CN101658954A - 基于图像传感的钢坯剪切装置及其剪切方法 - Google Patents

基于图像传感的钢坯剪切装置及其剪切方法 Download PDF

Info

Publication number
CN101658954A
CN101658954A CN200910195433A CN200910195433A CN101658954A CN 101658954 A CN101658954 A CN 101658954A CN 200910195433 A CN200910195433 A CN 200910195433A CN 200910195433 A CN200910195433 A CN 200910195433A CN 101658954 A CN101658954 A CN 101658954A
Authority
CN
China
Prior art keywords
steel billet
line
head
coordinate
shear
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN200910195433A
Other languages
English (en)
Other versions
CN101658954B (zh
Inventor
张秀彬
应俊豪
焦东升
钱斐斐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Jiaotong University
Original Assignee
Shanghai Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Jiaotong University filed Critical Shanghai Jiaotong University
Priority to CN2009101954336A priority Critical patent/CN101658954B/zh
Publication of CN101658954A publication Critical patent/CN101658954A/zh
Application granted granted Critical
Publication of CN101658954B publication Critical patent/CN101658954B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Image Analysis (AREA)

Abstract

一种基于图像传感的钢坯剪切装置及其剪切方法,包括:两个CCD图像传感器、图像处理模块、图像识别模块和驱动模块,通过设置坐标系;实时采集图像;钢坯轮廓线提取;钢坯头尾部识别;钢坯头尾部最优剪切线的确定以及获得待剪切钢坯的头部端点与剪切机剪切刀口的距离和控制剪切机的剪切时刻。本发明通过上述步骤的图像采集、处理和识别运算,最终能够正确识别钢坯头、尾部的最优剪切线;根据最优剪切线的坐标信息准确地控制剪切机伺服机构的操作,因此获得热轧生产线上钢坯剪切的最好节能、节材效果。

Description

基于图像传感的钢坯剪切装置及其剪切方法
技术领域
本发明涉及的是一种机械设备技术领域的剪切装置及其剪切方法,具体是一种基于图像传感的钢坯剪切装置及其剪切方法。
背景技术
钢厂热连轧剪切是连轧过程中的重要环节,目的是要将钢坯的头部和尾部所出现的曲边予以切除,使整体钢坯呈现近似矩形的带状体。如何实现剪切优化直接关系到节约材料、能源和提高企业经济效益的技术问题。具体就是要解决热扎机上的钢坯头、尾部的最优剪切问题。
经对现有技术文献的检索发现,谭汉松等的论文“板材最优切割算法的设计与实现”(《计算机工程与应用》2003年第18期)针对在工厂生产或加工过程中,常需要将大块矩形板材(如钢板、玻璃、印刷电路板、装饰板、包装纸等)切割成各种形状的小板材,提出从计算机技术的角度出发,采用回溯法将原本复杂的问题转换成几个子问题,并找出递归结束条件;用递归的程序设计方法求出所有的切割方案,记录下最优的切割方案。但是,该文所描述的技术方法仅仅是针对“大块矩形板材”切割成“各种形状的小板材”的算法研究,边界条件复杂,运算量大、时间长,根本无法被直接引用于钢坯的头部和尾部的在线实时最优剪切。
又经检索还发现,孟繁祯等的论文“用遗传算法求解最优切割方法”(《应用科学学报》2000年第3期)也是针对采用尽可能少的原材料规划出尽可能多的产品,使剩下的不能再用的废料最少提出自己的技术算法,即解决合理下料问题。该文献同样存在边界条件复杂,运算量大、时间长,根本无法被直接引用于钢坯的头部和尾部的在线实时最优剪切。
发明内容
本发明针对现有技术存在的上述不足,提供一种基于图像传感的钢坯剪切装置及其剪切方法,能够通过两个图像传感器构成的双目视觉测量系统在非接触方式下将钢坯的头部和尾部先后按照最优剪切线进行剪切,因此达到高效、节能、节材的效果。
本发明是通过以下技术方案实现的:
本发明涉及基于图像传感的钢坯剪切装置包括:两个CCD图像传感器、图像处理模块、图像识别模块和驱动模块,其中:两个CCD图像传感器并排安置于热联扎剪切机剪切口的前端并分别与图像处理模块相连接传输原始左、右视图,图像处理模块的输出接口与图像识别模块的输入接口连接以输出经处理后的左、右视数字图像,图像识别模块的输出接口与驱动模块的输入接口连接以输出待剪切钢坯的最优剪切线坐标数据,驱动模块输出接口与生产线伺服机构的输入接口连接以传输剪切控制信号。
所述的两个CCD图像传感器的光轴相互平行并与钢胚水平投影面垂直,两个CCD图像传感器的光轴间距L为:
L = W 2 ,
其中:W为热联扎钢坯传送机构宽度;
两个CCD图像传感器的两根光轴分别与热联扎钢坯传送机构对应两侧的距离均为
Figure G2009101954336D00022
两个CCD图像传感器的安装高度以视场能够覆盖热联扎钢坯传送机构两侧景象为准则,再考虑图像传感器避免热辐射的影响,一般可以取安装高度H≥1.5W;
所述的两个CCD图像传感器、图像处理模块和图像识别模块构成双目视觉测量系统;
所述的CCD图像传感器中位于面对钢坯进给方向左边的称之为左目图像传感器,面对钢坯进给方向右边的CCD图像传感器称之为右目图像传感器;左目图像传感器采集到的图像称为左视图,右目图像传感器采集到的图像称为右视图。
所述的两个CCD图像传感器同步采集钢坯图像,并将每一时刻所采集的原始左、右视图传输至图像处理模块。
所述的图像处理模块对双目视觉测量系统图像传感器参数进行标定、实时采集钢坯图像和图像强化处理,获得待剪切钢坯的强化处理后的数字图像。标定图像传感器参数后的双目视觉测量系统能够通过坐标转换关系从计算机图像中的像素坐标计算出对应的空间点坐标。
所述的图像识别模块利用强化处理后的左、右视数字图像对钢胚头、尾部的形态进行识别,同时计算钢胚头、尾部的最优剪切线。
所述的驱动模块接收图像识别模块运算输出的最优剪切线坐标数据,并将其转换为钢坯剪切机伺服机构的剪切控制信号。
本发明涉及基于图像传感的钢坯剪切方法,包括以下步骤:
步骤一,设置世界坐标系:以钢坯传送机构右侧边直线与两个CCD图像传感器两根光轴所在平面的交点为原点OW,以钢坯传送机构右侧边直线为XW轴且以钢坯进给的逆方向为XW轴的正方向,以垂直于钢坯传送机构右侧边的直线为YW轴且以指向钢坯传送机构左侧的方向为YW轴的正方向,以垂直于OWXWYW平面的重垂线为ZW轴且向上为正方向;设置世界坐标系即三维空间坐标系后,使得整个待剪切钢胚的表面投影处于OWXWYW坐标平面上。
所述的三维空间坐标系即世界坐标系的ZW轴与图像传感器光轴平行。
步骤二,标定两个图像传感器参数:采用双目视觉测量系统中图像传感器参数的分步标定法标定两个图像传感器参数。
所述分步标定法是指:采用分步标定的思想,先标定图像的纵横比sx和图像传感器主点坐标(cx,cy),再利用径向平行约束原理,求解大部分的外部参数,最后引入畸变模型,线性求解光学焦距f、一阶畸变系数k1和平移量tz
步骤三,实时采集图像:左目CCD图像传感器和右目CCD图像传感器同步采集待剪切钢胚的原始左、右视图,然后左目CCD图像传感器和右目CCD图像传感器将每个时刻所采集的原始左、右视图并行传输以备处理。
所述的同步采集是指:左目CCD图像传感器和右目CCD图像传感器的快门并联控制且光圈设置为相同参数,使得每一个时刻传送的两个图像采集于同一个时刻,因此才能确保后续计算的准确性。
所述的并行传输方式包括:①内同步,用图像传感器内同步信号来实现同步跟踪。②外同步,使用由外同步信号发生器生成的同步信号送入图像传感器的外同步输入端口来实现同步跟踪。③功率同步,用图像传感器50Hz或者60Hz的AC电源信号完成垂直同步扫描。④外VD同步,依靠图像传感器信号电缆上的VD同步脉冲信号输入来实现同步跟踪。⑤多台图像传感器外同步,使用同一固定外同步信号对多台图像传感器实施同步扫描,使每一台图像传感器可以在同样的条件下作业,因此,即使其中有一台图像传感器转换瞄准对象,达到同步跟踪的图像传感器,其画面不会出现失真现象。所述VD(Vertical Drive)同步,即经由外部来源的垂直驱动脉冲信号来同步控制图像传感器的视频场速率及其相位,以此达到多个图像传感器采集图像的同步。
步骤四,图像强化处理:通过空间域增强方法对图像各像素进行增强处理,或通过频率域增强方法对图像经傅立叶变换后的频谱成分进行处理,然后再通过傅立叶逆变换,获取所需的左、右视数字图像;
所述的图像强化处理即图像增强,其目的在于改善图像的视觉效果,便于计算机对图像的观察、分析和处理。
步骤五,钢坯轮廓线提取:采用基于灰度直方图的门限化边缘检测法,对左、右视数字图像中的钢坯头部或尾部图像进行边缘提取,获得待剪切钢坯的头、尾部边界图。
所述的基于灰度直方图的门限化边缘检测法是指:建立阈值灰度级,将比阈值灰度级亮的像素和比阈值灰度级暗的像素分为黑和白两组。
所述的阈值灰度级是指:将左、右视数字图像中的黑白成分保持基本相等、图像的边界清晰、主体基本可以分辨。在灰度级直方图上阈值表示为一条垂直的分隔线,分隔线左面的所有灰度级将变为黑色,而右面将变为白色。一方面,分隔线应该使灰度级直方图上左右两边的面积相等,以保证有相同的黑色和白色像素;另一方面,假设灰度级概率分布可以用两个高斯分布来逼近,其中一个代表主体前景,另一个代表不需要的背景物体,阈值应该选择在灰度曲线的谷点,以保证二值边界清晰可辨,前景区域和背景区域正确分割。
步骤六,钢坯头、尾部识别:利用外极线约束原理对左、右视数字图像的钢坯轮廓线图寻找钢坯边缘所有公共特征点,并通过坐标变换形成公共特征点集={(XWi,YWi)|i=1,2,},通过对这些公共特征点YW坐标的鉴别,建立钢坯头部特征点集合¥T或钢坯尾部特征点集合¥D,具体包括以下步骤:
6.1)沿XW坐标轴方向依次比较特征点的YW坐标:
当XW|i=k-1<XW|i=k<XW|i=k+1时,对应的有:
|YW|i=k-YW|i=k-1|<ε且|YW|i=k+1-YW|i=k-1|<ε                                (公式一)
其中:XW|i=k为钢坯边缘线上第k采样点的XW坐标值,XW|i=k-1、XW|i=k+1分别为第k采样点前后相邻近的采样点的XW坐标值,ε为判定是否两侧边缘线上点的足够小阈值,ε的值根据钢坯两侧边缘的平整度实测确定;
6.2)当公式一成立时,则特征点(XW|i=k-1,YW|i=k-1)、(XW|i=k,YW|i=k)、(XW|i=k+1,YW|i=k+1)即为钢坯两侧边缘线上的点;
否则(XW|i=k-1,YW|i=k-1)是头部或者(XW|i=k+1,YW|i=k+1)是尾部边缘线上的点。
6.3)逐一比较公共特征点集={(XWi,YWi)|i=1,2,}中所有点,最终确定钢坯头部特征点集合¥T或钢坯尾部特征点集合¥D
步骤七,钢坯头、尾部最优剪切线的确定:在钢坯头部特征点集合¥T或钢坯尾部特征点集合¥D中以待剪切钢坯的中轴线为界,将¥T分解处理获得头部左子集合¥Tl和头部右子集合¥Tr以及头部中轴垂直线;或者将¥D分解处理获得尾部左子集合¥Dl和尾部右子集合¥Dr以及尾部中轴垂直线。
所述的中轴线是指:待剪切钢坯的纵向镜面对称轴。
所述的分解处理具体包括以下步骤:
7.1)运用判据公式一找出任意一对中轴线两侧的边缘线特征点(XWli,YWli)与(XWri,YWri),求取中轴线上点的YW轴坐标YWo
Y Wo = Y Wli + Y Wri 2 (公式二)
根据集合¥T中元素YW坐标,以YWo为阈值,将集合¥T分解出¥Tl和¥Tr,即
Tl = { ( X Wi , Y Wi ) | Y Wi < Y W 0 ; i = 1,2 , } Tr = { ( X Wi , Y Wi ) | Y Wi > Y W 0 ; i = 1,2 , }
同样,将集合¥D分解出¥Dl和¥Dr,即
Dl = { ( X Wi , Y Wi ) | Y Wi < Y W 0 ; i = 1,2 , } Dr = { ( X Wi , Y Wi ) | Y Wi > Y W 0 ; i = 1,2 , }
7.2)分别在¥Tl及¥Tr中寻找XW坐标值最大的两个元素坐标(XWlm,YWlm)与(XWrm,YWrm),比较XWlm与XWrm的大小:当XWlm≤XWrm时,即确定钢坯头部最优剪切线为穿过右侧边缘线点(XWrm,YWrm)的中轴垂直线;否则就是穿过左侧边缘线点(XWlm,YWlm)的中轴垂直线。
7.3)分别在¥Dl及¥Dr中寻找XW坐标值最小的两个元素坐标(XWlm,YWlm)与(XWrm,YWrm),比较XWlm与XWrm的大小:当XWlm≤XWrm时,即确定钢坯尾部最优剪切线为穿过左侧边缘线点(XWlm,YWlm)的中轴垂直线;否则就是穿过右侧边缘线点(XWrm,YWrm)的中轴垂直线。
步骤八,从钢坯头部特征点集合¥T中获得头部端点PT坐标(XWT,YWT),即
Figure G2009101954336D00061
并根据PT与头部最优剪切线求取待剪切钢坯的头部长度ΔXWT
当步骤七的7.2)中确定钢坯头部最优剪切线为穿过右侧边缘线点(XWrm,YWrm)的中轴垂直线时,ΔXWT=XWrm-XWT;否则,确定是穿过左侧边缘线点(XWlm,YWlm)的中轴垂直线时,ΔXWT=XWlm-XWT
步骤九,从钢坯尾部特征点集合¥D中获得尾部端点PD坐标(XWD,YWD),即
Figure G2009101954336D00062
并根据PD与尾部最优剪切线求取待剪切钢坯的尾部长度ΔXWD
当步骤七的7.3)中确定钢坯尾部最优剪切线为穿过左侧边缘线点(XWlm,YWlm)的中轴垂直线时,ΔXWD=XWD-XWlm;否则,确定是穿过右侧边缘线点(XWrm,YWrm)的中轴垂直线时,ΔXWD=XWD-XWrm
步骤十,根据待剪切钢坯的移动速度与待剪切钢坯的头部端点当前坐标,即可获得待剪切钢坯的头部端点与剪切机剪切刀口的距离和控制剪切机的剪切头部时刻;或根据待剪切钢坯的移动速度与钢坯尾部剪切线,即可获得钢坯尾部剪切线与剪切机剪切刀口的距离和控制剪切机的剪切尾部时刻,具体包括以下步骤:
10.1)控制剪切机的剪切头部时刻tT
t T = &Delta; X WT + X WT - X J u (公式三)
10.2)控制剪切机的剪切尾部时刻tD
t D = X WD - X J - &Delta; X WD u (公式四)
其中:XJ剪切机剪切刀口处于剪切时刻所处的XW坐标值,u为钢坯的移动速度,然后重新回到步骤三,重复运行从步骤三至步骤十的循环过程。
必须指出,上述步骤一、二是本发明在线运行前的必备步骤,一次性完成步骤一、二的预备工作后,装置即从步骤三运行至步骤十,再从步骤十重新回到步骤三,周而复始,进入循环工作状态。
本发明通过上述步骤的图像采集、处理和识别运算,最终能够正确识别钢坯头、尾部的最优剪切线;根据最优剪切线的坐标信息准确地控制剪切机伺服机构的操作,因此获得热轧生产线上钢坯剪切的最好节能、节材效果。
附图说明
图1为本发明装置结构框图;
图2为实施例方法流程图;
图3为图像采集与处理装置安装和坐标设置方法示意图;
图4为实施例钢坯头、尾部边缘检测效果图;
其中:a)为实施例钢坯头部边缘检测效果图;b)为实施例钢坯尾部边缘检测效果图。
图5为实施例钢坯头、尾部最优剪切线识别效果图;
其中:a)为实施例钢坯头部最优剪切线识别效果图;b)为实施例钢坯尾部最优剪切线识别效果图。
具体实施方式
下面对本发明的实施例作详细说明,本实施例在以本发明技术方案为前提下进行实施,给出了详细的实施方式和具体的操作过程,但本发明的保护范围不限于下述的实施例。
如图1所示,本实施例包括:左目CCD图像传感器1、右目CCD图像传感器2、图像处理模块3、图像识别模块4、驱动模块5与冷却机构6,其中:左目CCD图像传感器1和右目CCD图像传感器2并排安置于热联扎剪切机剪切口的前端2m处,左目CCD图像传感器1和右目CCD图像传感器2的输出接口与图像处理模块3的输入接口连接,图像处理模块3的输出接口与图像识别模块4的输入接口连接,图像识别模块4的输出接口与驱动模块5的输入接口连接,驱动模块5输出接口与生产线上所固有的剪切伺服机构的输入接口连接。
所述的左目CCD图像传感器1和右目CCD图像传感器2同步采集钢坯图像,并将每一时刻所采集的两幅图像输至图像处理模块3;在设置左、右目CCD图像传感器时,保持左、右两根光轴平行,并与钢胚水平投影面垂直;取两个CCD图像传感器的光轴间距L为
L = W 2
其中:W为热联扎钢坯传送机构宽度;
两个CCD图像传感器的两根光轴分别与热联扎钢坯传送机构对应两侧的距离均为
Figure G2009101954336D00082
两个CCD图像传感器配置视场角为90°的光学镜头,两个CCD图像传感器的安装高度为H=1.5W。
所述的图像处理模块对双目视觉测量系统图像传感器参数进行标定、实时采集钢坯图像和图像强化处理,获得待剪切钢坯的强化处理后的数字图像。
所述的图像识别模块利用强化处理后的左、右视数字图像对钢胚头、尾部的形态进行识别,同时计算钢胚头、尾部的最优剪切线。
所述的驱动模块接收图像识别模块运算输出的最优剪切线坐标数据,并将其转换为钢坯剪切机伺服机构的剪切控制信号。
所述的冷却系统6,则为确保该装置工作于合适的温度环境而设置。
如图2所示,本实施例包括如下步骤:
如图3所示,步骤一,设置世界坐标系:以钢坯传送机构右侧边直线与双目CCD图像传感器两根光轴所在平面的交点为原点OW,以钢坯传送机构右侧边直线为XW轴且以钢坯进给的逆方向为XW轴的正方向,以垂直于钢坯传送机构右侧边的直线为YW轴且以指向钢坯传送机构左侧的方向为YW轴的正方向,以垂直于OWXWYW平面的重垂线为ZW轴且向上为正方向;设置世界坐标系即三维空间坐标系后,使得整个待剪切钢胚的表面处于OWXWYW坐标平面上。
所述的三维空间坐标系的ZW轴与图像传感器光轴平行。
步骤二,标定两个图像传感器参数:采用分布标定法对本双目视觉测量系统中图像传感器参数进行标定。
步骤三,实时采集图像:左目CCD图像传感器和右目CCD图像传感器同步采集待剪切钢胚的原始左、右视图,然后左目CCD图像传感器和右目CCD图像传感器将每个时刻所采集的原始左、右视图并行传输以备处理。
所述的同步采集是指:左目CCD图像传感器和右目CCD图像传感器的快门并联控制且光圈设置为相同参数,使得每一个时刻传送的两个图像采集于同一个时刻,因此才能确保后续计算的准确性。为此,采用内同步,用图像传感器内同步信号来实现同步跟踪。
步骤四,图像强化处理:即图像增强,其目的在于改善图像的视觉效果,便于计算机对图像的观察、分析和处理;本实施例采用直接对图像各像素进行处理的方法对图像进行增强。
具体是灰度变换法:灰度变换用于调整图像的灰度动态范围或图像对比度。具体通过修改像素值达到增强图像的目的。修改是通过各像素单独进行的,因此又称之为点处理运算。
令像素坐标(i,j)的原像素灰度值为r(i,j),r∈[ab],a、b为原像素的灰度等级。
通过变换函数T(·)能够实现像素变换结果S(i,j)=T(r(i,j)),S(i,j)∈[a′b′],a′、b′为经变换后像素的灰度等级。如,T(·)采用线性变换,此时
S ( i , j ) = a &prime; + b &prime; - a &prime; b - a ( r ( i , j ) - a )
在曝光不足或曝光过度的情况下,图像灰度可能会局限在一个很小的范围内。此时,看到的图像可能是一幅模糊不清、似乎没有灰度层次的图像。采用线性变换对图像中的像素灰度进行线性拉伸,能够有效地改善图像的视觉效果。
步骤五,钢坯轮廓线提取:采用基于灰度直方图的门限化边缘检测法,对左、右视数字图像中的钢坯头部或尾部图像进行边缘提取,获得待剪切钢坯的头、尾部边界图,如图4所示。
所述的基于灰度直方图的门限化边缘检测法是指:建立阈值灰度级,将比阈值灰度级亮的像素和比阈值灰度级暗的像素分为黑和白两组。
所述的阈值灰度级是指:将左、右视数字图像中的黑白成分保持基本相等、图像的边界清晰、主体基本可以分辨。在灰度级直方图上阈值表示为一条垂直的分隔线,分隔线左面的所有灰度级将变为黑色,而右面将变为白色。一方面,分隔线应该使灰度级直方图上左右两边的面积相等,以保证有相同的黑色和白色像素;另一方面,假设灰度级概率分布可以用两个高斯分布来逼近,其中一个代表主体前景,另一个代表不需要的背景物体,阈值应该选择在灰度曲线的谷点,以保证二值边界清晰可辨,前景区域和背景区域正确分割。
步骤六,钢坯头尾部识别:利用外极线约束原理对左、右视数字图像的钢坯轮廓线图寻找钢坯边缘所有公共特征点,并通过坐标变换形成公共特征点集={(XWi,YWi)|i=1,2,},通过对这些公共特征点YW坐标的鉴别,建立钢坯头部特征点集合¥T,具体包括以下步骤:
6.1)沿XW坐标轴方向依次比较特征点的YW坐标:
当XW|i=k-1<XW|i=k<XW|i=k+1时,对应的有:
|YW|i=k-YW|i=k-1|<ε且|YW|i=k+1-YW|i=k-1|<ε                      (公式一)
其中:XW|i=k为钢坯边缘线上第k采样点的XW坐标值,XW|i=k-1、XW|i=k+1分别为第k采样点前后相邻近的采样点的XW坐标值,ε为判定是否两侧边缘线上点的足够小阈值,ε的值根据钢坯两侧边缘的平整度实测确定;
6.2)当公式一成立时,则特征点(XW|i=k-1,YW|i=k-1)、(XW|i=k,YW|i=k)、(XW|i=k+1,YW|i=k+1)即为钢坯两侧边缘线上的点;
否则(XW|i=k-1,YW|i=k-1)是头部或者(XW|i=k+1,YW|i=k+1)是尾部边缘线上的点。
6.3)逐一比较公共特征点集={(XWi,YWi)|i=1,2,}中所有点,最终确定钢坯头部特征点集合¥T或钢坯尾部特征点集合¥D
步骤七,钢坯头尾部最优剪切线的确定:在钢坯头部特征点集合¥T中以待剪切钢坯的中轴线为界,将¥T分解处理获得头部左子集合¥Tl和头部右子集合¥Tr以及头部中轴垂直线,如图5所示。
所述的中轴线是指:待剪切钢坯的纵向镜面对称轴。
所述的分解处理具体包括以下步骤:
7.1)运用判据公式一找出任意一对中轴线两侧的边缘线特征点(XWli,YWli)与(XWri,YWri),求取中轴线上点的YW轴坐标YWo
Y Wo = Y Wli + Y Wri 2 (公式二)
根据集合¥T中元素YW坐标,以YWo为阈值,将集合¥T分解出¥Tl和¥Tr,即
Tl = { ( X Wi , Y Wi ) | Y Wi < Y W 0 ; i = 1,2 , } Tr = { ( X Wi , Y Wi ) | Y Wi > Y W 0 ; i = 1,2 , }
同样,将集合¥D分解出¥Dl和¥Dr,即
Dl = { ( X Wi , Y Wi ) | Y Wi < Y W 0 ; i = 1,2 , } Dr = { ( X Wi , Y Wi ) | Y Wi > Y W 0 ; i = 1,2 , }
7.2)分别在¥Tl及¥Tr中寻找XW坐标值最大的两个元素坐标(XWlm,YWlm)与(XWrm,YWrm),比较XWlm与XWrm的大小:当XWlm≤XWrm时,即确定钢坯头部最优剪切线为穿过右侧边缘线点(XWrm,YWrm)的中轴垂直线;否则就是穿过左侧边缘线点(XWlm,YWlm)的中轴垂直线。
7.3)分别在¥Dl及¥Dr中寻找XW坐标值最小的两个元素坐标(XWlm,YWlm)与(XWrm,YWrm),比较XWlm与XWrm的大小:当XWlm≤XWrm时,即确定钢坯尾部最优剪切线为穿过左侧边缘线点(XWlm,YWlm)的中轴垂直线;否则就是穿过右侧边缘线点(XWrm,YWrm)的中轴垂直线。
步骤八,从钢坯头部特征点集合¥T中获得头部端点PT坐标(XWT,YWT),并根据PT与头部最优剪切线求取待剪切钢坯的头部长度ΔXWT
当步骤七的7.2)中确定钢坯头部最优剪切线为穿过右侧边缘线点(XWrm,YWrm)的中轴垂直线时,ΔXWT=XWrm-XWT;否则,确定是穿过左侧边缘线点(XWlm,YWlm)的中轴垂直线时,ΔXWT=XWlm-XWT
步骤九,从钢坯尾部特征点集合¥D中获得尾部端点PD坐标(XWD,YWD),并根据PD与尾部最优剪切线求取待剪切钢坯的尾部长度ΔXWD
当步骤七的7.3)中确定钢坯尾部最优剪切线为穿过左侧边缘线点(XWlm,YWlm)的中轴垂直线时,ΔXWD=XWD-XWlm;否则,确定是穿过右侧边缘线点(XWrm,YWrm)的中轴垂直线时,ΔXWD=XWD-XWrm
步骤十,根据待剪切钢坯的移动速度与待剪切钢坯的头部端点当前坐标,即可获得待剪切钢坯的头部端点与剪切机剪切刀口的距离和控制剪切机的剪切头部时刻;或根据待剪切钢坯的移动速度与钢坯尾部剪切线,即可获得钢坯尾部剪切线与剪切机剪切刀口的距离和控制剪切机的剪切尾部时刻,具体包括以下步骤:
10.1)控制剪切机的剪切头部时刻tT
t T = &Delta; X WT + X WT - X J u (公式三)
10.2)控制剪切机的剪切尾部时刻tD
t D = X WD - X J - &Delta; X WD u (公式四)
其中:XJ剪切机剪切刀口处于剪切时刻所处的XW坐标值,u为钢坯的移动速度。
重新回到步骤三,使本装置处于在线运行,周而复始地连续运行从步骤三至步骤十的循环过程。

Claims (7)

1、一种基于图像传感的钢坯剪切装置,其特征在于,包括:两个CCD图像传感器、图像处理模块、图像识别模块和驱动模块,其中:两个CCD图像传感器并排安置于热联扎剪切机剪切口的前端并分别与图像处理模块相连接传输原始左、右视图,图像处理模块的输出接口与图像识别模块的输入接口连接以输出经处理后的左、右视数字图像,图像识别模块的输出接口与驱动模块的输入接口连接以输出待剪切钢坯的最优剪切线,驱动模块输出接口与生产线伺服机构的输入接口连接以传输剪切控制信号。
2、一种基于图像传感的钢坯的剪切方法,其特征在于,包括如下步骤:
步骤一,设置世界坐标系:以钢坯传送机构右侧边直线与双目CCD图像传感器两根光轴所在平面的交点为原点OW,以钢坯传送机构右侧边直线为XW轴且以钢坯进给的逆方向为XW轴的正方向,以垂直于钢坯传送机构右侧边的直线为YW轴且以指向钢坯传送机构左侧的方向为YW轴的正方向,以垂直于OWXWYW平面的重垂线为ZW轴且向上为正方向;设置世界坐标系即三维空间坐标系后,使得整个待剪切钢胚的表面处于OWXWYW坐标平面上;三维空间坐标系的ZW轴与图像传感器光轴平行;
步骤二,标定两个图像传感器参数:采用双目视觉测量系统中图像传感器参数的分步标定法标定两个图像传感器参数;
步骤三,实时采集图像:左目CCD图像传感器和右目CCD图像传感器同步采集待剪切钢胚的原始左、右视图,然后左目CCD图像传感器和右目CCD图像传感器将每个时刻所采集的原始左、右视图并行传输以备处理;
步骤四,图像强化处理:通过空间域增强方法对图像各像素进行增强处理,或通过频率域增强方法对图像经傅立叶变换后的频谱成分进行处理,然后再通过傅立叶逆变换,获取所需的左、右视数字图像;
步骤五,钢坯轮廓线提取:采用基于灰度直方图的门限化边缘检测法,对左、右视数字图像中的钢坯头部或尾部图像进行边缘提取,获得待剪切钢坯的头、尾部边界图;
步骤六,钢坯头尾部识别:利用外极线约束原理对左、右视数字图像的钢坯轮廓线图寻找钢坯边缘所有公共特征点,并通过坐标变换形成公共特征点集={(XWi,YWi)|i=1,2,},通过对这些公共特征点YW坐标的鉴别,建立钢坯头部特征点集合
Figure A2009101954330003C1
或钢坯尾部特征点集合
Figure A2009101954330003C2
步骤七,钢坯头尾部最优剪切线的确定:在钢坯头部特征点集合
Figure A2009101954330003C3
或钢坯尾部特征点集合
Figure A2009101954330003C4
中以待剪切钢坯的中轴线为界,将
Figure A2009101954330003C5
分解处理获得头部左子集合和头部右子集合
Figure A2009101954330003C7
以及头部中轴垂直线;或者将
Figure A2009101954330003C8
分解处理获得尾部左子集合和尾部右子集合
Figure A2009101954330003C10
以及尾部中轴垂直线;
步骤八,从钢坯头部特征点集合
Figure A2009101954330003C11
中获得头部端点PT坐标(XWT,YWT),并根据PT与头部最优剪切线求取待剪切钢坯的头部长度ΔXWT
步骤九,从钢坯尾部特征点集合
Figure A2009101954330003C12
中获得尾部端点PD坐标(XWD,YWD),并根据PD与尾部最优剪切线求取待剪切钢坯的尾部长度ΔXWD
步骤十,根据待剪切钢坯的移动速度与待剪切钢坯的头部端点当前坐标,即可获得待剪切钢坯的头部端点与剪切机剪切刀口的距离和控制剪切机的剪切头部时刻;或根据待剪切钢坯的移动速度与钢坯尾部剪切线,即可获得钢坯尾部剪切线与剪切机剪切刀口的距离和控制剪切机的剪切尾部时刻;
然后重新回到步骤三,重复运行从步骤三至步骤十的循环过程。
3、根据权利要求2所述的基于图像传感的钢坯的剪切方法,其特征是,步骤六中所述的建立钢坯头部特征点集合
Figure A2009101954330003C13
或钢坯尾部特征点集合
Figure A2009101954330003C14
具体包括以下步骤:
1)沿XW坐标轴方向依次比较特征点的YW坐标:
当XW|i=k-1<XW|i=k<XW|i=k+1时,对应的有:
|YW|i=k-YW|i=k-1|<ε且|YW|i=k+1-YW|i=k-1|<ε(公式一)
其中:XW|i=k为钢坯边缘线上第k采样点的XW坐标值,XW|i=k-1、XW|i=k+1分别为第k采样点前后相邻近的采样点的XW坐标值,ε为判定是否两侧边缘线上点的足够小阈值,ε的值根据钢坯两侧边缘的平整度实测确定;
2)当公式一成立时,则特征点(XW|i=k-1,YW|i=k-1)、(XW|i=k,YW|i=k)、(XW|i=k+1,YW|i=k+1)即为钢坯两侧边缘线上的点;
否则(XW|i=k-1,YW|i=k-1)是头部或者(XW|i=k+1,YW|i=k+1)是尾部边缘线上的点;
3)逐一比较公共特征点集={(XWi,YWi)|i=1,2,}中所有点,最终确定钢坯头部特征点集合
Figure A2009101954330004C1
或钢坯尾部特征点集合
4、根据权利要求2所述的基于图像传感的钢坯的剪切方法,其特征是,步骤七中所述的分解处理具体包括以下步骤:
1)运用判据|YW|i=k-YW|i=k-1|<ε且|YW|i=k+1-YW|i=k-1|<ε找出任意一对中轴线两侧的边缘线特征点(XWli,YWli)与(XWri,YWri),求取中轴线上点的YW轴坐标YWo
Y Wo = Y Wli + Y Wri 2
根据集合中元素YW坐标,以YWo为阈值,将集合分解出
Figure A2009101954330004C6
Figure A2009101954330004C7
= { ( X Wi , Y wi ) | Y Wi < Y W 0 ; i = 1,2 , } Tl = { ( X Wi , Y wi ) | Y Wi > Y W 0 ; i = 1,2 , } Tr
同样,将集合
Figure A2009101954330004C9
分解出
= { ( X Wi , Y wi ) | Y Wi < Y W 0 ; i = 1,2 , } Dl = { ( X Wi , Y wi ) | Y Wi > Y W 0 ; i = 1,2 , } Dr
2)分别在
Figure A2009101954330004C13
Figure A2009101954330004C14
中寻找XW坐标值最大的两个元素坐标(XWlm,YWlm)与(XWrm,YWrm),比较XWlm与XWrm的大小:当XWlm≤XWrm时,即确定钢坯头部最优剪切线为穿过右侧边缘线点(XWrm,YWrm)的中轴垂直线;否则就是穿过左侧边缘线点(XWlm,YWlm)的中轴垂直线;
3)分别在
Figure A2009101954330004C16
中寻找XW坐标值最小的两个元素坐标(XWlm,YWlm)与(XWrm,YWrm),比较XWlm与XWrm的大小:当XWlm≤XWrm时,即确定钢坯尾部最优剪切线为穿过左侧边缘线点(XWlm,YWlm)的中轴垂直线;否则就是穿过右侧边缘线点(XWrm,YWrm)的中轴垂直线。
5、根据权利要求2所述的基于图像传感的钢坯的剪切方法,其特征是,所述步骤八具体是指:从钢坯头部特征点集合
Figure A2009101954330004C17
中获得头部端点PT坐标(XWT,YWT),即并根据PT与头部最优剪切线求取待剪切钢坯的头部长度ΔXWT:当所述钢坯头部最优剪切线为穿过右侧边缘线点(XWrm,YWrm)的中轴垂直线时,ΔXWT=XWrm-XWT;否则,确定是穿过左侧边缘线点(XWlm,YWlm)的中轴垂直线时,ΔXWT=XWlm-XWT
6、根据权利要求2所述的基于图像传感的钢坯的剪切方法,其特征是,所述步骤九具体是指:从钢坯尾部特征点集合中获得尾部端点PD坐标(XWD,YWD),即
Figure A2009101954330005C3
并根据PD与尾部最优剪切线求取待剪切钢坯的尾部长度ΔXWD:当所述钢坯尾部最优剪切线为穿过左侧边缘线点(XWlm,YWlm)的中轴垂直线时,ΔXWD=XWD-XWlm;否则,确定是穿过右侧边缘线点(XWrm,YWrm)的中轴垂直线时,ΔXWD=XWD-XWrm
7、根据权利要求2所述的基于图像传感的钢坯的剪切方法,其特征是,步骤十中所述的控制剪切机的剪切头部时刻和控制剪切机的剪切尾部时刻具体是指:
1)控制剪切机的剪切头部时刻tT
t T = &Delta; X WT + X WT - X J u
2)控制剪切机的剪切尾部时刻tD
t D = X WD - X J - &Delta; X WD u
其中:XJ剪切机剪切刀口处于剪切时刻所处的XW坐标值,u为钢坯的移动速度。
CN2009101954336A 2009-09-10 2009-09-10 基于图像传感的钢坯剪切装置及其剪切方法 Expired - Fee Related CN101658954B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2009101954336A CN101658954B (zh) 2009-09-10 2009-09-10 基于图像传感的钢坯剪切装置及其剪切方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2009101954336A CN101658954B (zh) 2009-09-10 2009-09-10 基于图像传感的钢坯剪切装置及其剪切方法

Publications (2)

Publication Number Publication Date
CN101658954A true CN101658954A (zh) 2010-03-03
CN101658954B CN101658954B (zh) 2011-07-20

Family

ID=41787325

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2009101954336A Expired - Fee Related CN101658954B (zh) 2009-09-10 2009-09-10 基于图像传感的钢坯剪切装置及其剪切方法

Country Status (1)

Country Link
CN (1) CN101658954B (zh)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103369834A (zh) * 2012-03-27 2013-10-23 北大方正集团有限公司 用于pcb制作的靶标参数处理方法和装置
CN104227506A (zh) * 2013-06-20 2014-12-24 宝山钢铁股份有限公司 一种焊机双切剪间隙测量装置及方法
CN104515479A (zh) * 2015-01-07 2015-04-15 中冶京诚工程技术有限公司 中厚板平面板形测量系统及方法
CN105171115A (zh) * 2015-10-10 2015-12-23 北京佰能电气技术有限公司 基于机器视觉的飞剪控制系统及其控制方法
CN105677434A (zh) * 2016-03-18 2016-06-15 格科微电子(上海)有限公司 图像传感器的otp烧录方法
CN105817696A (zh) * 2015-01-07 2016-08-03 宝山钢铁股份有限公司 火切组板模式钢板的在线剪切方法
CN108458668A (zh) * 2018-01-05 2018-08-28 燕山大学 基于双目视觉的板坯边部及头尾形状自动检测系统及方法
CN109596049A (zh) * 2018-12-28 2019-04-09 沈阳建筑大学 一种轧制后热态钢板端部剪切优化方法
CN113219903A (zh) * 2021-05-07 2021-08-06 东北大学 一种基于深度视觉的钢坯最优剪切控制方法及装置
CN113857559A (zh) * 2021-09-24 2021-12-31 沪工智能科技(苏州)有限公司 一种板件寻边机构、切割机及板件寻边方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100594461C (zh) * 2007-09-28 2010-03-17 武汉科技大学 一种基于dsp和fpga的双排钢坯视觉定位装置

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103369834B (zh) * 2012-03-27 2016-03-16 北大方正集团有限公司 用于pcb制作的靶标参数处理方法和装置
CN103369834A (zh) * 2012-03-27 2013-10-23 北大方正集团有限公司 用于pcb制作的靶标参数处理方法和装置
CN104227506A (zh) * 2013-06-20 2014-12-24 宝山钢铁股份有限公司 一种焊机双切剪间隙测量装置及方法
CN104227506B (zh) * 2013-06-20 2016-06-29 宝山钢铁股份有限公司 一种焊机双切剪间隙测量装置及方法
CN105817696A (zh) * 2015-01-07 2016-08-03 宝山钢铁股份有限公司 火切组板模式钢板的在线剪切方法
CN104515479A (zh) * 2015-01-07 2015-04-15 中冶京诚工程技术有限公司 中厚板平面板形测量系统及方法
CN105817696B (zh) * 2015-01-07 2017-11-28 宝山钢铁股份有限公司 火切组板模式钢板的在线剪切方法
CN105171115B (zh) * 2015-10-10 2017-10-20 北京佰能电气技术有限公司 基于机器视觉的飞剪控制系统的飞剪控制方法
CN105171115A (zh) * 2015-10-10 2015-12-23 北京佰能电气技术有限公司 基于机器视觉的飞剪控制系统及其控制方法
CN105677434A (zh) * 2016-03-18 2016-06-15 格科微电子(上海)有限公司 图像传感器的otp烧录方法
CN105677434B (zh) * 2016-03-18 2021-02-26 格科微电子(上海)有限公司 图像传感器的otp烧录方法
CN108458668A (zh) * 2018-01-05 2018-08-28 燕山大学 基于双目视觉的板坯边部及头尾形状自动检测系统及方法
CN109596049A (zh) * 2018-12-28 2019-04-09 沈阳建筑大学 一种轧制后热态钢板端部剪切优化方法
CN109596049B (zh) * 2018-12-28 2020-07-28 沈阳建筑大学 一种轧制后热态钢板端部剪切优化方法
CN113219903A (zh) * 2021-05-07 2021-08-06 东北大学 一种基于深度视觉的钢坯最优剪切控制方法及装置
WO2022233096A1 (zh) * 2021-05-07 2022-11-10 东北大学 一种基于深度视觉的钢坯最优剪切控制方法及装置
CN113857559A (zh) * 2021-09-24 2021-12-31 沪工智能科技(苏州)有限公司 一种板件寻边机构、切割机及板件寻边方法

Also Published As

Publication number Publication date
CN101658954B (zh) 2011-07-20

Similar Documents

Publication Publication Date Title
CN101658954B (zh) 基于图像传感的钢坯剪切装置及其剪切方法
Yang et al. On-line conveyor belts inspection based on machine vision
CN106770332B (zh) 一种基于机器视觉的电子模切料缺陷检测实现方法
CN106530297B (zh) 基于点云配准的物体抓取区域定位方法
CN106548182B (zh) 基于深度学习和主成因分析的路面裂纹检测方法及装置
CN104809732B (zh) 一种基于图像比对的电力设备外观异常检测方法
CN102135416B (zh) 瓶盖在线影像检测系统和方法
CN104992449A (zh) 基于机器视觉的信息识别及表面缺陷在线检测方法
CN103913468A (zh) 生产线上大尺寸lcd玻璃基板的多视觉缺陷检测设备及方法
CN201935873U (zh) 瓶盖在线影像检测系统
CN103714321A (zh) 基于距离图像和强度图像的驾驶员人脸定位系统
CN107608393B (zh) 一种基于机器视觉技术的定位裁切系统及方法
CN106807801B (zh) 一种高速精冲机模具表面废料智能在线检测方法及装置
CN108171157A (zh) 基于多尺度局部块LBP直方图特征与Co-HOG特征相结合的人眼检测算法
CN109598200B (zh) 一种铁水罐罐号的图像智能识别系统及方法
CN104132945A (zh) 一种基于光纤传导的棒材表面质量在线视觉检测装置
CN104484876A (zh) 基于自动阈值分割的水产品寄生虫紫外荧光成像检测方法
CN110873718A (zh) 基于机器视觉的钢板表面缺陷检测系统及方法
CN113655002A (zh) 基于高光谱技术的表面含砂浆的再生骨料质量检测系统
Zhang et al. A PCB photoelectric image edge information detection method
CN102331430A (zh) 不规则形状肉异物检测系统
Zhong et al. A real-time railway fastener inspection method using the lightweight depth estimation network
Hocenski et al. A simple and efficient method for ceramic tile surface defects detection
CN116703895A (zh) 基于生成对抗网络的小样本3d视觉检测方法及其系统
CN106530292A (zh) 一种基于线扫描相机的带钢表面缺陷图像快速辨识方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20110720

Termination date: 20140910

EXPY Termination of patent right or utility model