CN101634603A - Improved optical fiber geometric parameter tester - Google Patents

Improved optical fiber geometric parameter tester Download PDF

Info

Publication number
CN101634603A
CN101634603A CN200910141379A CN200910141379A CN101634603A CN 101634603 A CN101634603 A CN 101634603A CN 200910141379 A CN200910141379 A CN 200910141379A CN 200910141379 A CN200910141379 A CN 200910141379A CN 101634603 A CN101634603 A CN 101634603A
Authority
CN
China
Prior art keywords
optical fiber
light
geometric parameter
lens
parameter tester
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN200910141379A
Other languages
Chinese (zh)
Inventor
沈群华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to CN200910141379A priority Critical patent/CN101634603A/en
Publication of CN101634603A publication Critical patent/CN101634603A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Mechanical Coupling Of Light Guides (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

The invention relates to an improved optical fiber geometric parameter tester which comprises a light source, a lens, plat mirrors, an optical clamp, background light, a microscope, a camera, an image collecting system, a computer and a printer. The improved optical fiber geometric parameter tester is characterized by being additionally provided with a light path; the light path is only additionally provided with the light source, the lens, the background light and the flat mirrors; the optical fiber clamp moves in three-dimensional direction under the control of an electric motor; the added two flat mirrors are oppositely arranged in parallel face to face and perpendicular with a pair of original flat mirrors; and the two pairs of flat mirrors are simultaneously controlled by the electric motor. In the invention, because the position of the optical fiber can be automatically adjusted, and all geometric parameters of the optical fiber can be tested once, the tester is more intelligent and has higher testing efficiency and higher utilization rate.

Description

Improved optical fiber geometric parameter tester
Technical field
The present invention relates to test optical fiber instrument field, especially about a kind of improvement of optical fiber geometric parameter tester.
Background technology
In the prior art, the geometric parameter of optical fiber is mainly indexs such as the core diameter, coat diameter, core-cladding concentricity error, core bag out-of-roundness of measuring fiber, normally the coat 92 of Fig. 1 or optical fiber 90 shown in Figure 2 is peeled off, stay fibre core 91, then, the end face of fibre core 91 is cut flat or grinds flatly, put into anchor clamps then; The other end is handled too again, put into another anchor clamps then, adjust the position of optical fiber, thereby make it in the test specification that computing machine shows, amplify through optical imagery then, by algorithm, computer program tests out the geometric parameter of fibre core automatically; When then surveying the coat geometric parameter, the optical fiber of one end is taken out from mould, directly the end face of the whole optical fiber 90 of cutting is until smooth, then with this fibre clip in anchor clamps, adjust the position of optical fiber, thereby make it in the test specification that computing machine shows, amplify through optical imagery then, by algorithm, computer program tests out the geometric parameter of coat automatically.Its testing principle figure as shown in Figure 3, at first discuss the process of surveying core parameters: the light that light source 1 sends is through behind the convex lens 1, become almost parallel light, planoconvex lens 2 is assembled to being clamped in the anchor clamps 14 in the fibre core 91 then, light is transmitted to anchor clamps 24 places through optical fiber 90, in the anchor clamps 24 also clamping fibre core 91, light penetrates from anchor clamps 24 to convex lens 3, planoconvex lens 3 backs become directional light to project catoptron 31, light shine catoptron 32 again, optical fiber through catoptron 32 reflections enters in the microscope 5, by camera 6 image acquisition is got off then, deliver to image capturing system 7 again, image is imported in the computing machine 8 measure, so just finished the test of core parameters; Certainly, bias light 2 is lighted the background of optical fiber, enters the light path of convex lens 3 and back simultaneously, makes optical fiber image outline on computers more clear; Gray-scale value by each picture element on the computer acquisition video camera obtains the intensity profile on the fiber end face, thereby can accurately calculate the geometric parameter of optical fiber.
When measuring the coat geometric parameter, in the anchor clamps 24 is the optical fiber that does not divest coat 92, after having surveyed fibre core, the optical fiber in the anchor clamps 24 needs cutting again, quite trouble, and, need alignment jig front-back direction up and down, so that optical fiber just in time is positioned at the test zone of computer screen, these two processes quite bother, therefore, restricted the testing efficiency of optical fiber geometric parameter widely.
Summary of the invention
In order to address the above problem, the present invention improves existing optical fiber geometric parameter tester, and it is realized by the following technical solutions:
Improved optical fiber geometric parameter tester, it comprises: light source, lens, planar optics, fiber clamp, bias light, microscope, camera, image capturing system, computing machine, printer; It is characterized in that: increased a light path in the described geometric parameter tester, a light source, lens, a bias light and pair of planar eyeglass have only been increased in the described light path, described fiber clamp is by the motion of Motor Control three-dimensional, parallel and the minute surface of the pair of planar eyeglass of described increase is relatively placed, and with original one planar optics be 90 degree place; Described two pairs of planar optics are controlled by a motor simultaneously; Described geometric parameter tester is after finishing the fiber end face cutting, and computing machine is according to Automatic Program conversion light path and finish fibre core and the test of coat; Described bias light is that the ring-type light-emitting diodes is luminous forms by one.
Beneficial effect of the present invention: owing to increased light path and adopted program controlled motor to drive the mode of clamp movement, therefore, the position of optical fiber can be regulated automatically; Because program controlled motor drives plane minute surface rotation, has realized the switching of light path, therefore, once just can finish the test of all geometric parameters of optical fiber; Therefore, equipment is more intelligent, testing efficiency is higher; Plant factor is higher.
Description of drawings
Fig. 1 is the schematic perspective view of one section optical fiber being tested;
Fig. 2 is the view that amplify on the right side of Fig. 1;
Fig. 3 is the principle schematic of the tester of prior art optical fiber geometric parameter;
Fig. 4 is a principle schematic of the present invention.
Embodiment
Below in conjunction with accompanying drawing the present invention is done detailed explanation.
Embodiment one:
See also Fig. 4, improved optical fiber geometric parameter tester, it comprises: light source, lens, planar optics, fiber clamp, bias light, microscope, camera, image capturing system, computing machine, printer; It is characterized in that: increased a light path in the described geometric parameter tester, a light source, lens, a bias light and pair of planar eyeglass have only been increased in the described light path, described fiber clamp is by the motion of Motor Control three-dimensional, parallel and the minute surface of the pair of planar eyeglass of described increase is relatively placed, and with original one planar optics be 90 degree place; Described two pairs of planar optics are controlled by a motor simultaneously; Described geometric parameter tester is after finishing the fiber end face cutting, and computing machine is according to Automatic Program conversion light path and finish fibre core and the test of coat; Described bias light is that the ring-type light-emitting diodes is luminous forms by one; Above-mentioned described lens all are convex lens.
Its principle of work is as follows: survey the fibre core geometric parameter earlier: optical fiber 90 end faces that at first will have coat 92 cut, and anchor clamps 14 are clamped coat 92, and anchor clamps 14 are put on the fixture stand; The coat 92 of the other end of optical fiber 90 is peeled off again, stayed fibre core 91, fibre core 91 end faces are cut, anchor clamps 24 are clamped coat 92, and part is exposed fibre core 91, and anchor clamps 24 are put on the fixture stand; Then, the light that light source 1 place sends forms parallel beam through lens 1, shine lens 2, through behind the lens 2, form the light beam of assembling, be injected in the fibre core of the optical fiber 90 that anchor clamps 14 are clamped, light arrives the end of the optical fiber of anchor clamps 24 clampings through after propagating, this end is a fibre core, the light that penetrates in the fibre core forms directional light through after the lens 3, reflexes to planar optics 32 through planar optics 31, reflex to once more in the microscope 5, be positioned at the CCD camera 6 real-time acquired signal of microscope 5 back,, send into computing machine then to image capturing system 7; In addition, because the effect of bias light 2 makes the light path of end face information after lens 3 of optical fiber also enter computing machine; Program in the computing machine drives motor and rotates, and then make anchor clamps 14,24 in position do motion among a small circle all around up and down, finally make optical fiber be positioned at the test specification of computer screen, begin to test the fibre core geometric parameter then, up to the test of finishing all parameters of fibre core.Then, send the instruction of test coat geometric parameter by computer program, make angle of motor rotation of control plane eyeglass, make planar optics 41 from face, 42 enter light path, make planar optics 31,32 exit opticals, at this moment, light source 1 is closed, and light source 2 is opened, and the light that light source 2 places send forms parallel beam through lens 4, shine lens 3, through behind the lens 3, form the light beam of assembling, be injected in the fibre core of the optical fiber 90 that anchor clamps 24 are clamped, light is through after propagating, arrive the end of the optical fiber of anchor clamps 14 clampings, this end is a fibre core, and the light that penetrates in the fibre core is through after the lens 2, form directional light, reflex to planar optics 42 through planar optics 41, reflex to once more in the microscope 5, be positioned at the CCD camera 6 real-time acquired signal of microscope 5 back, to image capturing system 7, send into computing machine then; In addition, because the effect of bias light 1 makes the light path of end face information after lens 2 of coat also enter computing machine; Program in the computing machine drives motor and rotates, and then make anchor clamps 14,24 in position do motion among a small circle all around up and down, finally make coat be positioned at the test specification of computer screen, begin to test the coat geometric parameter then, up to the test of finishing all parameters of coat.
After adopting instrument of the present invention: owing to increased light path and adopted program controlled motor to drive the mode of clamp movement, therefore, the position of optical fiber can be regulated automatically; Because program controlled motor drives plane minute surface rotation, has realized the switching of light path, therefore, once just can finish the test of all geometric parameters of optical fiber; Therefore, equipment is more intelligent, testing efficiency is improved greatly, has reduced effective cutting number of times of every optical fiber.
This paper understands exemplary embodiment of the present and present preferred embodiment specifically, should be appreciated that the present invention conceives can implement utilization by other various forms, and they drop in protection scope of the present invention equally.

Claims (1)

1. improved optical fiber geometric parameter tester, it comprises: light source, lens, planar optics, fiber clamp, bias light, microscope, camera, image capturing system, computing machine, printer; It is characterized in that: increased a light path in the described geometric parameter tester, a light source, lens, a bias light and pair of planar eyeglass have only been increased in the described light path, described fiber clamp is by the motion of Motor Control three-dimensional, parallel and the minute surface of the pair of planar eyeglass of described increase is relatively placed, and with original one planar optics be 90 degree place; Described two pairs of planar optics are controlled by a motor simultaneously; Described geometric parameter tester is after finishing the fiber end face cutting, and computing machine is according to Automatic Program conversion light path and finish fibre core and the test of coat; Described bias light is that the ring-type light-emitting diodes is luminous forms by one.
CN200910141379A 2009-05-21 2009-05-21 Improved optical fiber geometric parameter tester Pending CN101634603A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN200910141379A CN101634603A (en) 2009-05-21 2009-05-21 Improved optical fiber geometric parameter tester

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN200910141379A CN101634603A (en) 2009-05-21 2009-05-21 Improved optical fiber geometric parameter tester

Publications (1)

Publication Number Publication Date
CN101634603A true CN101634603A (en) 2010-01-27

Family

ID=41593862

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200910141379A Pending CN101634603A (en) 2009-05-21 2009-05-21 Improved optical fiber geometric parameter tester

Country Status (1)

Country Link
CN (1) CN101634603A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102297655A (en) * 2010-06-24 2011-12-28 上海电缆研究所 Testing method for performing bidirectional positioning and synchronous testing on fiber end face
CN103115577A (en) * 2013-01-25 2013-05-22 上海理工大学 Optic fiber dimension measurement algorithm based on machine vision
CN103115568A (en) * 2013-02-06 2013-05-22 上海电缆研究所 Method for testing geometric parameters of optical fiber coating layers
CN103438802A (en) * 2013-09-17 2013-12-11 侯俊 Method for measuring geometric parameters of optical fiber coating layer
CN107407617A (en) * 2014-11-07 2017-11-28 康普亚洲控股有限责任公司 Devices, systems, and methods for such as optical fiber measurement of multi-mode optical fiber dimensional measurement
CN107917732A (en) * 2017-11-16 2018-04-17 长飞光纤光缆股份有限公司 A kind of optical fiber geometric parameter, attenuation coefficient integrated test system
CN107941466A (en) * 2017-11-16 2018-04-20 长飞光纤光缆股份有限公司 Special optical fiber end face geometrical test system and method
CN113503814A (en) * 2021-07-06 2021-10-15 上海飞博激光科技有限公司 Centering detection device and detection method for middle arm of optical fiber bundle
CN114325956A (en) * 2021-12-09 2022-04-12 长飞光纤光缆股份有限公司 Optical path system and method for testing fiber core of multi-core optical fiber
CN114945541A (en) * 2020-01-30 2022-08-26 住友电气工业株式会社 Cladding state detection method, cladding state detection device, and optical fiber manufacturing method

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102297655B (en) * 2010-06-24 2013-04-03 上海电缆研究所 Testing method for performing bidirectional positioning and synchronous testing on fiber end face
CN102297655A (en) * 2010-06-24 2011-12-28 上海电缆研究所 Testing method for performing bidirectional positioning and synchronous testing on fiber end face
CN103115577A (en) * 2013-01-25 2013-05-22 上海理工大学 Optic fiber dimension measurement algorithm based on machine vision
CN103115568A (en) * 2013-02-06 2013-05-22 上海电缆研究所 Method for testing geometric parameters of optical fiber coating layers
CN103115568B (en) * 2013-02-06 2016-04-20 上海电缆研究所 A kind of detection method of optical fiber coating geometric parameter
CN103438802A (en) * 2013-09-17 2013-12-11 侯俊 Method for measuring geometric parameters of optical fiber coating layer
CN103438802B (en) * 2013-09-17 2016-04-20 上海理工大学 Optical fiber coating geometric parameter measurement method
CN107407617B (en) * 2014-11-07 2019-11-19 康普亚洲控股有限责任公司 Devices, systems, and methods for such as optical fiber measurement of multi-mode optical fiber dimensional measurement
CN107407617A (en) * 2014-11-07 2017-11-28 康普亚洲控股有限责任公司 Devices, systems, and methods for such as optical fiber measurement of multi-mode optical fiber dimensional measurement
CN107917732A (en) * 2017-11-16 2018-04-17 长飞光纤光缆股份有限公司 A kind of optical fiber geometric parameter, attenuation coefficient integrated test system
CN107917732B (en) * 2017-11-16 2019-09-10 长飞光纤光缆股份有限公司 A kind of optical fiber geometric parameter, attenuation coefficient integrated test system
CN107941466A (en) * 2017-11-16 2018-04-20 长飞光纤光缆股份有限公司 Special optical fiber end face geometrical test system and method
CN114945541A (en) * 2020-01-30 2022-08-26 住友电气工业株式会社 Cladding state detection method, cladding state detection device, and optical fiber manufacturing method
CN114945541B (en) * 2020-01-30 2024-02-13 住友电气工业株式会社 Cladding state detection method, cladding state detection device, and optical fiber manufacturing method
CN113503814A (en) * 2021-07-06 2021-10-15 上海飞博激光科技有限公司 Centering detection device and detection method for middle arm of optical fiber bundle
CN114325956A (en) * 2021-12-09 2022-04-12 长飞光纤光缆股份有限公司 Optical path system and method for testing fiber core of multi-core optical fiber
CN114325956B (en) * 2021-12-09 2022-10-11 长飞光纤光缆股份有限公司 Optical path system and method for testing fiber core of multi-core optical fiber

Similar Documents

Publication Publication Date Title
CN101634603A (en) Improved optical fiber geometric parameter tester
US10612907B2 (en) Device and method for measuring workpieces
US9664887B2 (en) Replaceable illumination module for a coordinate measuring machine
US20130050712A1 (en) Lens shape measurement device
CN103940822A (en) Product outer surface defect image acquisition device based on machine vision
CN111174717B (en) Optical fiber geometric parameter testing system and method
CN103592722A (en) Panda type polarization maintaining fiber side looking shaft alignment device and panda type polarization maintaining fiber side looking shaft alignment method
CN104792798A (en) Total internal reflection illumination technology-based subsurface damage measuring apparatus and method thereof
CN104122072A (en) Lens module detection apparatus
JP2005205429A5 (en)
WO2021174804A9 (en) Measurement method and apparatus for point spread function of microscope
CN110455496B (en) Automatic test device for optical fiber coupler
CN103292731A (en) Geometrical parameter testing device and method used for panda-shaped polarization maintaining optical fiber end faces
CN103852006A (en) Device and method for automatically measuring cutter
CN106680945A (en) Light collimation coupling workbench
CN103949881B (en) Triangle laser gyro optical glass automatic assembling apparatus
CN201413230Y (en) Improved optical fiber geometric parameter tester
CN206847639U (en) A kind of device of total powerstation support precision Image detection
CN206281520U (en) A kind of fiber end inspection device
CN106324750A (en) Small-diameter polarization-maintaining fiber and micro-chip fixed-shaft coupling system and method
WO2013077002A1 (en) Optical fiber fusion splicing method
SE505771C2 (en) Method and apparatus for determining the distance between cores in an optical fiber and using the method and apparatus respectively
US9523649B2 (en) Device for automatically inspecting lens elements of optical connectors
CN201707031U (en) CCD positioning detection laser marking device
CN209690560U (en) Fiber end face optical imagery structure and optical fiber splicer

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C12 Rejection of a patent application after its publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20100127