CN101656523B - Three-dimensional Structure TE011-λ/4-π Mode Resonator - Google Patents
Three-dimensional Structure TE011-λ/4-π Mode Resonator Download PDFInfo
- Publication number
- CN101656523B CN101656523B CN2009101022967A CN200910102296A CN101656523B CN 101656523 B CN101656523 B CN 101656523B CN 2009101022967 A CN2009101022967 A CN 2009101022967A CN 200910102296 A CN200910102296 A CN 200910102296A CN 101656523 B CN101656523 B CN 101656523B
- Authority
- CN
- China
- Prior art keywords
- resonator
- conductive metal
- active circuit
- cylindrical waveguide
- waveguide
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000002184 metal Substances 0.000 claims abstract description 38
- 230000008878 coupling Effects 0.000 claims abstract description 26
- 238000010168 coupling process Methods 0.000 claims abstract description 26
- 238000005859 coupling reaction Methods 0.000 claims abstract description 26
- 230000015572 biosynthetic process Effects 0.000 claims abstract description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims 6
- 241000446313 Lamella Species 0.000 claims 3
- 239000000377 silicon dioxide Substances 0.000 claims 3
- 238000006880 cross-coupling reaction Methods 0.000 claims 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 abstract description 21
- 229910052710 silicon Inorganic materials 0.000 abstract description 21
- 239000010703 silicon Substances 0.000 abstract description 21
- 239000000758 substrate Substances 0.000 abstract description 15
- 238000004806 packaging method and process Methods 0.000 abstract description 14
- 238000003786 synthesis reaction Methods 0.000 abstract description 3
- 238000011031 large-scale manufacturing process Methods 0.000 abstract description 2
- 230000005540 biological transmission Effects 0.000 description 13
- 230000010355 oscillation Effects 0.000 description 10
- 238000000034 method Methods 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 3
- 239000004020 conductor Substances 0.000 description 2
- 230000005684 electric field Effects 0.000 description 2
- 238000005538 encapsulation Methods 0.000 description 2
- 238000004146 energy storage Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000003989 dielectric material Substances 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
Images
Landscapes
- Control Of Motors That Do Not Use Commutators (AREA)
Abstract
本发明公开了一种三维结构TE011-λ/4-π模谐振器。每个有源电路的两个输出端与对应λ/4谐振器的两个开路端在硅基片层与封装层交界处进行连接,每个λ/4谐振器的两个短路端与TE011圆柱波导谐振器在第一导电金属板上连接,通过第一导电金属板上的λ/4谐振器与圆柱波导耦合槽缝实现能量耦合,矩形波导装配在第二导电金属板上方,通过第二导电金属板上的矩形波导与圆柱波导耦合槽缝实现能量耦合将能量输出。本发明适合于硅基太赫兹源在封装层面的功率合成,无源电路同有源电路分离,谐振器品质因数高,规模生产可以显著降低成本,在太赫兹个人无线通信、小功率雷达等领域具有应用价值。
The invention discloses a three-dimensional structure TE 011 -λ/4-π mode resonator. The two output ends of each active circuit are connected to the two open-circuit ends of the corresponding λ/4 resonator at the junction of the silicon substrate layer and the packaging layer, and the two short-circuit ends of each λ/4 resonator are connected to the TE 011 The cylindrical waveguide resonator is connected on the first conductive metal plate, the energy coupling is realized through the λ/4 resonator on the first conductive metal plate and the coupling slot of the cylindrical waveguide, the rectangular waveguide is assembled on the second conductive metal plate, through the second The rectangular waveguide on the conductive metal plate and the coupling slot of the cylindrical waveguide realize energy coupling and output energy. The invention is suitable for the power synthesis of silicon-based terahertz sources at the packaging level, the passive circuit is separated from the active circuit, the quality factor of the resonator is high, and the cost can be significantly reduced in large-scale production. Has application value.
Description
技术领域technical field
本发明涉及太赫兹集成电路,尤其是涉及一种三维结构TE011-λ/4-π模谐振器。The invention relates to a terahertz integrated circuit, in particular to a three-dimensional structure TE 011 -λ/4-π mode resonator.
背景技术Background technique
目前,国际上对太赫兹的研究已经达成共识,认为太赫兹是一种有很多独特优点的辐射源,太赫兹技术是一个非常重要的交叉前沿领域,给技术创新、国防安全和国民经济发展提供了新的机遇,是国际学术界、产业界和各国政府十分重视和关注的科技领域。太赫兹波的产生是太赫兹技术的一个基础和关键问题,近年来,基于现有集成电路工艺产生太赫兹振荡近年来也受到研究者们越来越多的关注。At present, the international research on terahertz has reached a consensus that terahertz is a radiation source with many unique advantages. It is a scientific and technological field that the international academic circles, industrial circles and governments of various countries attach great importance to and pay attention to. The generation of terahertz waves is a basic and key issue of terahertz technology. In recent years, the generation of terahertz oscillations based on existing integrated circuit technology has also attracted more and more attention from researchers in recent years.
从应用需求来看,硅基小功率太赫兹源很有应用潜力。一方面,硅基标准集成电路工艺,可以实现规模量产,显著降低应用系统的成本;另一方面,可以使振荡源与同样基于硅技术的系统其它功能电路集成到一起成为可能。这两点突出的优势,使得硅基小功率太赫兹源在个人无线通信、小功率太赫兹雷达等方面很有应用前景。From the perspective of application requirements, silicon-based low-power terahertz sources have great application potential. On the one hand, the silicon-based standard integrated circuit process can achieve mass production and significantly reduce the cost of the application system; on the other hand, it is possible to integrate the oscillation source with other functional circuits of the system also based on silicon technology. These two outstanding advantages make silicon-based low-power terahertz sources very promising in personal wireless communication and low-power terahertz radar.
然而,硅基太赫兹振荡源能否得到应用,提高集成输出功率是一个关键问题。在工艺进步工作频率提高的同时,线宽的不断缩小意味着所能承受的电流越来越小,从而振荡器的功率输出能力越来越小。提高振荡器输出功率可以通过提高单管振荡功率和对多个振荡器进行功率合成两方面入手。However, whether the silicon-based terahertz oscillator can be applied and how to increase the integrated output power is a key issue. While the operating frequency is increasing due to technological progress, the continuous shrinking of the line width means that the current that can be tolerated is getting smaller and smaller, so the power output capability of the oscillator is getting smaller and smaller. Improving the output power of the oscillator can be achieved by increasing the oscillation power of a single tube and combining the power of multiple oscillators.
发明内容Contents of the invention
针对如何将多个单管太赫兹振荡在芯片级进行功率合成以提高输出功率这一问题,本发明的目的在于提供一种三维结构TE011-λ/4-π模谐振器,可以将振荡器输出功率提高一至两个数量级。Aiming at the problem of how to combine multiple single-tube terahertz oscillators at the chip level to increase the output power, the purpose of the present invention is to provide a three-dimensional structure TE 011 -λ/4-π mode resonator, which can combine the oscillator The output power is increased by one to two orders of magnitude.
本发明解决其技术问题所采用的技术方案:The technical solution adopted by the present invention to solve its technical problems:
该谐振器包括硅基片层上的两个以上有源电路,在封装层上与有源电路相应个数的λ/4谐振器,金属圆柱,工作在TE011模的包括第一导电金属板、圆柱波导和第二导电金属板构成的TE011圆柱波导谐振器和用于功率输出的矩形波导;每个有源电路的两个输出端a、b与对应λ/4谐振器的两个开路端在硅基片层与封装层交界处进行连接,每个λ/4谐振器的两个短路端与圆柱波导谐振器在第一导电金属板上连接,通过第一导电金属板上的λ/4谐振器与圆柱波导耦合槽缝实现能量耦合,矩形波导装配在第二导电金属板之上,通过第二导电金属板上的矩形波导与圆柱波导耦合槽缝实现能量耦合将能量从矩形波导输出。The resonator includes more than two active circuits on the silicon substrate layer, λ/4 resonators corresponding to the number of active circuits on the packaging layer, a metal cylinder, and a first conductive metal plate working in the TE 011 mode , TE 011 cylindrical waveguide resonator composed of cylindrical waveguide and second conductive metal plate and rectangular waveguide for power output; two output ends a, b of each active circuit and two open circuits of the corresponding λ/4 resonator The end is connected at the junction of the silicon substrate layer and the packaging layer, and the two short-circuit ends of each λ/4 resonator are connected with the cylindrical waveguide resonator on the first conductive metal plate, through the λ/4 resonator on the first
本发明具有的有益的效果是:The beneficial effects that the present invention has are:
该三维结构TE011-λ/4-π模谐振器中的λ/4谐振器做成三维结构,适合于在硅基工艺的封装层面上实现;构成λ/4谐振器的差分传输线与基片表面垂直,与基片表面平行分布的电源线、信号线正交,相互耦合影响小,同时与传统二维差分传输线相比,三维结构差分传输线远离硅基片层,基片损耗影响降低;TE011圆柱波导谐振器的储能(或Q值)远高于λ/4谐振器,故该谐振器的Q值将可以较传统λ/4谐振器大很多;该谐振器可以有效的将多个λ/4谐振器的功率进行合成,获得高于传统λ/4谐振器输出功率一个数量级的振荡输出。本发明适合于硅基太赫兹源在封装层面的功率合成,无源电路同有源电路分离,谐振器品质因数高,规模生产可以显著降低成本,在太赫兹个人无线通信、小功率雷达等领域具有应用价值。The λ/4 resonator in the three-dimensional structure TE 011 -λ/4-π mode resonator is made into a three-dimensional structure, which is suitable for realization at the packaging level of the silicon-based process; the differential transmission line and the substrate constituting the λ/4 resonator The surface is vertical, and the power lines and signal lines distributed parallel to the surface of the substrate are orthogonal, and the influence of mutual coupling is small. At the same time, compared with the traditional two-dimensional differential transmission line, the three-dimensional structure differential transmission line is far away from the silicon substrate layer, and the influence of substrate loss is reduced; TE The energy storage (or Q value) of the 011 cylindrical waveguide resonator is much higher than that of the λ/4 resonator, so the Q value of the resonator will be much larger than the traditional λ/4 resonator; the resonator can effectively combine multiple The power of the λ/4 resonator is combined to obtain an oscillation output that is an order of magnitude higher than the output power of the traditional λ/4 resonator. The invention is suitable for the power synthesis of silicon-based terahertz sources at the packaging level, the passive circuit is separated from the active circuit, the quality factor of the resonator is high, and the cost can be significantly reduced in large-scale production. Has application value.
附图说明Description of drawings
图1是本发明公开的TE011-λ/4-π模谐振器纵剖视图。Fig. 1 is a longitudinal sectional view of the TE 011 -λ/4-π mode resonator disclosed by the present invention.
图2是本发明中的硅基片上基于反相器对的有源电路实现方式。FIG. 2 is an implementation of an active circuit based on a pair of inverters on a silicon substrate in the present invention.
图3是本发明中的硅基片上基于交叉耦合对的有源电路实现方式。FIG. 3 is an implementation of active circuits based on cross-coupled pairs on a silicon substrate in the present invention.
图4是本发明中的λ/4谐振器三维结构图。Fig. 4 is a three-dimensional structure diagram of a λ/4 resonator in the present invention.
图5是图1中A-B剖切的横剖视图。Fig. 5 is a cross-sectional view cut along A-B in Fig. 1 .
图6是图1的线C-D剖切的横剖视图。FIG. 6 is a cross-sectional view taken along line C-D of FIG. 1 .
图中:1、有源电路,2、λ/4谐振器,3、金属圆柱,4、TE011圆柱波导谐振器,4a、第一导电金属板,4b、圆柱波导,4c、第二导电金属板,5、矩形波导,6、矩形波导与圆波导耦合槽缝,7、λ/4谐振器与圆柱波导耦合槽缝。In the figure: 1. Active circuit, 2. λ/4 resonator, 3. Metal cylinder, 4. TE 011 cylindrical waveguide resonator, 4a, first conductive metal plate, 4b, cylindrical waveguide, 4c, second conductive metal Plate, 5. Rectangular waveguide, 6. Rectangular waveguide and circular waveguide coupling slot, 7. λ/4 resonator and cylindrical waveguide coupling slot.
具体实施方式Detailed ways
如图1、图4、图5、图6所示,本发明的谐振器包括硅基片层E上的两个以上有源电路1,在封装层F上与有源电路1相应个数的λ/4谐振器2,金属圆柱3,工作在TE011模的包括第一导电金属板4a、圆柱波导4b和第二导电金属板4c构成的TE011圆柱波导谐振器4和用于功率输出的矩形波导5;每个有源电路1的两个输出端a、b与对应λ/4谐振器2的两个开路端在硅基片层与封装层交界处进行连接,每个λ/4谐振器2的两个短路端与圆柱波导谐振器4在第一导电金属板4a上连接,通过第一导电金属板4a上的λ/4谐振器与圆柱波导耦合槽缝7实现能量耦合,矩形波导5装配在第二导电金属板4c之上,通过第二导电金属板4c上的矩形波导与圆柱波导耦合槽缝6实现能量耦合将能量从矩形波导5输出。As shown in Fig. 1, Fig. 4, Fig. 5, and Fig. 6, the resonator of the present invention includes more than two
如图2所示,所述的有源电路1为反相器对有源电路。As shown in FIG. 2, the
如图3所示,所述的有源电路1为交叉耦合对有源电路。As shown in FIG. 3 , the
所述的有源电路1个数由输出功率而定,输出功率越大个数越多。The number of one active circuit is determined by the output power, the greater the output power, the more the number.
整个谐振器的工作原理如下:The working principle of the whole resonator is as follows:
(a)硅基片上的有源电路1具有负阻特性,为封装层中的对应λ/4谐振器2提供能量,也即为整个TE011-λ/4-π模谐振器提供能量;(a) The
(b)λ/4谐振器2的两个差分传输线与硅基片层上相接的一端开路,与封装层中的TE011圆柱波导谐振器4端面相接的一端通过第一导电金属板4a实现短路,短路端的磁力线方向与差分传输线短路端两端点连线垂直,即在圆柱波导谐振器端面(第一导电金属板4a所在圆形面)的半径方向;(b) One end of the two differential transmission lines of the λ/4
(c)沿该半径方向在封装层中的TE011圆柱波导谐振器4与λ/4谐振器2相接的端面(第一导电金属板4a所在圆形面)的λ/4谐振器与圆柱波导耦合槽缝7,通过磁力线实现多个λ/4谐振器2和TE011圆柱波导谐振器4的耦合,激励出圆柱波导4b的TE011振荡模式,将所有λ/4谐振器2的振荡同相锁定,并进行功率合成;(c) The λ/4 resonator and the cylindrical waveguide on the end face (the circular surface where the first
(d)合成后的振荡信号功率通过第二导电金属板4c上的矩形波导与圆柱波导耦合缝隙6将能量耦合到矩形波导5进行输出。(d) The power of the synthesized oscillating signal is coupled to the
下面以工作在0.5THz的TE011-λ/4-π谐振器为例,其中有源电路个数为2个,具体阐述各个部分的实施方式。The following takes the TE011-λ/4-π resonator working at 0.5THz as an example, where the number of active circuits is 2, and specifically describes the implementation of each part.
硅基片上的有源电路1可以采用如图2所示的反相器对有源电路方案,该电路易于起振,并具有较高的效率,也可以采用如图3所示的交叉耦合对有源电路方案,此电路的特性是改变偏置电流即可控制其非线性特性。The
在硅基片层和封装层交界面上,将提供负阻的两个反相器对电路或两个交叉耦合对电路两端a、b与封装层上的对应个数的λ/4谐振器2的两端连接,如图1所示,实现负阻电路为谐振电路提供能量的功能。At the interface between the silicon substrate layer and the packaging layer, two inverter pairs of circuits or two cross-coupled pairs of circuits a and b that provide negative resistance will be connected to the corresponding number of λ/4 resonators on the packaging layer The two ends of 2 are connected, as shown in Figure 1, to realize the function that the negative resistance circuit provides energy for the resonant circuit.
λ/4谐振器为λ/4差分传输线谐振器的简称,由长度为λ/4(λ为介质中波长)的差分传输线构成,一端开路,一端短路。封装层中的多个λ/4谐振器2的实现方法如图4(从图1所示谐振系统底部对λ/4谐振器进行观察的侧视图)所示。在图4中,与λ/4谐振器2短路面圆柱波导4b的半径一致的方向开了两个槽缝,在每个槽缝的两侧沿圆柱波导4b圆周的周向放置差分传输线的两个λ/4导体。在实际制作加工时,这两个导体可以由封装层面上的圆柱形金属过孔构成,金属过孔一端开路,另一端由第一导电金属板4a短路,如图4所示,其相应的横剖视图如图5所示。金属过孔的加工在硅半导体工艺中是容易实现的。对于0.5THz的振荡,若封装介质材料相对介电系数εr=4,则对应λ/4为75um,即差分传输线长度为75um,而差分传输线的半径可以取10um。The λ/4 resonator is the abbreviation of the λ/4 differential transmission line resonator. It is composed of a differential transmission line with a length of λ/4 (λ is the wavelength in the medium). One end is open and the other end is short circuited. The implementation method of multiple λ/4
差分传输线短路端的磁力线方向与差分传输线短路端两端点连线垂直,即在TE011圆柱波导谐振器4端面的半径方向。为了实现两个λ/4谐振器2和圆柱波导4b的耦合,激励出圆柱波导4b的TE011模,如图4所示,沿圆柱波导4b半径方向在封装层中的圆柱波导谐振器4与λ/4谐振器2连接的第一导电金属板4a开λ/4谐振器与圆柱波导耦合槽缝7。The direction of the magnetic force lines at the short-circuit end of the differential transmission line is perpendicular to the line connecting the two ends of the short-circuit end of the differential transmission line, that is, in the radial direction of the end face of the TE 011
图4中金属圆柱3的作用,是用来使每个λ/4谐振器的电场、磁场分布满足很纯的λ/4谐振器工作状态的。TE011圆柱波导谐振器4上方的矩形波导5是用于将TE011谐振器4中合成的功率进行输出,矩形波导5的一个矩形壁和第二导电板4c相交部分通过开矩形波导与圆柱波导耦合槽缝6实现两者之间的能量耦合。TE011圆柱波导谐振器4与矩形波导5耦合的横剖视如图6所示。The role of the
当圆柱波导工作在TE011模时,只有沿圆柱径向的磁场和沿圆柱周向的电场,因此当传输功率一定时,管壁的热损耗将单调下降,故其损耗相对其他模式来说是最低的。When the cylindrical waveguide works in the TE 011 mode, there is only a magnetic field along the radial direction of the cylinder and an electric field along the circumferential direction of the cylinder, so when the transmission power is constant, the heat loss of the tube wall will decrease monotonously, so its loss is lowest.
TE011圆柱波导谐振器的储能(或Q值)远高于λ/4谐振器,故频率主要取决于TE011圆柱波导谐振器的谐振频率。只要TE011圆柱波导谐振器能稳定地工作,就能同步锁定两个λ/4振荡器的振荡。因为圆柱波导谐振器稳定工作于TE011模,从而确保TE011-λ/4-π谐振器使两个λ/4谐振器同步稳定地工作于λ/4振荡模式。The energy storage (or Q value) of the TE 011 cylindrical waveguide resonator is much higher than that of the λ/4 resonator, so the frequency mainly depends on the resonance frequency of the TE 011 cylindrical waveguide resonator. As long as the TE 011 cylindrical waveguide resonator works stably, the oscillations of the two λ/4 oscillators can be synchronously locked. Because the cylindrical waveguide resonator works stably in the TE 011 mode, the TE 011 -λ/4-π resonator ensures that the two λ/4 resonators work synchronously and stably in the λ/4 oscillation mode.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2009101022967A CN101656523B (en) | 2009-09-07 | 2009-09-07 | Three-dimensional Structure TE011-λ/4-π Mode Resonator |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2009101022967A CN101656523B (en) | 2009-09-07 | 2009-09-07 | Three-dimensional Structure TE011-λ/4-π Mode Resonator |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101656523A CN101656523A (en) | 2010-02-24 |
CN101656523B true CN101656523B (en) | 2011-09-07 |
Family
ID=41710657
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2009101022967A Expired - Fee Related CN101656523B (en) | 2009-09-07 | 2009-09-07 | Three-dimensional Structure TE011-λ/4-π Mode Resonator |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN101656523B (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101826839B (en) * | 2010-04-19 | 2011-12-07 | 浙江大学 | Inverter-based chaotic oscillating circuit |
CN104506167B (en) * | 2014-12-01 | 2017-04-05 | 东南大学 | A kind of Terahertz electric impulse production device based on solid-state electronic |
CN112557761A (en) * | 2019-09-25 | 2021-03-26 | 天津大学 | High-resolution simple terahertz near-field imaging array unit |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1639929A (en) * | 2002-02-28 | 2005-07-13 | 费姆托激光产品股份有限公司 | Device for generating terahertz radiation, and a semiconductor component |
-
2009
- 2009-09-07 CN CN2009101022967A patent/CN101656523B/en not_active Expired - Fee Related
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1639929A (en) * | 2002-02-28 | 2005-07-13 | 费姆托激光产品股份有限公司 | Device for generating terahertz radiation, and a semiconductor component |
Also Published As
Publication number | Publication date |
---|---|
CN101656523A (en) | 2010-02-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Wang et al. | Non-Hermitian morphing of topological modes | |
US20180131100A1 (en) | Left-handed circular-polarization conversion metamaterial film | |
US20180128953A1 (en) | Right-handed circular-polarization conversion metamaterial film | |
Anderson et al. | Symmetry reduction in group 4mm photonic crystals | |
CN112540427B (en) | A terahertz topological transmission waveguide based on the optical quantum spin Hall effect | |
CN112561067B (en) | Entangled state preparation method and device based on superconducting quantum bit and Reidberg atoms | |
CN107408224A (en) | Techniques for coupling planar qubits to non-planar resonators, and related systems and methods | |
CN108281782A (en) | A kind of substrate integration wave-guide resonant cavity OAM antennas | |
WO1992015124A1 (en) | Low-loss dielectric resonant devices | |
CN101026257A (en) | Super-small resonant cavity | |
CN106997839A (en) | A kind of slow-wave structure based on Meta Materials | |
CN104167608A (en) | Balance Vivaldi slotted antenna based on folded substrate integrated waveguide feed | |
CN101656523B (en) | Three-dimensional Structure TE011-λ/4-π Mode Resonator | |
Song et al. | Compact tunable sub-terahertz oscillators based on Josephson junctions | |
Lai et al. | Multiwave interaction formulation of a coaxial Bragg structure and its experimental verification | |
Yang et al. | High-efficiency cross-polarization conversion metamaterial using spiral split-ring resonators | |
CN104112752B (en) | There is the plane nano oscillator array of PGC demodulation function | |
CN102722061B (en) | All-optical multi-wavelength conversing method and device based on photonic crystal | |
CN101582531B (en) | Three-dimensional structure TM010-lambda/4 millimeter wave resonator based on silicon technology | |
CN115169564B (en) | Quantum bit system and quantum computing method | |
CN103338006B (en) | Based on the sub-millimeter wave frequency multiplier of the two probe of waveguide | |
CN105024647A (en) | Full-wave band terahertz frequency tripling module | |
US4996505A (en) | Frequency triplicator for microwaves | |
CN114623850A (en) | Resonant Enhanced Passive Coupled Sensing Structure | |
Ginzburg et al. | Observation of the high-Q modes inside the resonance zone of two-dimensional Bragg structures |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20110907 Termination date: 20160907 |