
根据本发明的方法所获的碳纤维增强陶瓷刹车和离合器片是新的和有用的产品。与传统的树脂碳化处理获得的产品不同,本发明产品的碳基体对于增加纤维表现出很高的粘着性。因此,这些纤维受到保护,避免在硅化过程中与硅反应,与现有技术相比,本产品的强度和完整性得到提高。任何游离硅含量有效地被锁定在刹车片中,这可以在工作温度超过硅的熔点时,限制硅移动到刹车片表面。
因此,根据本发明的另一特征是提供一种硅化的碳-碳纤维复合材料刹车或离合器片,其特征在于含有渗碳,这些碳覆盖在硅成分上。
现有技术中树脂碳化产品的碳基体主要包括玻璃态无定形碳,而本发明产品的基体碳含量相对较规则,通常为同向性的、粗糙薄片或光滑薄片形式。这使得在硅化期间,与硅的反应更均匀和受控制的,允许制造更均匀和可再生的产品。

Claims (17)

1.一种碳纤维增强陶瓷刹车或离合器片的制造方法,其特征在于,包括:制造具有相应于所需刹车或离合器片形状的碳纤维预制品,采用碳、使用单个化学气相渗透步骤、使所述预制品致密化,其中,致密化后的预制品的密度为0.9-1.6g/cm3,选择地使所述致密化后的预制品在硅化前石墨化,通过与熔融硅反应使所述致密化的预制品硅化,以及使所述硅化后的致密化预制品经过渗碳步骤。
2.根据权利要求1所述的方法,其特征在于:所述预制品中的所述碳纤维的平均长度为至少50mm。
3.根据权利要求1所述的方法,其特征在于:所述预制品中的所述碳纤维的平均长度等于或超过所述刹车或离合器片的外边缘和内边缘之间的径向距离。
4.根据权利要求1至3任意一项所述的方法,其特征在于:所述预制品从碳纤维织物的连续片或卷切割而得。
5.根据权利要求4所述的方法,其特征在于:所述连续片为非织物毡。
6.根据权利要求1所述的方法,其特征在于:初始的预制品密度为0.3-0.6g/cm3
7.根据权利要求1所述的方法,其特征在于:所述预制品通过单个化学气相渗透步骤进行共计最多21天的致密化处理。
8.根据权利要求7所述的方法,其特征在于:所述渗透步骤的处理时间共计7-14天。
9.根据权利要求1所述的方法,其特征在于:在与熔融硅反应前,致密化后的预制品被加工至所需刹车或离合器片的尺寸。
10.根据权利要求1所述的方法,其特征在于:与熔融硅的反应通过如下方式进行:将致密化后的预制品至少部分地浸入熔融硅浴中,或者在高温和等静压下,在真空容器中用过量的硅封装。
11.根据权利要求1所述的方法,其特征在于:致密化硅化后的预制品的密度为1.9-2.4g/cm3
12.根据权利要求11所述的方法,其特征在于:致密化硅化后的预制品被加工至所需刹车或离合器片的尺寸。
13.根据权利要求12所述的方法,其特征在于:致密化硅化后的预制品进行渗碳步骤,该渗碳步骤为单级化学气相或液相渗透。
14.根据权利要求13所述的方法,其特征在于:所述使预制品致密化的化学气相渗透处理时间共计为7-14天。
15.根据权利要求13所述的方法,其特征在于:所述液相渗透为润湿单体渗透,且该润湿单体渗透处理时间共计12-36小时。
16.根据权利要求15所述的方法,其特征在于:所述润湿单体渗透处理时间共计24小时。
17.一种碳纤维增强陶瓷刹车或离合器片,其特征在于:由权利要求1至16任意一项所述方法获得。
CN2008800104681A 2007-01-31 2008-01-31 刹车和离合器片的改进 Expired - Fee Related CN101687715B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
GB0701847.6 2007-01-31
GBGB0701847.6A GB0701847D0 (en) 2007-01-31 2007-01-31 Improvements in or relating to brake and clutch discs
PCT/GB2008/000325 WO2008093091A1 (en) 2007-01-31 2008-01-31 Improvements in or relating to brake and clutch discs

Publications (2)

Publication Number Publication Date
CN101687715A CN101687715A (zh) 2010-03-31
CN101687715B true CN101687715B (zh) 2013-10-30

Family

ID=37891044

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2008800104681A Expired - Fee Related CN101687715B (zh) 2007-01-31 2008-01-31 刹车和离合器片的改进

Country Status (7)

Country Link
US (1) US20110311753A1 (zh)
EP (1) EP2111382B1 (zh)
JP (1) JP5027253B2 (zh)
CN (1) CN101687715B (zh)
GB (1) GB0701847D0 (zh)
SI (1) SI2111382T1 (zh)
WO (1) WO2008093091A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101051408B1 (ko) * 2008-09-30 2011-07-22 주식회사 데크 내부 냉각채널을 갖는 세라믹 브레이크 디스크 로터의 제조방법
US9422995B2 (en) * 2013-12-06 2016-08-23 Ford Global Technologies, Llc Brake insulator with thermal barrier
AU2015264914B2 (en) * 2014-12-16 2017-02-23 Dacc Carbon Co., Ltd. Method for manufacturing vehicle brake disc
DE102015226831A1 (de) * 2015-12-30 2017-07-06 Siemens Aktiengesellschaft Fahrzeug mit einer Bremseinrichtung
US11702370B2 (en) 2018-01-10 2023-07-18 SiC Technologies, Inc. Systems, devices, and methods for manufacturing carbon ceramic brake discs
CN112377547B (zh) * 2020-11-12 2022-08-02 湖南世鑫新材料有限公司 一种碳陶制动盘及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0300756A1 (en) * 1987-07-24 1989-01-25 Parker Hannifin Corporation Brake element
CN1237950A (zh) * 1996-10-14 1999-12-08 航空发动机的结构和研究公司 碳/碳-碳化硅复合材料的摩擦部件及其制造方法
CN1675479A (zh) * 2002-06-11 2005-09-28 申克碳化技术股份有限公司 按定制纤维配接工艺制备摩擦式纤维复合构件

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19710105A1 (de) 1997-03-12 1998-09-17 Sgl Technik Gmbh Mit Graphitkurzfasern verstärkter Siliciumcarbidkörper
US6309703B1 (en) * 1998-06-08 2001-10-30 The United States Of America As Represented By The Secretary Of The Air Force Carbon and ceramic matrix composites fabricated by a rapid low-cost process incorporating in-situ polymerization of wetting monomers
DE10133635A1 (de) * 2001-07-11 2003-02-06 Sgl Carbon Ag Mehrschichtiger Keramik-Verbund
DE10157583C1 (de) * 2001-11-23 2002-12-19 Sgl Carbon Ag Reibkörper aus faserverstärkten Keramik-Verbundwerkstoffen
DE10164229B4 (de) * 2001-12-31 2006-03-09 Sgl Carbon Ag Reibscheiben, Verfahren zu ihrer Herstellung und ihre Verwendung
DE10233729B4 (de) * 2002-07-24 2006-01-26 Sgl Carbon Ag Faserverstärkte keramische Bremsbeläge
GB2403989B (en) * 2003-07-15 2006-06-14 Dunlop Aerospace Ltd Composite article
KR100588342B1 (ko) * 2003-11-26 2006-06-12 주식회사 데크 동력전달용 클러치
FR2869609B1 (fr) * 2004-05-03 2006-07-28 Snecma Propulsion Solide Sa Procede de fabrication d'une piece en materiau composite thermostructural
EP1632465A1 (de) * 2004-09-07 2006-03-08 Sgl Carbon Ag Durch Nanopartikel modifizierte Carbon-Keramik-Bremsscheiben
GB2428671B (en) * 2005-07-29 2011-08-31 Surface Transforms Plc Method for the manufacture of carbon fibre-reinforced ceramic brake or clutch disks

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0300756A1 (en) * 1987-07-24 1989-01-25 Parker Hannifin Corporation Brake element
CN1237950A (zh) * 1996-10-14 1999-12-08 航空发动机的结构和研究公司 碳/碳-碳化硅复合材料的摩擦部件及其制造方法
CN1675479A (zh) * 2002-06-11 2005-09-28 申克碳化技术股份有限公司 按定制纤维配接工艺制备摩擦式纤维复合构件

Also Published As

Publication number Publication date
SI2111382T1 (sl) 2016-04-29
WO2008093091A1 (en) 2008-08-07
CN101687715A (zh) 2010-03-31
JP2010516981A (ja) 2010-05-20
JP5027253B2 (ja) 2012-09-19
GB0701847D0 (en) 2007-03-14
EP2111382A1 (en) 2009-10-28
EP2111382B1 (en) 2015-07-08
US20110311753A1 (en) 2011-12-22

Similar Documents

Publication Publication Date Title
EP1910247B1 (en) Improvements in or relating to brake and clutch discs
US7067077B2 (en) Process for manufacturing friction material suitable for use as brake lining
KR100512307B1 (ko) 복합 탄소/탄소-탄화규소 재료로 된 마찰 부재와 그의 제조방법
US7575799B2 (en) Carbon fiber containing ceramic particles
CN101687715B (zh) 刹车和离合器片的改进
US8268208B2 (en) Method for reducing variability in carbon-carbon composites
US8454867B2 (en) CVI followed by coal tar pitch densification by VPI
WO2005121592A1 (en) Method for producing carbon-carbon brake material with improved initial friction coefficient or “bite”
US8349231B2 (en) Shaped composite material
JP4880163B2 (ja) ブレーキ用途用の成形複合材料およびその製造方法
JP2004533388A (ja) 耐磨耗性カーボンブレーキ材料
GB2475233A (en) Process for forming carbon fibre reinforced ceramic composite
CN101688007A (zh) 刹车和离合器片的改进
JPH07277844A (ja) 炭素繊維強化炭素/セミカーボン複合材の製造法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20131030

Termination date: 20160131

EXPY Termination of patent right or utility model