CN101660547B - Pneumatic artificial muscle-based method for vibration drive - Google Patents

Pneumatic artificial muscle-based method for vibration drive Download PDF

Info

Publication number
CN101660547B
CN101660547B CN2008100178831A CN200810017883A CN101660547B CN 101660547 B CN101660547 B CN 101660547B CN 2008100178831 A CN2008100178831 A CN 2008100178831A CN 200810017883 A CN200810017883 A CN 200810017883A CN 101660547 B CN101660547 B CN 101660547B
Authority
CN
China
Prior art keywords
pneumatic artificial
artificial muscle
frequency
drive system
amplitude
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN2008100178831A
Other languages
Chinese (zh)
Other versions
CN101660547A (en
Inventor
刘吉轩
何国昆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian Jiaotong University
Original Assignee
Xian Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian Jiaotong University filed Critical Xian Jiaotong University
Priority to CN2008100178831A priority Critical patent/CN101660547B/en
Publication of CN101660547A publication Critical patent/CN101660547A/en
Application granted granted Critical
Publication of CN101660547B publication Critical patent/CN101660547B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

The invention discloses a pneumatic artificial muscle-based method for vibration drive, which comprises: firstly, according to the actual engineering needs, putting forward requirements on driving frequency, vibration amplitude and driving forces, wherein the frequency is required to be 0 to 25Hz, the vibration amplitude is 20 percent of the length of pneumatic artificial muscles, and the driving force ranges from 0 to 4,000N; and secondly, inversely working out control variables including air supply source pressure, drive frequency and duty ratio according to characteristic formulae (1) and (2) of the vibration amplitude and driving force of the pneumatic artificial muscles. The method is smooth in vibration movement, high in energy exchange rate, free from pollution generation and adjustable in vibration amplitude and frequency, thereby meeting some actual special requirements of engineering on vibration drive methods.

Description

Method for vibration drive based on Pneumatic artificial muscle
Technical field
The invention belongs to method for vibration drive, particularly based on the method for vibration drive of Pneumatic artificial muscle.
Background technique
Method for vibration drive commonly used at present has inertia-type, electromagnetism or electrodynamic type, hydraulic cylinder piston formula, cylinder piston type.Wherein the inertia-type method for vibration drive be the unbalanced force that in turning course, produces by the eccentric inertial mass of band as vibratory drive power, the deficiency that this method for vibration drive exists is that physical dimension is generally big, energy consumption is big, the exciting amplitude is difficult to change; The electromagnetic type method for vibration drive is made up of iron core, electromagnetic coil, armature and spring etc.; The electrodynamic type method for vibration drive is made up of magnet ring, central magnetic pole and the moving coil etc. that is connected with Ac, and the deficiency that electromagnetic type and electrodynamic type exist is that structure is complicated, low frequency characteristic is poor, cost of production and maintenance cost are higher relatively; Hydraulic cylinder piston formula method for vibration drive mainly is made up of oil hydraulic cylinder, piston, electrohydraulic control, hydraulic oil source etc., the deficiency of existence be hydraulic oil source must be arranged, oil pollution is arranged, physical dimension is big, cost is higher; The cylinder piston type method for vibration drive mainly is made up of cylinder, solenoid valve, source of compressed air etc., and the deficiency of existence is that the air cylinder structure that needs is complicated, cost is also higher, the system responses frequency is low, cylinder is easy to generate and creeps etc. when low frequency.
Summary of the invention
It is not enough to the objective of the invention is to overcome above-mentioned existing technology; A kind of method for vibration drive based on Pneumatic artificial muscle is provided; This method smooth in vibration movement, energy conversion rate be high, do not produce pollution, amplitude and frequency adjustable, thereby satisfy in the middle of the engineering reality some specific (special) requirements to method for vibration drive.
Technological scheme of the present invention is achieved in that
Based on the method for vibration drive of Pneumatic artificial muscle, carry out according to the following steps:
1) propose driver frequency, amplitude and driving force requirement according to actual demands of engineering, frequency is 0~25Hz; Amplitude is 20% of a Pneumatic artificial muscle length; The driving force scope is 0~4000N.
2) according to Pneumatic artificial muscle amplitude and the anti-controlled quentity controlled variable of obtaining of driving force characteristic formula (1) (2), i.e. bleed pressure, driver frequency and dutycycle.
According to Pneumatic artificial muscle characteristic and system principle, based on the amplitude of the vibratory drive system of Pneumatic artificial muscle according to computes:
dP dt = kRT Q m t V - kP V dx dt A q m = λ Q m / f M d 2 x dt 2 = F - F 1 - F f 1 - - - ( 1 )
In the formula:
P---Pneumatic artificial muscle cavity pressure/Pa;
V---Pneumatic artificial muscle chamber internal volume/m 3
A---Pneumatic artificial muscle equivalent action area/m 2
Q m---get into the mass flow rate/kg in the Pneumatic artificial muscle chamber;
T---gas kelvin temperature/degree;
K---gas adiabatic exponent, k=1.4;
R---gas constant, R=287.1J/kgK;
F---the frequency/Hz of PLC output pulse signal, f=1/T;
λ---pulse duty factor;
X---the amplitude/mm of vibratory drive system;
q m---get into the gaseous mass/kg in the Pneumatic artificial muscle chamber in one-period;
M---the equivalent mass/kg of vibratory drive system;
F---the ouput force/N of vibratory drive system;
F F1---outside frictional force/N;
F 1---external loading power/N.
Can be by computes based on the vibratory drive system drive power of Pneumatic artificial muscle:
F=F lX+F f+F v+F Z (2)
In the formula
F 1X---the desirable ouput force/N of vibratory drive system;
F f---the frictional force/N of vibratory drive system;
F v---the elastic-restoring force/N of vibratory drive system;
F Z---the damping force/N of vibratory drive system.
The present invention adopts PLC and high-speed switch valve to come controlling and driving frequency and dutycycle, adopts pressure regulator valve to regulate bleed pressure.
Technique effect of the present invention is:
1. because the Pneumatic artificial muscle working medium is a pressurized air, so be particularly suitable for should be in hazmat production occasion for this driving mode, and environmentally safe;
2. because the Pneumatic artificial muscle low frequency characteristic is better, be applicable to, and common method for driving is difficult to satisfy so low frequency requirement as low frequency and ultralow frequency (greatly about 0.1Hz-25Hz) oscillatory drive.
Description of drawings
Fig. 1 is an implementation system schematic representation of the present invention;
Fig. 2 is drive controlling method figure of the present invention;
Fig. 3 is a middle controller fundamental diagram of the present invention.
Below in conjunction with accompanying drawing content of the present invention is done further explain.
Embodiment
Shown in accompanying drawing 1, source of the gas 1 is connected with dividing air parcel 2, divides air parcel 2 to link to each other with gas holder 3; Divide air parcel 2 to connect air pressure regulator 4; Air pressure regulator 4 connects pneumatic control valve 5, and pneumatic control valve 5 connects controller 6, and pneumatic control valve 5 links to each other with Pneumatic artificial muscle 7; Pneumatic artificial muscle 7 connects oscillating body 8, and oscillating body 8 is connected with pedestal through elastic element 9.
System of the present invention comprises source of the gas (air compressor) 1; And system's executive component Pneumatic artificial muscle 7; Pressurized air gets into the Pneumatic artificial muscle inner chamber through air pressure regulator 4, pneumatic control valve 5 backs; The generation radial expansion of Pneumatic artificial muscle 7 alternation under compressed-air actuated effect and axial stretching distortion, thus the excitation force that produces alternation drives the vibration main body.Pneumatic control valve 5 adopts pneumatic high-speed switch valve or proportional pressure valve; Pneumatic artificial muscle 7 is one section rubber fabric pipe and bolts at two ends joint link structure of being wrapped in the specialty fibers grid; Pressure stability when gas holder 3 is used to keep system works; The dynamic alternation control signal of controller 6 outputs is used to control the opening state of pneumatic high-speed switch valve, and then the control gaseous flow, and elastic element 9 is a spring fastenings.Each pneumatic element is to connect through tracheae.
With reference to accompanying drawing 2, switch valve is realized switch motion under the effect of a series of pulse electrical signals, thus the air displacement of control switch valve.Pulse width modulator with control signal and the carrier signal of input relatively after, the cycle of being converted into is the pulse-width signal of T.Control signal through with PLC output compares with a series of sawtooth signals of making carrier wave of being exported by PLC simultaneously, if at a time the value of control signal is greater than the value of sawtooth wave, then requires valve to open, otherwise requires valve to close.Obtain a series of control commands subsequently, these a series of control commands are applied on the coil of valve, open, have flow q to pass through, then do not have flow in remaining time and pass through at the time valve path that control command voltage is arranged.Pneumatic control valve adopts pulse length modulation principle to control its mean flowrate, available formula q=C dA λ (2 p/ ρ) 1/2The output flow of representing this time internal valve, C in the formula dThe expression flow coefficient, A representes the opening area of valve port, λ express time T OnWith the ratio of time T, pThe expression draught head, ρ representes air density.Here the flow q of high-speed switch valve is directly proportional with pulse duty cycle λ, and pulse duty cycle λ is big more, and the mean flowrate that gets in the Pneumatic artificial muscle chamber through high-speed switch valve is big more, and the amplitude of vibratory drive system is just big more.
Through drive system shown in the accompanying drawing 1, the realization frequency of okperation is that 10Hz, amplitude 5mm, driving force 750N and frequency of okperation are that 10Hz, amplitude are that 12mm, driving force are two groups of vibrations of 620N.
Obtain the controlled quentity controlled variable of above two groups of vibrations according to formula (1) (2): bleed pressure is 0.4MPa; Pulse interval is 100ms; Dutycycle gets 50% and 10% respectively.
Method for driving of the present invention adopts the opening state of PLC control pneumatic on-off valve, and then the control gaseous flow.Through the pulse signal that the PLC output pulse width can be modulated, following relation is satisfied in the pulse of output: the pulse interval is 1/f=100ms; Dutycycle λ=T ON/ T should get 10% and 50% respectively.When the vibration system amplitude when requiring amplitude, can increase high level time, bigger dutycycle just is set, when amplitude when requiring amplitude, then can reduce duty and recently meet the demands.
Though the present invention with embodiment's elaboration preferably as above, yet be not that any vibratory drive based on Pneumatic artificial muscle is 0~25Hz satisfying frequency in order to qualification the present invention, amplitude is 20% of a Pneumatic artificial muscle length; When being 0~4000N, driving force can adopt the inventive method to realize.

Claims (1)

1. based on the method for vibration drive of Pneumatic artificial muscle, it is characterized in that, carry out according to the following steps:
1) propose driver frequency, amplitude and driving force requirement according to actual demands of engineering, frequency is 0~25Hz; Amplitude is 20% of a Pneumatic artificial muscle length; The driving force scope is 0~4000N,
2) according to Pneumatic artificial muscle amplitude and the anti-controlled quentity controlled variable of obtaining of driving force characteristic formula (1) (2), i.e. the frequency of bleed pressure, PLC output pulse signal, i.e. driver frequency and dutycycle,
According to Pneumatic artificial muscle characteristic and system principle, based on the amplitude of the vibratory drive system of Pneumatic artificial muscle according to computes:
Figure FSB00000649061200011
In the formula:
The suction pressure of P---Pneumatic artificial muscle, i.e. bleed pressure/Pa;
V---Pneumatic artificial muscle chamber internal volume/m 3
A---Pneumatic artificial muscle equivalent action area/m 2
Q m---get into the mass flow rate/kg in the Pneumatic artificial muscle chamber;
T---gas kelvin temperature/degree;
K---gas adiabatic exponent, k=1.4;
R---gas constant, R=287.1J/kgK;
F---the frequency of PLC output pulse signal, i.e. driver frequency, f=1/T;
λ---pulse duty factor;
X---the amplitude/mm of vibratory drive system;
q m---get into the gaseous mass/kg in the Pneumatic artificial muscle chamber in one-period;
M---the equivalent mass/kg of vibratory drive system;
F---the ouput force of vibratory drive system, i.e. driving force/N;
F F1---outside frictional force/N;
F 1---external loading power/N,
Can be by computes based on the vibratory drive system drive power of Pneumatic artificial muscle:
F=F lX+F f+F v+F Z (2)
In the formula
F LX---the desirable ouput force/N of vibratory drive system;
F f---the frictional force/N of vibratory drive system;
F v---the elastic-restoring force/N of vibratory drive system;
F Z---the damping force/N of vibratory drive system,
3) based on the method for vibration drive of Pneumatic artificial muscle, adopt PLC and high-speed switch valve to realize controlling and driving frequency and dutycycle, adopt pressure regulator valve to regulate bleed pressure.
CN2008100178831A 2008-04-03 2008-04-03 Pneumatic artificial muscle-based method for vibration drive Expired - Fee Related CN101660547B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2008100178831A CN101660547B (en) 2008-04-03 2008-04-03 Pneumatic artificial muscle-based method for vibration drive

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2008100178831A CN101660547B (en) 2008-04-03 2008-04-03 Pneumatic artificial muscle-based method for vibration drive

Publications (2)

Publication Number Publication Date
CN101660547A CN101660547A (en) 2010-03-03
CN101660547B true CN101660547B (en) 2012-03-28

Family

ID=41788763

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2008100178831A Expired - Fee Related CN101660547B (en) 2008-04-03 2008-04-03 Pneumatic artificial muscle-based method for vibration drive

Country Status (1)

Country Link
CN (1) CN101660547B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102829009B (en) * 2012-09-13 2015-01-21 大连海事大学 Hydraulic artificial muscle hydraulic drive and control system
CN109188959A (en) * 2018-08-23 2019-01-11 东北大学 A kind of high-speed switch valve pneumatic muscles drive system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6168634B1 (en) * 1999-03-25 2001-01-02 Geoffrey W. Schmitz Hydraulically energized magnetorheological replicant muscle tissue and a system and a method for using and controlling same
CN1811201A (en) * 2006-01-10 2006-08-02 江南大学 Serial composite gas-liquid drive system
GB2435308A (en) * 2006-02-18 2007-08-22 Shadow Robot Company Ltd Braided sheath air muscle with substantially fixed perimeter bladder
CN101045300A (en) * 2006-03-31 2007-10-03 北京理工大学 Human imitating clever hands driven by artificial pneumatic muscle
CN201002071Y (en) * 2007-02-01 2008-01-09 西安交通大学 Pneumatic artificial muscle drive type vibration exciter

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6168634B1 (en) * 1999-03-25 2001-01-02 Geoffrey W. Schmitz Hydraulically energized magnetorheological replicant muscle tissue and a system and a method for using and controlling same
CN1811201A (en) * 2006-01-10 2006-08-02 江南大学 Serial composite gas-liquid drive system
GB2435308A (en) * 2006-02-18 2007-08-22 Shadow Robot Company Ltd Braided sheath air muscle with substantially fixed perimeter bladder
CN101045300A (en) * 2006-03-31 2007-10-03 北京理工大学 Human imitating clever hands driven by artificial pneumatic muscle
CN201002071Y (en) * 2007-02-01 2008-01-09 西安交通大学 Pneumatic artificial muscle drive type vibration exciter

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
何国昆,刘吉轩,张振营.气动人工肌肉的动态驱动特性研究.《西安交通大学学报》.西安交通大学,2008,第42卷(第5期),588-591. *

Also Published As

Publication number Publication date
CN101660547A (en) 2010-03-03

Similar Documents

Publication Publication Date Title
CA1104354A (en) Free-piston regenerative hot gas hydraulic engine
CN101660547B (en) Pneumatic artificial muscle-based method for vibration drive
CN104165204A (en) Energy feedback type damper combining piezoelectric ceramic and magnetorheological fluid
CN203297461U (en) Hydro-pneumatic spring with variable parameters
CN203657998U (en) A combined vibration test apparatus
CN204025500U (en) The energy damper of piezoelectric constant and magnetic flow liquid combination
CN101160457A (en) Exhaust valve assembly for a large two-stroke diesel engine
CN201002071Y (en) Pneumatic artificial muscle drive type vibration exciter
CN104897493A (en) Low-temperature pressure cycle life testing method and system
US11078792B2 (en) Control signals for free-piston engines
CN100507284C (en) Serial composite gas-liquid drive system
CN102066012B (en) Apparatus and method for vibratory testing
CN202124956U (en) Active variable stiffness control device for restraining inhaul cable from vibrating
CN2900921Y (en) Magnetic flux damper and magnetic rheological pneumatic servo system
CN102042194B (en) Thermocompressor driven by linear motors
CN106601223A (en) Device of realizing adjustable sound absorption performance based on magnetorheological effect
CN105737430A (en) Impedance-adjustable type refrigerating machine
CN100458189C (en) Controller for profile of shock wave
CN109708838A (en) A kind of crank connecting link double-cylinder hydraulic hf and hv pulse impact test apparatus and method
KR101133674B1 (en) Variable liquid-column oscillator using wave energy
Gupta et al. Displacement control of an electro-hydraulic actuator using proportional solenoid valve
Shi et al. Study on the dynamics of local pressure boosting pneumatic system
CN201679800U (en) Novel numerical control electrohydraulic servo mechanism
Reichert et al. New concepts and design of high response hydraulic valves using piezo-technology
CN101353981A (en) Direct-action power generation system with speedup spring forced vibration

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20120328

Termination date: 20150403

EXPY Termination of patent right or utility model