CN101648908A - New water-soluble rare-earth organic chelate fluorescent probe and preparation method thereof - Google Patents

New water-soluble rare-earth organic chelate fluorescent probe and preparation method thereof Download PDF

Info

Publication number
CN101648908A
CN101648908A CN200910053878A CN200910053878A CN101648908A CN 101648908 A CN101648908 A CN 101648908A CN 200910053878 A CN200910053878 A CN 200910053878A CN 200910053878 A CN200910053878 A CN 200910053878A CN 101648908 A CN101648908 A CN 101648908A
Authority
CN
China
Prior art keywords
pta
rare earth
water
fluorescent probe
soluble rare
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN200910053878A
Other languages
Chinese (zh)
Inventor
安保礼
任媛媛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Shanghai for Science and Technology
Original Assignee
University of Shanghai for Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Shanghai for Science and Technology filed Critical University of Shanghai for Science and Technology
Priority to CN200910053878A priority Critical patent/CN101648908A/en
Publication of CN101648908A publication Critical patent/CN101648908A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

本发明涉及一种新型水溶性稀土有机螯合物荧光探针及其制备方法,该稀土荧光探针由双功能有机配体2,4,6-吡啶三甲酸(PTA)分别和SmCl3和DyCl3在水溶液中以摩尔比3∶1配位反应制得。该标记探针具有很强的荧光强度、较好的水溶性及稳定性、易于生物分子标记、对所标记的生物分子的影响小等优点,可广泛应用于标记免疫分析、核酸测定、疾病诊断、细菌、病毒、微生物的检测等。另外由于其制备工艺简单、所用原料成本低且设备投资少,因此在拓展其应用范围方面也具有实际开发价值。

The invention relates to a novel water-soluble rare earth organic chelate fluorescent probe and a preparation method thereof. The rare earth fluorescent probe consists of a bifunctional organic ligand 2,4,6-pyridine tricarboxylic acid (PTA) and SmCl 3 and DyCl respectively. 3 is prepared by coordination reaction in aqueous solution at a molar ratio of 3:1. The labeled probe has the advantages of strong fluorescence intensity, good water solubility and stability, easy biomolecular labeling, and little impact on the labeled biomolecules, and can be widely used in labeled immunoassays, nucleic acid assays, and disease diagnosis. , Bacteria, virus, microorganism detection, etc. In addition, because of its simple preparation process, low cost of raw materials and low investment in equipment, it also has practical development value in expanding its application range.

Description

新型水溶性稀土有机螯合物荧光探针及其制备方法 Novel water-soluble rare earth organic chelate fluorescent probe and preparation method thereof

技术领域 technical field

本发明属于荧光免疫分析及生物检测领域,具体涉及一种双功能有机配体2,4,6-吡啶三甲酸、其水溶性稀土荧光探针PTA:Sm3+和PTA:Dy3+及其制备方法。The invention belongs to the field of fluorescence immunoassay and biological detection, and specifically relates to a bifunctional organic ligand 2,4,6-pyridine tricarboxylic acid, its water-soluble rare earth fluorescent probes PTA:Sm 3+ and PTA:Dy 3+ and its Preparation.

技术背景 technical background

时间分辨免疫分析技术是20世纪80年代初期由Soini和Kojola等建立起来的一种非放射性免疫分析技术,因灵敏度高、操作简单、示踪物稳定、无放射性污染、标准曲线线性范围明显优于其它技术,最为引人关注。稀土元素作为金属离子,很难直接与生物体结合,因此在标记上需要一种具有双功能基团的螯合剂,一端与稀土金属离子连接,一端与生物体的自由氨基或羧基连接。Time-resolved immunoassay technique is a non-radioactive immunoassay technique established by Soini and Kojola in the early 1980s. Due to its high sensitivity, simple operation, stable tracer, no radioactive pollution, and the linear range of the standard curve is significantly better than Other technologies have attracted the most attention. As metal ions, rare earth elements are difficult to directly bind to organisms. Therefore, a chelating agent with dual functional groups is required for labeling. One end is connected to rare earth metal ions, and the other end is connected to free amino or carboxyl groups of organisms.

稀土荧光探针主要是一些稀土元素Sm3+、Eu3+、Tb3+、Dy3+的配合物,在紫外光的照射下,可以发出很强的荧光。稀土配合物用作探针标记进行免疫分析具有的优越性:(1)激发光谱带较宽,有利于提高激发能,提高标记物的比活性;(2)发射光谱带很窄,有利于降低本底,提高分辨率;(3)Stokes位移较大,有利于排除非特异性荧光的干扰;(4)荧光寿命较长,一般在100~1000μs,而背景荧光衰变时间只有1~10ns,相差5~6个数量级,因此可采用时间分辨检测技术,延迟测量时间,待背景荧光完全衰减后测定,所测得的便是稀土有机配合物的荧光,从而消除蛋白质背景荧光的干扰;(5)稀土标记物比较稳定,可以保存1~2年,克服了同位素、酶等标记物的缺点。Rare earth fluorescent probes are mainly complexes of some rare earth elements Sm 3+ , Eu 3+ , Tb 3+ , and Dy 3+ , which can emit strong fluorescence under the irradiation of ultraviolet light. Rare earth complexes have the advantages of being used as probe labels for immunoassay: (1) The excitation spectrum band is wide, which is beneficial to increase the excitation energy and the specific activity of the marker; (2) The emission spectrum band is very narrow, which is conducive to reducing The background improves the resolution; (3) Stokes shift is large, which is beneficial to eliminate the interference of non-specific fluorescence; (4) the fluorescence lifetime is long, generally 100-1000μs, while the background fluorescence decay time is only 1-10ns, with a difference of 5 ~6 orders of magnitude, so time-resolved detection technology can be used to delay the measurement time and measure after the background fluorescence is completely attenuated. The measured fluorescence is the fluorescence of rare earth organic complexes, thereby eliminating the interference of protein background fluorescence; (5) rare earth The markers are relatively stable and can be stored for 1 to 2 years, overcoming the shortcomings of markers such as isotopes and enzymes.

发明内容 Contents of the invention

本发明的目的之一在于提供一种双功能有机配体2,4,6-吡啶三甲酸PTA。One of the objectives of the present invention is to provide a bifunctional organic ligand 2,4,6-pyridinetricarboxylic acid PTA.

本发明的目的之二在于提供一种由双功能有机配体2,4,6-吡啶三甲酸PTA为配体形成的用作生物标记的水溶性稀土荧光探针PTA:Sm3+和PTA:Dy3+The second object of the present invention is to provide a water-soluble rare earth fluorescent probe PTA: Sm 3+ and PTA: Dy 3+ .

本发明的目的之三在于提供上述两种水溶性稀土荧光探针的制备方法。The third object of the present invention is to provide the preparation method of the above two kinds of water-soluble rare earth fluorescent probes.

为达到上述目的,本发明采用如下技术方案:To achieve the above object, the present invention adopts the following technical solutions:

一种双功能有机配体2,4,6-吡啶三甲酸,其特征在于该有机配体的结构式为:A bifunctional organic ligand 2,4,6-pyridinetricarboxylic acid, characterized in that the structural formula of the organic ligand is:

Figure G2009100538780D00021
Figure G2009100538780D00021

一种水溶性稀土荧光探针,其特征在于该稀土荧光探针具有以下两种结构:A water-soluble rare earth fluorescent probe is characterized in that the rare earth fluorescent probe has the following two structures:

a.三(2,4,6-吡啶三甲酸)合钐(III)酸钠二元配合物,即Na6[Sm(PTA)3]·18H2O,具体结构为:a. Sodium tris(2,4,6-pyridinetricarboxylic acid) samarium(III) acid binary complex, namely Na 6 [Sm(PTA) 3 ]·18H 2 O, the specific structure is:

Figure G2009100538780D00022
Figure G2009100538780D00022

b.三(2,4,6-吡啶三甲酸)合镝(III)酸钠二元配合物,即Na6[Dy(PTA)3]·18H2O,具体结构为:b. Sodium tris(2,4,6-pyridinetricarboxylic acid) dysdysprosium(III) binary complex, namely Na 6 [Dy(PTA) 3 ]·18H 2 O, the specific structure is:

Figure G2009100538780D00031
Figure G2009100538780D00031

一种制备上述的水溶性稀土荧光探针的方法,其特征在于该方法的具体步骤为:A method for preparing the above-mentioned water-soluble rare earth fluorescent probe is characterized in that the specific steps of the method are:

a.将2,4,6-三甲基吡啶与去离子水按一定体积比混合,室温搅拌下缓慢加入过量的氧化剂KMnO4,室温搅拌10~15小时,40~50℃下搅拌10~15小时,趁热过滤,热水洗涤,调节滤液的pH=1~2,白色固体析出,过滤,冷水洗涤,95℃下缓慢滴加浓HCl直至大部分白色固体溶解,趁热过滤,0~5℃下静置有白色固体析出,既得到双功能有机配体2,4,6-吡啶三甲酸;a. Mix 2,4,6-collidine and deionized water in a certain volume ratio, slowly add excess oxidant KMnO 4 under stirring at room temperature, stir at room temperature for 10-15 hours, and stir at 40-50°C for 10-15 hours hours, filter while hot, wash with hot water, adjust the pH of the filtrate=1~2, white solid precipitates, filter, wash with cold water, slowly add concentrated HCl dropwise at 95°C until most of the white solid dissolves, filter while hot, 0~5 After standing at ℃, a white solid precipitated, and the bifunctional organic ligand 2,4,6-pyridinetricarboxylic acid was obtained;

b.水溶性稀土荧光探针的制备方法:将步骤a所得PTA溶于去离子水中,缓慢滴加SmCl3水溶液或到DyCl3水溶液;其中SmCl3或DyCl3与PTA的摩尔比为1∶3;调节溶液pH至8~9,60℃搅拌反应8~12小时,过滤,室温下静置待其析出后,洗涤,真空干燥,得无色晶体,即为水溶性稀土荧光探针Na6[Sm(PTA)3]·18H2O或Na6[Dy(PTA)3]·18H2O。b. The preparation method of water-soluble rare earth fluorescent probe: the PTA obtained in step a is dissolved in deionized water, and slowly added dropwise to SmCl 3 aqueous solution or to DyCl 3 aqueous solution; wherein the molar ratio of SmCl 3 or DyCl 3 to PTA is 1: 3 ; adjust the pH of the solution to 8-9, stir and react at 60°C for 8-12 hours, filter, leave at room temperature until it precipitates, wash, and dry in vacuum to obtain colorless crystals, which are water-soluble rare earth fluorescent probes Na 6 [ Sm(PTA) 3 ]·18H 2 O or Na 6 [Dy(PTA) 3 ]·18H 2 O.

本发明所制备的稀土荧光探针PTA:Sm3+和PTA:Dy3+的特点为:The characteristics of the rare earth fluorescent probes PTA: Sm 3+ and PTA: Dy 3+ prepared by the present invention are:

a.自身具有良好的水溶性和稳定性;a. It has good water solubility and stability;

b.具有很强的荧光强度和较大的荧光量子产率;b. It has strong fluorescence intensity and large fluorescence quantum yield;

c.易于生物分子标记,且毒性小,对所标记的生物分子的影响较小;c. It is easy to label biomolecules, has low toxicity, and has little impact on the labeled biomolecules;

d.制备工艺简单,成本低,不使用有机溶剂,不会对环境造成污染。d. The preparation process is simple, the cost is low, no organic solvent is used, and the environment will not be polluted.

由于该标记探针具有很强的荧光强度、较好的水溶性及稳定性、易于生物分子标记、对所标记的生物分子的影响小等优点,可广泛应用于标记免疫分析、核酸测定、疾病诊断、细菌、病毒、微生物的检测等,另外由于其制备工艺简单、所用原料成本低且设备投资少,因此在拓展其应用范围方面又具有实际意义。Because the labeled probe has the advantages of strong fluorescence intensity, good water solubility and stability, easy biomolecular labeling, and little impact on the labeled biomolecules, it can be widely used in labeled immunoassays, nucleic acid assays, disease Diagnosis, detection of bacteria, viruses, microorganisms, etc. In addition, because of its simple preparation process, low cost of raw materials and low investment in equipment, it has practical significance in expanding its application range.

附图说明 Description of drawings

图1为Na6[Sm(PTA)3]·18H2O和Na6[Dy(PTA)3]·18H2O在固体状态下的激发光谱和发射光谱,其中(a)为Na6[Dy(PTA)3]·18H2O的激发光谱和发射光谱,(b)为Na6[Sm(PTA)3]·18H2O的激发光谱和发射光谱(5300PC,高灵敏度,Na6[Dy(PTA)3]的激发和发射狭缝均为1.5nm,Na6[Sm(PTA)3]的激发和发射狭缝分别为3nm和1.5nm)。Figure 1 shows the excitation and emission spectra of Na 6 [Sm(PTA) 3 ]·18H 2 O and Na 6 [Dy(PTA) 3 ]·18H 2 O in the solid state, where (a) is Na 6 [Dy (PTA) 3 ]·18H 2 O excitation and emission spectra, (b) is the excitation and emission spectra of Na 6 [Sm(PTA) 3 ]·18H 2 O (5300PC, high sensitivity, Na 6 [Dy( The excitation and emission slits of PTA) 3 ] are both 1.5 nm, and the excitation and emission slits of Na 6 [Sm(PTA) 3 ] are 3 nm and 1.5 nm, respectively).

图2为Na6[Sm(PTA)3]和Na6[Dy(PTA)3]在水溶液状态(浓度为1.0×10-4mol/L)下的激发光谱和发射光谱,其中(a)为Na6[Dy(PTA)3]·18H2O的激发光谱和发射光谱,(b)为Na6[Sm(PTA)3]·18H2O的激发光谱和发射光谱(5300PC,高灵敏度,Na6[Sm(PTA)3]溶液的激发和发射狭缝分别为10nm和5nm,Na6[Dy(PTA)3]溶液的激发和发射狭缝均为3nm)。Figure 2 shows the excitation and emission spectra of Na 6 [Sm(PTA) 3 ] and Na 6 [Dy(PTA) 3 ] in aqueous solution (concentration of 1.0×10 -4 mol/L), where (a) is The excitation and emission spectra of Na 6 [Dy(PTA) 3 ]·18H 2 O, (b) is the excitation and emission spectra of Na 6 [Sm(PTA) 3 ]·18H 2 O (5300PC, high sensitivity, Na The excitation and emission slits of the 6 [Sm(PTA) 3 ] solution are 10 nm and 5 nm, respectively, and the excitation and emission slits of the Na 6 [Dy(PTA) 3 ] solution are both 3 nm).

具体实施方式 Detailed ways

以下用实例对本发明作进一步说明,但不限于此。The present invention will be further described below with examples, but not limited thereto.

实施实例一:双功能有机配体2,4,6-吡啶三甲酸(PTA)的具体制备方法如下:Implementation example one: the specific preparation method of bifunctional organic ligand 2,4,6-pyridinetricarboxylic acid (PTA) is as follows:

以2,4,6-三甲基吡啶(纯度为99.99%)和KMnO4(A.R.)为原料,将2,4,6-三甲基吡啶与去离子水按体积比1∶20混合,室温搅拌下缓慢加入适量KMnO4,之后室温搅拌10~15h,40~50℃下搅拌10~15h,趁热过滤,热水洗涤三次,滤液用浓HCl调至pH=1,白色固体析出,过滤,冷水洗涤三次,95℃下缓慢滴加浓HCl直至大部分白色固体溶解,趁热过滤,0~5℃下静置有白色固体(PTA)析出,得二水合目标产物。产率54.5%,m.p.232.8℃(分解),该化合物的结构是:Using 2,4,6-collidine (purity 99.99%) and KMnO 4 (AR) as raw materials, mix 2,4,6-collidine and deionized water at a volume ratio of 1:20, room temperature Slowly add an appropriate amount of KMnO 4 under stirring, then stir at room temperature for 10-15 hours, stir at 40-50°C for 10-15 hours, filter while hot, wash with hot water three times, adjust the filtrate to pH = 1 with concentrated HCl, a white solid precipitates, filter, Wash with cold water three times, slowly add concentrated HCl dropwise at 95°C until most of the white solid dissolves, filter while hot, and white solid (PTA) precipitates after standing at 0-5°C to obtain the target dihydrate product. Yield 54.5%, mp232.8 ℃ (decomposition), the structure of this compound is:

Figure G2009100538780D00041
Figure G2009100538780D00041

元素分析:C8H5NO6,实验值(理论值)C:38.62(38.88),N:5.64(5.67),H:3.65(3.67),C/N:6.85(6.86).IR(KBr)/cm-1:3501.8(vCOO-H),3157.7(vC-H),1729.6(vC=O),1701.7(vC=O),1614.9(vC=N,in Py),1568.6(vC=C,,in Py).1H-NMR(DMSO,δ/ppm):8.52(s,2H,py)。Elemental analysis: C 8 H 5 NO 6 , experimental value (theoretical value) C: 38.62 (38.88), N: 5.64 (5.67), H: 3.65 (3.67), C/N: 6.85 (6.86).IR (KBr) /cm -1 : 3501.8 (v COO-H ), 3157.7 (v CH ), 1729.6 (v C=O ), 1701.7 (v C=O ), 1614.9 (v C=N, in Py ), 1568.6 (v C =C,, in Py ). 1 H-NMR (DMSO, δ/ppm): 8.52 (s, 2H, py).

实施例二:Na6[Sm(PTA)3]·18H2O的具体制备方法如下:Example 2: The specific preparation method of Na 6 [Sm(PTA) 3 ]·18H 2 O is as follows:

将1.2mmol PTA溶于少量去离子水中,待固体全部溶解后,加去离子水使体系总体积达到50mL。然后将2.0mL(0.4mmol)SmCl3水溶液缓慢加入到上述PTA溶液中,用1.0mol·L-1NaOH水溶液将pH调至8左右,60℃水浴搅拌8小时,室温下静置数天析出无色晶体Na6[Sm(PTA)3]·18H2O,产率60%。Dissolve 1.2mmol of PTA in a small amount of deionized water. After all the solids are dissolved, add deionized water to make the total volume of the system reach 50mL. Then 2.0 mL (0.4 mmol) of SmCl 3 aqueous solution was slowly added to the above PTA solution, and the pH was adjusted to about 8 with 1.0 mol L -1 NaOH aqueous solution, stirred in a water bath at 60°C for 8 hours, and left at room temperature for several days to precipitate out Color crystal Na 6 [Sm(PTA) 3 ]·18H 2 O, yield 60%.

元素分析:SmNa6C24H42N3O36(Na6[Sm(PTA)3]·18H2O),实验值(理论值)C:23.2(23.31),N:3.26(3.40),H:3.34(3.42),C/N 7.12(6.86).IR(KBr)/cm-1:3452.0(vCOO-H),1633.3(vC=O),1558.9(vC=N,in Py),1437.4(vC=C,in Py),1374.6(vC=O),463.3(vSm-O).Elemental analysis: SmNa 6 C 24 H 42 N 3 O 36 (Na 6 [Sm(PTA) 3 ]·18H 2 O), experimental value (theoretical value) C: 23.2 (23.31), N: 3.26 (3.40), H : 3.34 (3.42), C/N 7.12 (6.86).IR(KBr)/cm -1 : 3452.0 (v COO-H ), 1633.3 (v C=O ), 1558.9 (v C=N, in Py ), 1437.4 (v C=C, in Py ), 1374.6 (v C=O ), 463.3 (v Sm-O ).

实施例三:Na6[Dy(PTA)3]·18H2O的具体制备方法如下:Example 3: The specific preparation method of Na 6 [Dy(PTA) 3 ]·18H 2 O is as follows:

本制备方法与实施例二中Na6[Sm(PTA)3]·18H2O的制备方法基本相同,所不同的是:将实施例二中的SmCl3水溶液换成DyCl3水溶液。This preparation method is basically the same as the preparation method of Na 6 [Sm(PTA) 3 ]·18H 2 O in Example 2, except that the SmCl 3 aqueous solution in Example 2 is replaced by DyCl 3 aqueous solution.

元素分析:DyNa6C24H42N3O36(Na6[Dy(PTA)3]·18H2O),实验值(理论值)C 22.43(23.08),H 3.09(3.39),N 3.35(3.36),C/N 6.70(6.86).IR(KBr)/cm-1:3441.8(vCOO-H),1628.7(vas,COO-),1367.4(vs,COO-),1558.8(vC=N,in Py),1437.5(vC=C,in Py),539.7(vDy-O)Elemental analysis: DyNa 6 C 24 H 42 N 3 O 36 (Na 6 [Dy(PTA) 3 ]·18H 2 O), experimental value (theoretical value) C 22.43 (23.08), H 3.09 (3.39), N 3.35 ( 3.36), C/N 6.70(6.86).IR(KBr)/cm -1 : 3441.8(v COO-H ), 1628.7(v as, COO- ), 1367.4(v s, COO- ), 1558.8(v C = N, in Py ), 1437.5 (v C = C, in Py ), 539.7 (v Dy-O )

图1为Na6[Sm(PTA)3]·18H2O和Na6[Dy(PTA)3]·18H2O在固体状态下的激发光谱和发射光谱(5300PC,高灵敏度,Na6[Dy(PTA)3]的激发和发射狭缝均为1.5nm,Na6[Sm(PTA)3]的激发和发射狭缝分别为3nm和1.5nm)。图2为Na6[Sm(PTA)3]和Na6[Dy(PTA)3]在水溶液状态(浓度为1.0×10-4mol/L)下的激发光谱和发射光谱(5300PC,高灵敏度,Na6[Sm(PTA)3]溶液的激发和发射狭缝分别为10nm和5nm,Na6[Dy(PTA)3]溶液的激发和发射狭缝均为3nm)。从图中可以看出:该探针激发光谱带较宽,有利于提高激发能,提高标记物的比活性;发射光谱带很窄,有利于降低本底,提高分辨率;在稀水溶液中仍然具有很强的荧光强度,且易溶于水,在水溶液中可以稳定存在,有望广泛应用于标记免疫分析、核酸测定、疾病诊断、细菌、病毒、微生物的检测等领域。Figure 1 shows the excitation and emission spectra of Na 6 [Sm(PTA) 3 ]·18H 2 O and Na 6 [Dy(PTA) 3 ]·18H 2 O in solid state (5300PC, high sensitivity, Na 6 [Dy The excitation and emission slits of (PTA) 3 ] are both 1.5 nm, and the excitation and emission slits of Na 6 [Sm(PTA) 3 ] are 3 nm and 1.5 nm, respectively). Figure 2 shows the excitation and emission spectra of Na 6 [Sm(PTA) 3 ] and Na 6 [Dy(PTA) 3 ] in aqueous solution (concentration: 1.0×10 -4 mol/L) (5300PC, high sensitivity, The excitation and emission slits of the Na 6 [Sm(PTA) 3 ] solution are 10 nm and 5 nm, respectively, and the excitation and emission slits of the Na 6 [Dy(PTA) 3 ] solution are both 3 nm). It can be seen from the figure that the probe has a wide excitation spectrum band, which is beneficial to increase the excitation energy and the specific activity of the marker; the emission spectrum band is very narrow, which is beneficial to reduce the background and improve the resolution; It has strong fluorescence intensity, is easily soluble in water, and can exist stably in aqueous solution. It is expected to be widely used in the fields of marker immunoassay, nucleic acid determination, disease diagnosis, detection of bacteria, viruses, and microorganisms.

Claims (3)

1.一种双功能有机配体2,4,6-吡啶三甲酸,其特征在于该有机配体的结构式为:1. a kind of bifunctional organic ligand 2,4,6-pyridinetricarboxylic acid, it is characterized in that the structural formula of this organic ligand is:
Figure A2009100538780002C1
Figure A2009100538780002C1
2.一种水溶性稀土荧光探针,采用根据权利要求1所述的双功能有机配体2,4,6-吡啶三甲酸为配体,其特征在于该稀土荧光探针具有以下两种结构:2. A water-soluble rare earth fluorescent probe adopts the bifunctional organic ligand 2,4,6-pyridine tricarboxylic acid according to claim 1 as a ligand, and is characterized in that the rare earth fluorescent probe has the following two structures : a.三(2,4,6-吡啶三甲酸)合钐(III)酸钠二元配合物,即Na6[Sm(PTA)3]·18H2O,具体结构为:a. Sodium tris(2,4,6-pyridinetricarboxylic acid) samarium(III) acid binary complex, namely Na 6 [Sm(PTA) 3 ]·18H 2 O, the specific structure is:
Figure A2009100538780002C2
Figure A2009100538780002C2
b.三(2,4,6-吡啶三甲酸)合镝(III)酸钠二元配合物,即Na6[Dy(PTA)3]·18H2O,具体结构为:b. Sodium tris(2,4,6-pyridinetricarboxylic acid) dysdysprosium(III) binary complex, namely Na 6 [Dy(PTA) 3 ]·18H 2 O, the specific structure is:
Figure A2009100538780003C1
Figure A2009100538780003C1
3.一种制备根据权利要求2所述的水溶性稀土荧光探针的方法,其特征在于该方法的具体步骤为:3. a method for preparing the water-soluble rare earth fluorescent probe according to claim 2, is characterized in that the concrete steps of the method are: a.将2,4,6-三甲基吡啶与去离子水按一定体积比混合,室温搅拌下缓慢加入过量的氧化剂KMnO4,室温搅拌10~15小时,40~50℃下搅拌10~15小时,趁热过滤,热水洗涤,调节滤液的pH=1~2,白色固体析出,过滤,冷水洗涤,95℃下缓慢滴加浓HCl直至大部分白色固体溶解,趁热过滤,0~5℃下静置有白色固体析出,既得到双功能有机配体2,4,6-吡啶三甲酸;a. Mix 2,4,6-collidine and deionized water in a certain volume ratio, slowly add excess oxidant KMnO 4 under stirring at room temperature, stir at room temperature for 10-15 hours, and stir at 40-50°C for 10-15 hours hours, filter while hot, wash with hot water, adjust the pH of the filtrate=1~2, white solid precipitates, filter, wash with cold water, slowly add concentrated HCl dropwise at 95°C until most of the white solid dissolves, filter while hot, 0~5 After standing at ℃, a white solid precipitated, and the bifunctional organic ligand 2,4,6-pyridinetricarboxylic acid was obtained; b.水溶性稀土荧光探针的制备方法:将步骤a所得PTA溶于去离子水中,缓慢滴加SmCl3水溶液或到DyCl3水溶液;其中SmCl3或DyCl3与PTA的摩尔比为1∶3;调节溶液pH至8~9,60℃搅拌反应8~12小时,过滤,室温下静置待其析出后,洗涤,真空干燥,得无色晶体,即为水溶性稀土荧光探针Na6[Sm(PTA)3]·18H2O或Na6[Dy(PTA)3]·18H2O。b. The preparation method of water-soluble rare earth fluorescent probe: the PTA obtained in step a is dissolved in deionized water, and slowly added dropwise to SmCl 3 aqueous solution or to DyCl 3 aqueous solution; wherein the molar ratio of SmCl 3 or DyCl 3 to PTA is 1: 3 ; adjust the pH of the solution to 8-9, stir and react at 60°C for 8-12 hours, filter, leave at room temperature until it precipitates, wash, and dry in vacuum to obtain colorless crystals, which are water-soluble rare earth fluorescent probes Na 6 [ Sm(PTA) 3 ]·18H 2 O or Na 6 [Dy(PTA) 3 ]·18H 2 O.
CN200910053878A 2009-06-26 2009-06-26 New water-soluble rare-earth organic chelate fluorescent probe and preparation method thereof Pending CN101648908A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN200910053878A CN101648908A (en) 2009-06-26 2009-06-26 New water-soluble rare-earth organic chelate fluorescent probe and preparation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN200910053878A CN101648908A (en) 2009-06-26 2009-06-26 New water-soluble rare-earth organic chelate fluorescent probe and preparation method thereof

Publications (1)

Publication Number Publication Date
CN101648908A true CN101648908A (en) 2010-02-17

Family

ID=41671259

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200910053878A Pending CN101648908A (en) 2009-06-26 2009-06-26 New water-soluble rare-earth organic chelate fluorescent probe and preparation method thereof

Country Status (1)

Country Link
CN (1) CN101648908A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102070517A (en) * 2011-01-30 2011-05-25 天津大学 6-methyl-2,3,5-pyridine tricarboxylic acid and synthetic method thereof
CN107417710A (en) * 2017-08-04 2017-12-01 浙江大学 A kind of heterocycle metal-organic framework material for high efficiency selected separation absorption and preparation method thereof
CN115326770A (en) * 2022-09-01 2022-11-11 福州大学 Time-resolved fluorescent rare earth probe with renal clearance function and preparation method thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102070517A (en) * 2011-01-30 2011-05-25 天津大学 6-methyl-2,3,5-pyridine tricarboxylic acid and synthetic method thereof
CN107417710A (en) * 2017-08-04 2017-12-01 浙江大学 A kind of heterocycle metal-organic framework material for high efficiency selected separation absorption and preparation method thereof
CN107417710B (en) * 2017-08-04 2019-04-23 浙江大学 A kind of heterocyclic metal organic framework material for efficient selective separation and adsorption and preparation method thereof
CN115326770A (en) * 2022-09-01 2022-11-11 福州大学 Time-resolved fluorescent rare earth probe with renal clearance function and preparation method thereof

Similar Documents

Publication Publication Date Title
CN109400899B (en) A kind of lead coordination polymer and its preparation method and application
Chatterjee et al. Amine functionalized tetraphenylethylene: a novel aggregation-induced emission based fluorescent chemodosimeter for nitrite and nitrate ions
Jiang et al. Dimethoxy triarylamine-derived terpyridine–zinc complex: A fluorescence light-up sensor for citrate detection based on aggregation-induced emission
Hossain et al. Pyrene-appended bipyridine hydrazone ligand as a turn-on sensor for Cu 2+ and its bioimaging application
CN103965230B (en) A kind of functional metal-organic backbone based on rare earth metal bunch and preparation method thereof
CN109608364B (en) A kind of preparation method and application of fluorescent probe for detecting mercury ions
CN101851500B (en) Fluorescent Probes for Mercury Ion Detection with Fluoroboron Dye
CN108276383A (en) A kind of fluorescence probe and preparation method thereof of identification iodide ion and recognition methods
CN103896830B (en) Fluorescent molecule of triphenylamine pyridinium salt and preparation method thereof
Weng et al. Novel multi-component photofunctional nanohybrids for ratio-dependent oxygen sensing
CN110590784B (en) Derivative based on pyrrolopyrroledione and preparation method and application thereof
CN104448254B (en) A kind of containing porphyrin platinum complex phosphorescent conjugated polyelectrolyte photoelectric material and its preparation method and application
CN101648908A (en) New water-soluble rare-earth organic chelate fluorescent probe and preparation method thereof
CN101445480A (en) Bifunctional organic ligand 2, 4, 6-pyridine tricarboxylic acid, water-soluble rare-earth fluorescence labeling material and preparation method thereof
Eçik et al. Synthesis of BODIPY-cyclotetraphosphazene triad systems and their sensing behaviors toward Co (II) and Cu (II)
CN106243082A (en) The application in Aniline categories detects of the thiophene diamides zinc luminescent metal organic backbone
Wang et al. Luminescent NaTb (SO4) 2 nanoprobe for hydrogen peroxide based on switchable fluorescence of Tb (IV)/Tb (III) redox couple
CN109852376A (en) Organic inorganic hybridization polyacid base Rare Earth Derivatives and its preparation method and application
CN103333211B (en) A class of dual-wavelength emission, double heteronuclear metal complexes and their preparation methods and applications
Zhang et al. Synthesis, crystal structures, luminescent and magnetic properties of homodinuclear lanthanide complexes with a flexible tripodal carboxylate ligand
Xiao et al. Multi-component self-assembled heteroleptic Cu (I) complex with defective coordination site as a fluorescent probe to detect Zn2+
CN111484625A (en) A Tb coordination polymer green light-emitting material containing conjugated pyridine carboxylic acid derivatives and its synthesis method
CN103980728B (en) One class is for the Nile blue fluorescent dye of mercury ion detecting
CN116082262A (en) Triphenylamine fluorophore-containing tetraazacyclo Tb (III) complex, synthesis method and application thereof
CN108892666A (en) Fluorescence immunity analysis chelating agent and preparation method thereof with the cave-shaped structure of pyridine-bipyridyl

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Open date: 20100217