CN101676398A - 利用薯类原料制备乙醇的方法 - Google Patents
利用薯类原料制备乙醇的方法 Download PDFInfo
- Publication number
- CN101676398A CN101676398A CN200810222824A CN200810222824A CN101676398A CN 101676398 A CN101676398 A CN 101676398A CN 200810222824 A CN200810222824 A CN 200810222824A CN 200810222824 A CN200810222824 A CN 200810222824A CN 101676398 A CN101676398 A CN 101676398A
- Authority
- CN
- China
- Prior art keywords
- water soluble
- cylinder
- soluble algae
- waste liquid
- raw material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E50/00—Technologies for the production of fuel of non-fossil origin
- Y02E50/10—Biofuels, e.g. bio-diesel
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P60/00—Technologies relating to agriculture, livestock or agroalimentary industries
- Y02P60/80—Food processing, e.g. use of renewable energies or variable speed drives in handling, conveying or stacking
- Y02P60/87—Re-use of by-products of food processing for fodder production
Landscapes
- Preparation Of Compounds By Using Micro-Organisms (AREA)
Abstract
一种利用薯类原料制备乙醇的方法,包括将薯类原料去皮,将去皮后的薯类原料粉碎,将粉碎后的产物与酶混合、酶解,得到酶解产物;发酵该酶解产物,从发酵产物中分离乙醇,然后对废液进行固液分离,其中,在对废液进行固液分离之前在废液中加入水溶性海藻酸酯和/或水溶性海藻酸盐。本发明的方法能够提高乙醇的产率,并且显著地缩短了固液分离的时间,在无需增加新设备的情况下显著地提高了单位时间内废液的处理量。
Description
技术领域
本发明是关于乙醇的制备方法,更具体地是关于利用薯类原料制备乙醇的方法。
背景技术
薯类,例如红薯、马铃薯、木薯等,富含淀粉,因此广泛用于发酵制糖、制淀粉等领域。
木薯是热带和亚热带多年生、温带一年生薯属灌木,原产于南美洲,适宜在平均温度为25-29℃、年均降水量1000-1500毫米的低纬度地区生长。大约在1820年前,木薯传到中国南方,主要在广东、广西和海南种植,现在逐渐扩大到云南、福建、贵州等省。木薯分为两类:苦味木薯(有毒木薯)和甜味木薯(无毒木薯)。新鲜的木薯块根的主要化学成分是水,其次是碳水化合物,还有一些含量较少的蛋白质、脂肪和果胶。鲜木薯淀粉含量达到25-30重量%。
成熟的木薯一般粗4-8厘米,长20-30厘米,薯形粗短,呈短圆柱状,木薯由内及外的结构依次为薯肉和表皮,表皮包括内表皮和外表皮,外表皮为深褐色,间有白色环状条纹,内表皮和薯肉为白色。
由于从发酵产物中分离出乙醇之后得到的废液含有高浓度的有机物,目前绝大部分乙醇厂排放的废液没有经过有效处理直接向外排放,对当地和下游的水环境造成严重影响。
目前,木薯发酵制备乙醇的废液的处理方法有:1、焚烧法,即将废液浓缩后进行焚烧,该方法的缺点为焚烧后容易造成二次污染;2、用废液发酵制备沼气,该方法的缺点为投资大和控制技术要求高。
因此,目前通常采用回收木薯发酵制备乙醇的废液中的固体残渣作为饲料来处理废液的方法,该方法包括将废液进行固液分离,得到固体产物;之后对固体产物进行烘干。该方法是一种投资少、容易操作并且对环境友好的木薯发酵制备乙醇的废液的处理方法。在这种情况下,固液分离的处理能力就成为决定废液处理能力大小的关键因素。
目前对木薯发酵制备乙醇的废液进行处理的方法存在的问题是,固液分离的周期过长,导致废液的处理量小,并导致木薯发酵制备乙醇的装置的运行负荷较低,生产能力不能够达到要求。
发明内容
本发明的目的是克服现有的利用薯类原料制备乙醇的方法存在固液分离的周期过长的缺点,提供一种固液分离的周期较短的利用薯类原料制备乙醇的方法。
本发明提供了一种利用薯类原料制备乙醇的方法,该方法包括将薯类原料去皮,将去皮后的薯类原料粉碎,将粉碎后的产物与酶混合、酶解,得到酶解产物;发酵该酶解产物,从发酵产物中分离乙醇,然后对废液进行固液分离,其中,在对废液进行固液分离之前在废液中加入水溶性海藻酸酯和/或水溶性海藻酸盐。
附图说明
图1为本发明的薯类原料去皮方法所用的薯类去皮设备的正视图;
图2为所述薯类去皮设备的纵剖示意图;
图3为表示链轮与滚筒的连接关系的横剖示意图。
具体实施方式
本发明提供的利用薯类原料制备乙醇的方法,该方法包括将薯类原料去皮,将去皮后的薯类原料粉碎,将粉碎后的产物与酶混合、酶解,得到酶解产物;发酵该酶解产物,从发酵产物中分离乙醇,然后对废液进行固液分离,其中,在对废液进行固液分离之前在废液中加入水溶性海藻酸酯和/或水溶性海藻酸盐。
根据本发明,水溶性海藻酸酯和/或水溶性海藻酸盐的用量可以在很大范围内改变,只要能够缩短了固液分离的时间即可,优选情况下,相对于1000重量份的废液,水溶性海藻酸酯和/或水溶性海藻酸盐的用量为0.05-1重量份;进一步优选为,相对于1000重量份的废液,水溶性海藻酸酯和/或水溶性海藻酸盐的用量为0.1-0.5重量份。
所述水溶性海藻酸盐的种类可以在很大范围内改变,只要能够使废液中分子间的碰撞加剧,使不易沉淀的小分子结合成为大分子形成较大的絮凝物即可,优选情况下,所述水溶性海藻酸盐的相对分子量为30000-200000,相对分子量为物质的分子或特定单元的平均质量与核素12C原子质量的1/12之比。例如,所述水溶性海藻酸盐可以选自海藻酸钠、海藻酸钾和海藻酸铵中的一种或几种。符合上述要求的水溶性海藻酸盐可以通过商购得到,例如,青岛南洋海藻工业有限公司生产的海藻酸钠、青岛明月海藻集团有限公司生产的海藻酸钾以及邯郸市海洋药用海藻制品有限公司生产的海藻酸铵。
所述水溶性海藻酸酯的种类可以在很大范围内改变,只要能够使废液中分子间的碰撞加剧,使不易沉淀的小分子结合成为大分子形成较大的絮凝物即可,优选情况下,所述水溶性海藻酸酯的相对分子量为30000-200000,相对分子量为物质的分子或特定单元的平均质量与核素12C原子质量的1/12之比。例如,所述水溶性海藻酸酯可以选自海藻酸丙二醇酯、海藻酸乙二醇酯和海藻酸丁二醇酯中的一种或几种,优选为海藻酸丙二醇酯。符合上述要求的水溶性海藻酸酯可以通过本领域技术人员公知的方法合成得到,也可以通过商购得到,例如,青岛明月海藻集团有限公司生产的海藻酸丙二醇酯。
优选情况下,在对废液进行固液分离之前在废液中加入水溶性海藻酸酯和水溶性海藻酸盐,在同时加入水溶性海藻酸酯和水溶性海藻酸盐时,能够进一步缩短固液分离的时间,从而进一步提高单位时间内废液的处理量。在这种情况下,水溶性海藻酸酯和水溶性海藻酸盐的用量可以在很大范围内改变,优选情况下,相对于100重量份的水溶性海藻酸酯,所述水溶性海藻酸盐的加入量为10-1000重量份。进一步优选为,相对于100重量份的水溶性海藻酸酯,所述水溶性海藻酸盐的加入量为40-300重量份。
根据本发明,所述将薯类原料去皮的方法可以为各种能够对薯类原料进行去皮的方法。
例如,可以采用人工去皮或简单的机械去皮,通过摩擦作用将木薯的表皮蹭掉、或者将木薯的表皮削掉。由于木薯的表皮特别是内表皮紧贴在薯肉上,因此,当通过摩擦作用去皮时,还有相当一部分表皮残留在木薯表面,从而使木薯中的氰化物残留较大(氰化物去除率约为40-50%),导致酶解过程中酶的失活以及发酵过程中酵母中毒失效,进而影响乙醇产率;或者,将木薯的表皮削掉时,很容易将薯肉去除掉,从而损失大量的原料。
因此,为了有效地去除薯类表皮含有的氰化物并减少薯类原料由于去皮而产生的损耗,从而提高乙醇的产率,优选情况下,所述将薯类原料去皮的方法使用一种薯类去皮设备,该去皮设备包括机座1、滚筒2、螺旋式进给器3和驱动装置(图中未示出),滚筒2可转动地、倾斜地安装在机座1上,滚筒2具有进料口4和出料口5,所述螺旋进给器3位于滚筒2中并与滚筒的内壁固定连接,所述驱动装置用于驱动滚筒2和螺旋进给器3一起转动。将薯类原料去皮的方法包括薯类原料通过所述进料口4放入到所述滚筒2中,利用所述驱动装置驱动滚筒2和螺旋进给器3一起转动。驱动滚筒2和螺旋进给器3的转动速度可以为2-50转/分钟,优选为5-25转/分钟。在螺旋进给器3的推动作用下,薯类原料不断向前移动;同时薯类原料随着滚筒2和螺旋进给器3转动,在转动过程中,薯类原料之间发生摩擦,薯类原料与滚筒壁和螺旋进给器之间也发生摩擦,从而将薯类的表皮去除掉,去皮后的薯类从出料口5排出。
所述滚筒2可以由各种耐磨损材料制成,例如,钢、橡胶或硬质塑料。所述滚筒2中还可以设置有喷淋装置,喷淋装置可以固定安装在滚筒的内壁上,并且位于靠近滚筒的进料口的位置。所述喷淋装置可以为常规的各种喷淋装置。按照本发明,该方法还可以包括在去皮过程中将水通过喷淋装置喷淋到薯类原料上将薯类原料上的污物(如泥土、杂质等)去除掉。所述喷水量没有特别限定,只要保证能够将薯类原料上的污物除去即可。
优选情况下,如图1所示,所述滚筒2从进口端到出口端包括第一段滚筒2a和第二段滚筒2b,第一段滚筒2a和第二段滚筒2b连通,第二段滚筒2b中设置有喷淋装置。喷淋装置可以固定安装在第二段滚筒2b的内壁上,并且位于靠近第二段滚筒的进料口的位置。
按照本发明的方法,为了达到更好的去皮效果,所述滚筒2的内壁上还具有摩擦结构。所述摩擦结构可以为各种表面粗糙的结构,优选为一条或多条带肋钢筋,更优选为多条带肋钢筋。带肋钢筋具有横肋,可以使用常规的各种规格的热轧带肋钢筋和冷轧带肋钢筋,如符合GB1499-1998规定的带肋钢筋。带肋钢筋的公称直径可以为6-25毫米,优选为8-20毫米;横肋间距可以为3-16毫米,优选为4-12毫米。带肋钢筋的牌号包括但不限于HRB335、HRB400和HRB500。所述带肋钢筋与滚筒2的内壁固定连接,在滚筒转动过程中,带肋钢筋可以对薯类原料起到摩擦作用。为了便于在滚筒2的内壁上固定连接带肋钢筋,带肋钢筋优选与滚筒2的中心轴线平行。
所述滚筒2可以水平地或倾斜地安装在机座1上。当所述滚筒水平地安装时,薯类原料在螺旋进给器3的推动作用下向前移动,最终从滚筒的出料口排出。当所述滚筒倾斜地安装时,进料口的位置比出料口高,薯类原料还可以借助自身的重力作用向下移动(即向前移动)。滚筒2的倾斜角度可以为0-15度,优选为5-10度;滚筒2的长度可以为2-10米,优选为3.5-7米。当滚筒包括所述第一段滚筒和第二段滚筒时,此处的长度是指第一段滚筒和第二段滚筒的长度之和。所述倾斜角度是指滚筒的中心轴与水平线的夹角。对滚筒的内直径没有特别的限定,可以根据需要进行去皮处理的薯类原料的量来选择合适的滚筒内直径,一般情况下,滚筒内直径可以为1-2米。
所述螺旋进给器3可以为机械领域常规的各种螺旋进给器。所述螺旋进给器3可以通过常规的各种固定连接方式连接在滚筒2的内壁上,例如,如图2所示,螺旋进给器3通过紧固件8固定连接在滚筒2的内壁上。为了达到更好的去皮效果,所述螺旋进给器3的螺距优选为0.3-0.8米,螺纹高度优选为0.1-0.4米。螺旋进给器可以由各种耐磨损材料制成,例如,钢、橡胶、尼龙。
本发明对所述驱动装置没有特别限定,只要能驱动滚筒2和螺旋进给器3一起转动即可。例如,所述驱动装置可以包括驱动源、传动链和链轮6。如图3所示,链轮6固定在滚筒2上。当滚筒2包括第一段滚筒2a和第二段滚筒2b时,优选将链轮6安装在第一段滚筒2a和第二段滚筒2b之间。由于滚筒2可转动地安装在机座1上,因此传动链将驱动源的动力传递给链轮时,链轮能够带动滚筒转动。可转动的安装方式可以为常规的各种方法,例如,可以使用支撑辊或支撑架将滚筒架设在机座上,使滚筒可以绕中心轴转动。驱动源可以为各种能够产生动力的装置,如电动机。
为了便于进料,该去皮设备还可以包括风车进给器7。如图1或2所示,风车进给器7安装于滚筒的进料口4。风车进给器7可以为机械领域常规的各种风车进给器。
采用本发明所述的薯类去皮设备是利用在滚筒中的薯类原料之间以及薯类原料与筒壁之间的摩擦力的作用而将薯类原料去皮。按照本发明的去皮方法对木薯原料进行去皮,氰化物的去除率能够达到75%以上,原料损失率能够保持在5重量%以下,因而有利于提高乙醇的产率。
所述薯类原料可以为各种薯类原料,如红薯、马铃薯、木薯等,本发明的具体实施方案中采用的薯类原料为木薯。由于薯类原料中可能会含有泥土、沙石杂质以及铁杂质,会对去皮设备造成损害,因此,按照本发明的方法,还可以包括去皮之前对薯类原料进行预处理的常规操作,所述预处理的步骤一般包括除去杂质和清洗的步骤。如,在鲜木薯采收后,除去木薯上的泥土、根、须及木质部分以及砂石等杂质。并对木薯进行清洗,所述清洗的方法和设备为本领域技术人员所公知。
按照本发明,所述粉碎方法可以为本领域常规的粉碎方法,只要将木薯的组织结构破坏,使微小的淀粉颗粒能够从木薯块根中解体、分离出来即可。例如,可以采用干式粉碎或湿式粉碎,两种粉碎方式之间的差别主要在于是否将木薯与水混合。湿式粉碎包括将去皮后的木薯与水混合,然后进行一次或多次粉碎。粉碎后的产物的平均颗粒直径优选为1.5-10毫米。木薯与水的重量比可以为1∶0.2-1.2,优选为1∶0.8-1。可以使用常规的各种粉碎机,例如SFSP系列锤片式粉碎机。
所述酶解步骤可以通过本领域常用的方法完成,比如向粉碎产物中添加产酶微生物和/或酶,在产酶微生物的生长温度和/或酶有活力的温度下保温完成。所述产酶微生物为能够分泌淀粉酶的产酶微生物。所述酶包括淀粉酶。
由于微生物生长会产生副产物,因此优选直接加入酶。所述酶的用量越多越好,出于成本考虑,优选以每克粉碎后的产物的干重计,所述淀粉酶的用量为4-50酶活力单位,更优选以每克粉碎后的产物的干重计,所述淀粉酶的用量为10-30酶活力单位。
本发明所述酶的酶活力单位可以为在pH值为6.0、温度为70℃的条件下,1分钟将1毫克淀粉转化为葡萄糖所需的酶量为一个酶活力单位。
所述酶解的温度可以为淀粉酶的任何最适作用温度,一般为50-90℃,更优选60-70℃。所述酶解的时间理论上越长越好,考虑到设备利用率,优选所述酶解的时间为20-240分钟,更优选为30-120分钟。所述酶解的pH值可以为淀粉酶的任何最适作用pH,一般为3.0-7.0,更优选pH值为5.0-6.0。由于酶解过程中pH值的波动不大,因此所述酶解的pH值可以按照本领域常用的方法在加入酶之前进行调节,例如先将粉碎产物与水或培养基(加酶一般与水混合,加入产酶微生物一般与该微生物的培养基)混合,一般使所得混合物的固含量为20-40重量%,根据所得混合物的pH值,用硫酸溶液或氢氧化钠将待酶解的混合物pH调节至3.0-7.0,更优选调节至pH值为5.0-6.0。
淀粉酶是能够分解淀粉糖苷键的一类酶的总称,所述淀粉酶一般包括α-淀粉酶、β-淀粉酶、糖化酶和异淀粉酶。本发明所述酶包括淀粉酶。
α-淀粉酶又称淀粉1,4-糊精酶,它能够任意地、不规则地切开淀粉链内部的α-1,4-糖苷键,将淀粉水解为麦芽糖、含有6个葡萄糖单位的寡糖和带有支链的寡糖。生产此酶的微生物主要有枯草杆菌、黑曲霉、米曲霉和根霉。
β-淀粉酶又称淀粉1,4-麦芽糖苷酶,能够从淀粉分子非还原性末端切开1,4-糖苷键,生成麦芽糖。此酶作用于淀粉的产物是麦芽糖与极限糊精。此酶主要由曲霉、根霉和内孢霉产生。
糖化酶又称淀粉α-1,4-葡萄糖苷酶,此酶作用于淀粉分子的非还原性末端,以葡萄糖为单位,依次作用于淀粉分子中的α-1,4-糖苷键,生成葡萄糖。此酶作用于支链淀粉后的产物有葡萄糖和带有α-1,6-糖苷键的寡糖;作用于直链淀粉后的产物几乎全部是葡萄糖。此酶产生菌主要是黑曲霉(左美曲霉、泡盛曲霉)、根霉(雪白根酶、德氏根霉)、拟内孢霉、红曲霉。
异淀粉酶又称淀粉α-1,6-葡萄糖苷酶、分枝酶,此酶作用于枝链淀粉分子分枝点处的α-1,6-糖苷键,将枝链淀粉的整个侧链切下变成直链淀粉。此酶产生菌主要是嫌气杆菌、芽孢杆菌及某些假单孢杆菌等细菌。
优选所述酶解使用的酶还包括磷酸酯酶。因为磷酸酯酶能够使磷酸与醇式羟基结合成酯的磷酸糊精水解成葡萄糖,并释放出磷酸,具有极明显的液化力,所以酶解使用的酶包括磷酸酯酶,可以更充分地水解淀粉,以增加乙醇产率。
能够发酵单糖如葡萄糖和/或果糖、寡糖如蔗糖和/或半乳糖的微生物都可以用于本发明的发酵过程,由于酿酒酵母是酿酒工业上普遍应用的耐酒精、副产物少、乙醇产率高的发酵己糖的微生物,因此优选所述发酵所使用的酵母为酿酒酵母。
以每克酶解产物计,所述发酵所使用的酵母的接种量为103-108菌落形成单位,更优选104-106菌落形成单位。
所述菌落形成单位的定义为将稀释后的一定量的菌液通过浇注或涂布的方法,让其内的微生物单细胞一一分散在培养基平板上,待培养后,每一活细胞就形成一个菌落。即每毫升菌液中含有的单细胞的数目。
本发明发酵所使用的酵母可以为商购酵母固体制剂(比如干酵母粉)或酵母菌种,比如拉斯2号(Rasse II)酵母,又名德国二号酵母、拉斯12号(Rasse XII)酵母,又名德国12号酵母、K字酵母、南阳五号酵母(1300)和南阳混合酵母(1308)。所述酵母的菌落形成单位可以通过本领域公知的方法测定,比如亚甲基蓝染色活菌计数法。亚甲基蓝染色活菌计数法的具体方法如下:
将1克干酵母粉溶于10毫升无菌水中,或将1毫升菌种活化液用无菌水稀释至10毫升,加入0.5毫升0.1重量%亚甲基蓝,在35℃下保温30分钟。在10倍光学显微镜下,用血球计数板计数保温后的溶液中活菌的数目(死菌染色,活菌不染色),可得1克干酵母或1毫升菌种活化液中活菌的数目,即菌落形成单位数。
所述酵母可以采用常规的方法接种,例如向酶解产物中加入5-15体积%的种子液。所述种子液可以为干酵母的水溶液或培养基溶液,也可以为干酵母或商购菌种的活化种子液。
所述发酵的温度可以为任何适于酵母生长的温度,优选为30-36℃,更优选为30-33℃。pH值为4-6,优选为4-4.5。所述发酵的时间可以为从接种开始至酵母生长的衰亡期出现(即发酵时间为迟滞期、对数期加上稳定期)的时间,优选发酵的时间为55-70小时,更优选60-70小时。发酵产物乙醇可以用常规的方法,根据不同工业产品的要求(比如燃料酒精要求乙醇的纯度达99%以上)分离并精制,比如蒸馏、浓缩、除水。
根据本发明,所述固液分离可以为常规的各种固液分离方法,如过滤,例如,可以通过压滤机来进行过滤,例如,景津压滤机集团有限公司生产的厢式压滤机。所述过滤的条件可以在很大范围内改变,优选情况下,所述过滤的条件包括过滤的压力为0.4-1MPa,过滤的时间为1-3小时。
但是,本发明的发明人发现,使用普通的厢式压滤机对木薯发酵制备乙醇的废液进行过滤时,废液进入压滤机的厢式滤板之间,固体颗粒被滤板的过滤介质截留在滤板之间的空间内,液体则通过过滤介质,由出孔排出压滤机外,随着过滤过程的延续,固体产物的厚度逐渐增加,脱水的阻力随之成倍增大,从而导致处理量的急剧下降,并且由于厢式滤板本身性质的限制,过滤压力无法进一步的提高(一般在1MPa以下),从而无法进一步降低固体产物的含水量,后续烘干固体产物所需的能耗较高。
因此,优选情况下,所述固液分离是通过对所述废液进行过滤和压榨实现的。
根据本发明,可以使用各种设备对所述废液进行过滤和压榨,优选情况下,可以使用隔膜压滤机来进行过滤和压榨。
所述隔膜压滤机即具有与普通的厢式压滤机相同的过滤功能,又具有对固体产物进行压榨而使其再次脱水的功能,在隔膜压滤机中,普通的厢式滤板与隔膜滤板间隔排列,所述隔膜滤板的中间芯板与两侧隔膜压紧形成两个密封夹层,所述隔膜滤板的过滤功能与普通的厢式滤板相同,但增加了压榨功能,即,在过滤结束后将挤压介质从中间芯板入孔注入到密封层中,由于隔膜的弹性作用,能够对过滤后的固体产物进行鼓涨压榨,使固体产物再次脱水。
所述隔膜压滤机中普通的厢式滤板和隔膜滤板的数量可以根据废液的浓度进行调整,优选情况下,普通的厢式滤板的数量为50-60个,所述普通的厢式滤板可以通过商购得到,例如景津压滤机集团有限公司生产的厢式滤板;隔膜滤板的数量为50-60个,所述隔膜滤板可以通过商购得到,例如景津压滤机集团有限公司生产的1250型隔膜滤板;普通的厢式滤板与隔膜滤板间隔排列并且不同的厢式滤板的数量与隔膜滤板的数量之比为1∶1;符合上述要求的隔膜压滤机可以通过商购得到,例如,景津压滤机集团有限公司生产的XM AZG600/1500×2000UB K型号的隔膜压滤机。
本发明人发现,使用隔膜压滤机不但能够显著的降低压榨得到的固体产物的含水量,还能够大幅度的降低压榨去除的水中杂质的含量,减少了杂质对设备的磨损,降低了维护成本;并且去除的水中COD值也较低,减轻了环境压力。
本发明中,所述木薯发酵制备乙醇的废液是指通过木薯发酵来制备乙醇时,蒸馏出得到的乙醇以后,残留的固液混合物。
本发明中,所述过滤和压榨的条件可以在很大范围内改变,所述过滤和压榨的条件使得到的固体产物的含水量小于60重量%,优选情况下,所述过滤的条件包括过滤的压力为0.4-1MPa,过滤的时间为1-2小时;所述压榨的条件包括压榨的压力为10-25MPa,压榨的时间为0.2-1小时。
本发明中,所述压榨压力可以通过在隔膜压滤机中充入挤压介质来实现,所述挤压介质可以为隔膜压滤机常用的各种挤压介质,例如,所述挤压介质可以为压缩空气和/或水。
根据本发明的方法还包括将固液分离后得到的固体产物进行烘干,得到固体残渣,所述烘干的设备可以为各种常规的烘干设备,例如,沈阳远大公司生产的HZG系列烘干机和北京益民工贸有限公司生产的WJI-900B沸腾干燥机与XLS-100型闪蒸干燥机组合型烘干机。本发明中,所述烘干的条件可以为常规的烘干条件,例如,所述烘干的条件包括烘干温度为100-200℃,烘干时间为0.2-2小时;进一步优选为,烘干温度为120-150℃,烘干时间为0.5-1小时。
下面将通过实施例对本发明做进一步的具体描述。
实施例中所用的木薯原料为同一批收获的新鲜木薯,粗4-8厘米,长20-30厘米,含水量为约65重量%。
实施例1
本实施例用于说明本发明的采用木薯原料制备乙醇的方法。
(1)木薯原料的去皮及粉碎
如下制备如图1、2和3所示的去皮设备。
滚筒2从上到下包括第一段滚筒2a和第二段滚筒2b,第一段滚筒2a和第二段滚筒2b连通,第一段滚筒2a和第二段滚筒2b的长度分别为1.8米和1.6米;所述滚筒2由钢制成,内直径为1.6米;第一段滚筒2a的内壁上固定40条长度均为1.5米的热轧带肋钢筋(牌号为HRB335,公称直径为12毫米),各条热轧带肋钢筋与滚筒的中心轴线平行,各条热轧带肋钢筋沿滚筒内壁的圆周等间距地分布,相邻两条热轧带肋钢筋之间的圆周距离为0.125米;第二段滚筒2b的内壁上固定50条长度均为1.2米的热轧带肋钢筋(牌号为HRB500,公称直径为16毫米),各条热轧带肋钢筋与滚筒的中心轴线平行,各条热轧带肋钢筋沿滚筒内壁的圆周等间距地分布,相邻两条热轧带肋钢筋之间的圆周距离为0.1米;滚筒2倾斜地安装在机座1上,倾斜角度为5度。螺旋进给器3由橡胶制成,螺距为0.5米,螺纹高度为0.2米;螺旋进给器3通过紧固件8固定连接在滚筒2的内壁上。驱动装置包括电动机、传动链和链轮6;链轮6固定在滚筒2上,传动链将电动机的动力传递给链轮,电动机的功率为5.5千瓦。
启动电动机,使滚筒2和螺旋进给器3绕滚筒的中心轴转动(转速为7转/分钟);将收获的100千克表面干净的新鲜木薯连续通过进料口4加入到滚筒2中,去皮后的木薯从出料口5排出,收集得到96千克去皮后的木薯原料。
将该96千克木薯原料清洗后切成1厘米左右厚的圆片,然后用SFSP系列锤片式粉碎机对去皮后的木薯片进行粉碎,所述粉碎的方法包括先将去皮后的木薯进行粉碎,得到平均颗粒直径为6毫米(使用美国PPS公司的AccuSizerTM 780光学粒径检测仪测得)的96千克粉碎产物。
取20克上述粉碎产物,利用美国国家环保局标准检测方法EPA335.3检测其中的氰化物含量,记做C1。
将去皮前的表面干净的新鲜木薯粉碎(平均颗粒直径为0.8mm)成浆料,从得到的浆料中取20克,加入180克蒸馏水,制得待检测的样品,利用美国国家环保局标准检测方法EPA335.3检测其中的氰化物含量,记做C2。
通过下式计算去皮后氰化物的去除率:
ε2=(C2-0.96C1)/C2×100%
计算的氰化物去除率为76%。
(2)酶解
将步骤(1)的粉碎产物与35千克水混合,调节pH值至5,加热至80℃后,以每克粉碎产物的干重计,加入20酶活力单位的α-淀粉酶(诺维信公司购得),并在80℃下保温酶解60分钟后得到酶解产物。
(3)发酵并分离乙醇
使酶解产物的温度降至33℃,以每克酶解产物的重量计,接种105菌落形成单位的酒精酵母(安琪超级酿酒高活性干酵母,湖北安琪酵母股份公司),所得混合物在33℃下于发酵罐中搅拌培养65小时,在100℃蒸馏所得发酵产物,所得蒸馏馏分在78.3℃下二次蒸馏可得乙醇13.9千克。按照下式计算乙醇产率:
乙醇产率=100%×乙醇重量/木薯原料的鲜重
计算得到乙醇产率为13.9%。
(4)将发酵罐中的薯类原料发酵制备乙醇的废液从发酵罐中取出,用水冲洗发酵罐,将取出的废液和冲洗后的水混合。
将15批次上述发酵的废液混合,通过水份测定仪(上海精密科学仪器有限公司,SH-10A)检测该混合废液中的含水量为95重量%。在100吨上述混合废液中加入10千克的海藻酸丙二醇酯(青岛明月海藻集团有限公司,相对分子量为40000),之后将废液加入到厢式压滤机(景津压滤机集团有限公司)中,压滤机被充满之后进行过滤,所述厢式压滤机中,普通的厢式滤板(景津压滤机集团有限公司,厢式滤板)的数量为100个,所述过滤的条件包括过滤的压力为0.8MPa,过滤的时间为2小时,得到含水量为75重量%的固体产物A1,固液分离所需的时间以及单位时间内的废液处理量(单台)如表1所示。
对比例1
该对比例用于说明现有的采用木薯原料制备乙醇的方法。
按照实施例1的方法制备乙醇,制得12.6千克乙醇,不同的是,在步骤(1)中采用人工去皮的方法用刀将木薯原料的内表皮刮去,收集得到96千克去皮后的木薯原料。按照与实施例1相同的方法计算乙醇产率为12.6%。按照与实施例1相同的方法测定去皮前后的氰化物含量,并计算氰化物去除率为62%。
此外,根据与实施例1相同的方法对木薯发酵制备乙醇的废液进行过滤,不同的是没有加入海藻酸丙二醇酯,得到含水量为75重量%的参比固体产物CA1,固液分离所需的时间以及单位时间内的废液处理量(单台)如表1所示。
从上述实施例1和对比例1的结果可以看出,实施例1中乙醇产率为13.9%,对比例1中乙醇产率为12.6%,与对比例1相比,实施例1中的乙醇产率提高了10.3%;从氰化物去除率来看,实施例1的氰化物去除率为76%,对比例1的氰化物去除率仅为62%,说明采用本发明提供的去皮设备可以极大地提高乙醇的产率。
实施例2
本实施例用于说明本发明的采用木薯原料制备乙醇的方法。
按照实施例1的方法制备乙醇,不同的是,在步骤(4)中:将发酵罐中的薯类原料发酵制备乙醇的废液从发酵罐中取出,用水冲洗发酵罐,将取出的废液和冲洗后的水混合。
将15批次上述发酵的废液混合,通过水份测定仪(上海精密科学仪器有限公司,SH-10A)检测该混合废液中的含水量为95重量%。在100吨上述混合废液中加入20千克的海藻酸钠(青岛南洋海藻工业有限公司,相对分子量为80000),之后将废液加入到厢式压滤机(景津压滤机集团有限公司)中,压滤机被充满之后进行过滤,所述厢式压滤机中,普通的厢式滤板(景津压滤机集团有限公司,厢式滤板)的数量为100个,所述过滤的条件包括过滤的压力为0.8MPa,过滤的时间为1.8小时,得到含水量为75重量%的固体产物A2,固液分离所需的时间以及单位时间内的废液处理量(单台)如表1所示。
表1
实施例编号 | 固体产物编号 | 固体产物含水量 | 固液分离耗时 | 处理量(吨/小时) |
实施例1 | A1 | 75重量% | 2小时 | 42 |
对比例1 | CA1 | 75重量% | 4.5小时 | 18.7 |
实施例2 | A2 | 75重量% | 1.8小时 | 46.7 |
从上表1可以看出,本发明提供的从木薯发酵制备乙醇的废液中回收固体残渣的方法,显著地缩短了固液分离的时间,在无需增加新设备的情况下显著地提高了单位时间内废液的处理量,从而解决了导致木薯发酵制备乙醇的装置的运行负荷较低的瓶颈,提高了木薯发酵制备乙醇的装置的生产能力。
实施例3
本实施例用于说明本发明的采用木薯原料制备乙醇的方法。
按照实施例1的方法制备乙醇,不同的是,在步骤(4)中:将发酵罐中的薯类原料发酵制备乙醇的废液从发酵罐中取出,用水冲洗发酵罐,将取出的废液和冲洗后的水混合。
将15批次上述发酵的废液混合,通过水份测定仪(上海精密科学仪器有限公司,SH-10A)检测该混合废液中的含水量为95重量%。在100吨上述混合废液中加入10千克的海藻酸铵(邯郸市海洋药用海藻制品有限公司,相对分子量为100000)和10千克的海藻酸丙二醇酯(青岛明月海藻集团有限公司,相对分子量为50000),之后将废液加入到厢式压滤机(景津压滤机集团有限公司)中,压滤机被充满之后进行过滤,所述厢式压滤机中,普通的厢式滤板(景津压滤机集团有限公司,厢式滤板)的数量为100个,所述过滤的条件包括过滤的压力为0.8MPa,过滤的时间为1.8小时,得到固体产物A3。
通过水份测定仪(上海精密科学仪器有限公司,SH-10A)检测固体产物A3的含水量,结果如表2所示。
将得到的固体产物A3放入到气流滚筒型烘干机中(郑州万谷机械有限公司,JB/T10279-2001)进行烘干,烘干的温度为180℃,得到固体残渣,通过水份测定仪(上海精密科学仪器有限公司,SH-10A)检测固体残渣的含水量,固体残渣的含水量和烘干的能耗如表2所示。
所述能耗是指烘干除去1千克的水所消耗的煤,单位为千克/千克。
实施例4
本实施例用于说明本发明的采用木薯原料制备乙醇的方法。
按照实施例1的方法制备乙醇,不同的是,在步骤(4)中:根据与实施例3相同的方法对木薯发酵制备乙醇的废液进行过滤,不同的是将废液加入到隔膜压滤机(景津压滤机集团有限公司,XM AZG600/1500×2000UB K)中进行固液分离,所述隔膜压滤机中,用50个隔膜滤板(景津压滤机集团有限公司,1250型)替换50个普通的厢式滤板(景津压滤机集团有限公司,厢式滤板),并且普通的厢式滤板与隔膜滤板间隔排列;所述过滤的条件包括过滤的压力为0.8MPa,过滤的时间为1小时;之后在隔膜滤板中充入挤压介质空气,对过滤后的固体产物进行压榨,所述压榨的压力为10MPa,压榨的时间为0.8小时,得到固体产物A4。
通过水份测定仪(上海精密科学仪器有限公司,SH-10A)检测固体产物A4的含水量,结果如表2所示。
将得到的固体产物A4放入到气流滚筒型烘干机中(郑州万谷机械有限公司,JB/T10279-2001)进行烘干,烘干的温度为120℃,得到固体残渣,通过水份测定仪(上海精密科学仪器有限公司,SH-10A)检测固体残渣的含水量,固体残渣的含水量和烘干的能耗如表2所示。
所述能耗是指烘干除去1千克的水所消耗的煤,单位为千克/千克。
表2
实施例编号 | 固体产物含水量(重量%) | 固体残渣含水量(重量%) | 能耗(千克/千克) |
实施例3 | 74重量% | 10重量% | 0.31 |
实施例4 | 55重量% | 10重量% | 0.12 |
从上表2可以看出,本发明实施例4得到的固体产物A4的含水量为55重量%,而实施例3得到的固体产物A3的含水量则高达74重量%,说明通过使用隔膜压滤机对废液进行过滤和压榨能够显著地降低得到的固体产物的含水量,并且实施例4与实施例3相比,烘干所需的能耗大幅度的减少,说明说明通过使用隔膜压滤机对废液进行过滤和压榨能够大幅度的降低回收固体残渣所需的能耗。
Claims (21)
1、一种利用薯类原料制备乙醇的方法,该方法包括将薯类原料去皮,将去皮后的薯类原料粉碎,将粉碎后的产物与酶混合、酶解,得到酶解产物;发酵该酶解产物,从发酵产物中分离乙醇,然后对废液进行固液分离,其特征在于,在对废液进行固液分离之前在废液中加入水溶性海藻酸酯和/或水溶性海藻酸盐。
2、根据权利要求1所述的方法,其中,相对于1000重量份的废液,所述水溶性海藻酸酯和/或水溶性海藻酸盐的用量为0.05-1重量份。
3、根据权利要求2所述的方法,其中,相对于1000重量份的废液,所述水溶性海藻酸酯和/或水溶性海藻酸盐的用量为0.1-0.5重量份。
4、根据权利要求1-3中的任意一项所述的方法,其中,在对废液进行固液分离之前在废液中加入水溶性海藻酸酯和水溶性海藻酸盐,相对于100重量份的水溶性海藻酸酯,所述水溶性海藻酸盐的加入量为10-1000重量份。
5、根据权利要求4所述的方法,其中,相对于100重量份的水溶性海藻酸酯,所述水溶性海藻酸盐的加入量为40-300重量份。
6、根据权利要求1-3中的任意一项所述的方法,其中,所述水溶性海藻酸盐的相对分子量为30000-200000,所述水溶性海藻酸盐选自海藻酸钠、海藻酸钾和海藻酸铵中的一种或几种,所述水溶性海藻酸酯的相对分子量为30000-200000,所述水溶性海藻酸酯为海藻酸丙二醇酯。
7、根据权利要求1所述的方法,其中,所述固液分离是通过对所述废液进行过滤和压榨实现的。
8、根据权利要求7所述的方法,其中,所述过滤和压榨是通过隔膜压滤机实现的,所述过滤的条件和所述压榨的条件使得到的固体产物的含水量小于60重量%。
9、根据权利要求8所述的方法,其中,所述过滤的条件包括过滤的压力为0.4-1MPa,过滤的时间为1-2小时;所述压榨的条件包括压榨的压力为10-25MPa,压榨的时间为0.2-1小时。
10、根据权利要求1所述的方法,其中,所述烘干的条件包括烘干温度为100-200℃,烘干时间为0.2-2小时。
11、根据权利要求1所述的方法,其中,所述将薯类原料去皮的方法使用一种薯类去皮设备,该薯类去皮设备包括机座(1)、滚筒(2)、螺旋式进给器(3)和驱动装置,滚筒(2)可转动地安装在机座(1)上,滚筒(2)具有进料口(4)和出料口(5),所述螺旋进给器(3)位于滚筒(2)中并与滚筒的内壁固定连接,所述驱动装置用于驱动滚筒(2)和螺旋进给器(3)一起转动;该薯类原料去皮的方法包括将薯类原料通过所述进料口(4)放入到所述滚筒(2)中,利用所述驱动装置驱动滚筒(2)和螺旋进给器(3)一起转动。
12、根据权利要求11所述的方法,其中,所述滚筒(2)的内壁上具有摩擦结构。
13、根据权利要求12所述的方法,其中,所述摩擦结构为一条或多条带肋钢筋。
14、根据权利要求13所述的方法,其中,所述带肋钢筋与滚筒(2)的中心轴线平行。
15、根据权利要求11所述的方法,其中,所述滚筒(2)的倾斜角度为0-15度,长度为2-10米;滚筒(2)和螺旋进给器(3)的转动速度为2-50转/分钟。
16、根据权利要求11或15所述的方法,其中,所述螺旋进给器(3)的螺距为0.3-0.8米,螺纹高度为0.1-0.4米。
17、根据权利要求11所述的方法,其中,所述驱动装置包括驱动源、传动链和链轮(6),链轮(6)固定在滚筒(2)上,传动链将驱动源的动力传递给链轮。
18、根据权利要求1所述的方法,其中,粉碎后的产物的平均颗粒直径为1.5-10毫米。
19、根据权利要求1所述的方法,其中,所述酶解使用的酶包括淀粉酶,以每克薯类原料的干重计,所述淀粉酶的用量为4-50酶活力单位;所述酶解的温度为50-90℃,所述酶解的时间为20-240分钟,所述酶解的pH值为5-6。
20、根据权利要求19所述的方法,其中,所述淀粉酶为α-淀粉酶、糖化酶、转移葡萄糖苷酶和磷酸酯酶中的一种或几种。
21、根据权利要求1所述的方法,其中,以每克酶解产物计,所述发酵所使用的酵母的接种量为103-108菌落形成单位,所述发酵的温度为30-33℃,发酵的时间为50-75小时。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2008102228248A CN101676398B (zh) | 2008-09-19 | 2008-09-19 | 利用薯类原料制备乙醇的方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2008102228248A CN101676398B (zh) | 2008-09-19 | 2008-09-19 | 利用薯类原料制备乙醇的方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101676398A true CN101676398A (zh) | 2010-03-24 |
CN101676398B CN101676398B (zh) | 2011-11-30 |
Family
ID=42029106
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2008102228248A Active CN101676398B (zh) | 2008-09-19 | 2008-09-19 | 利用薯类原料制备乙醇的方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN101676398B (zh) |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1504576A (zh) * | 2002-12-02 | 2004-06-16 | 任文利 | 酒精发酵工艺 |
CN1224715C (zh) * | 2003-06-17 | 2005-10-26 | 广州市华达生化技术装备有限公司 | 清液发酵生产酒精的方法 |
CN100478445C (zh) * | 2006-11-10 | 2009-04-15 | 江南大学 | 以薯类为主原料的酒精环形生产工艺 |
-
2008
- 2008-09-19 CN CN2008102228248A patent/CN101676398B/zh active Active
Also Published As
Publication number | Publication date |
---|---|
CN101676398B (zh) | 2011-11-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Hargreaves et al. | Production of ethanol 3G from Kappaphycus alvarezii: evaluation of different process strategies | |
US4321328A (en) | Process for making ethanol and fuel product | |
CN101155928B (zh) | 另选原料流在生物质处理和利用中的整合 | |
CN103210090B (zh) | 改进纤维素在高稠度系统中的水解的方法 | |
CN101186943B (zh) | 利用作物秸秆生产乙醇的方法 | |
CN103254320B (zh) | 酶法生产玉米淀粉的方法 | |
CN101835804A (zh) | 生物质处理方法 | |
CN100489108C (zh) | 采用薯类原料制备乙醇的方法 | |
CN101802165A (zh) | 生物质处理设备 | |
CN101802299A (zh) | 改善的生物质预处理 | |
CN101487025B (zh) | 采用薯类原料制备乙醇的方法 | |
CN104774877A (zh) | 一种木质纤维素生物质联产乙醇、丙酮和丁醇的方法 | |
CN101487027B (zh) | 一种采用薯类原料制备乙醇的方法 | |
CN101676393B (zh) | 采用薯类原料制备乙醇的方法 | |
CN101487024B (zh) | 利用薯类原料制备乙醇的方法 | |
CN101676397B (zh) | 采用薯类原料制备乙醇的方法 | |
CN101289675B (zh) | 利用薯类原料制备乙醇的方法 | |
CN101676395B (zh) | 采用薯类原料制备乙醇的方法 | |
CN101676398B (zh) | 利用薯类原料制备乙醇的方法 | |
CN101676396B (zh) | 一种采用薯类原料制备乙醇的方法 | |
CN101586123B (zh) | 采用薯类原料制备乙醇的方法 | |
CN101676394B (zh) | 一种采用薯类原料制备乙醇的方法 | |
CN101487026B (zh) | 一种采用薯类原料制备乙醇的方法 | |
CN101586125B (zh) | 采用薯类原料制备乙醇的方法 | |
CN101988077A (zh) | 一种采用薯类原料制备乙醇的方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant |