CN101633595A - 回收催化干气中乙烯的方法 - Google Patents
回收催化干气中乙烯的方法 Download PDFInfo
- Publication number
- CN101633595A CN101633595A CN200810117087A CN200810117087A CN101633595A CN 101633595 A CN101633595 A CN 101633595A CN 200810117087 A CN200810117087 A CN 200810117087A CN 200810117087 A CN200810117087 A CN 200810117087A CN 101633595 A CN101633595 A CN 101633595A
- Authority
- CN
- China
- Prior art keywords
- gas
- ice chest
- enters
- enter
- tank
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/0204—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the feed stream
- F25J3/0219—Refinery gas, cracking gas, coke oven gas, gaseous mixtures containing aliphatic unsaturated CnHm or gaseous mixtures of undefined nature
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/0228—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
- F25J3/0233—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of CnHm with 1 carbon atom or more
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/0228—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
- F25J3/0238—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of CnHm with 2 carbon atoms or more
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/0228—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
- F25J3/0252—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of hydrogen
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2200/00—Processes or apparatus using separation by rectification
- F25J2200/70—Refluxing the column with a condensed part of the feed stream, i.e. fractionator top is stripped or self-rectified
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2205/00—Processes or apparatus using other separation and/or other processing means
- F25J2205/02—Processes or apparatus using other separation and/or other processing means using simple phase separation in a vessel or drum
- F25J2205/04—Processes or apparatus using other separation and/or other processing means using simple phase separation in a vessel or drum in the feed line, i.e. upstream of the fractionation step
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2210/00—Processes characterised by the type or other details of the feed stream
- F25J2210/12—Refinery or petrochemical off-gas
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2215/00—Processes characterised by the type or other details of the product stream
- F25J2215/62—Ethane or ethylene
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2270/00—Refrigeration techniques used
- F25J2270/04—Internal refrigeration with work-producing gas expansion loop
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2270/00—Refrigeration techniques used
- F25J2270/18—External refrigeration with incorporated cascade loop
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2270/00—Refrigeration techniques used
- F25J2270/66—Closed external refrigeration cycle with multi component refrigerant [MCR], e.g. mixture of hydrocarbons
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Abstract
本发明的回收催化干气中乙烯的方法属于乙烯分离方法,为了解决现有的从炼厂干气中回收乙烯工艺存在的能耗高、设备规模大、投资多等问题,提出了利用混合气作制冷剂来分离催化干气中乙烯的方法,通过三段压缩制冷,采用膨胀机和冷箱回收冷量,然后通过脱甲烷塔脱除甲烷和氢气,从塔釜得到富含乙烯的物流,使乙烯的回收率大幅提高,降低了能耗。本发明方法的设备少,流程简单,冷冻循环简单,投资少。
Description
技术领域
本发明涉及一种分离乙烯的方法,更具体地说,本发明涉及一种回收催化干气中乙烯的方法。
背景技术
炼厂干气是指炼油厂催化裂化、热裂化、延迟焦化等装置产生的气体产品经吸收分离C3以上重组分后剩余的气体组分。除了含有氮气、一氧化碳等惰性气体和二氧化碳、硫化氢等酸性气体外,还富含氢气、甲烷、乙烯、乙烷和少量丙烯等重质烃,是重要的基础化工原料的来源。合理利用炼厂干气是提高炼油厂加工深度和经济效益的重要途径。炼厂干气中通常含有10~20%的乙烯和10~25%的乙烷,还有丙烯、丙烷等有用组分,但目前大部分炼厂干气送入瓦斯管网作为燃料气,有些甚至放入火炬烧掉,造成很大的资源浪费。
国外对炼厂干气的利用给予了充分重视,在干气回收乙烯方面也进行了深入的研究和实践,如美国菲利普石油公司斯韦尔尼炼油厂和莫比尔公司在德克萨斯的炼油厂均采用深冷分离法从FCC(流化床催化裂化)干气中回收乙烯,美国田纳科化学公司采用络合分离法回收干气中的乙烯,AET公司的从炼厂气中回收乙烯的Mehra工艺已在两套装置上成功运行。
目前已知的国内外开发的从炼厂干气中分离回收乙烯的主要方法有深冷分离法、络合分离法、中冷油吸收法、变压(温)吸附分离法、膜分离法和水合物分离法等。
深冷分离法多用于大型裂解装置的乙烯分离系统,炼厂干气也可以利用此技术,由于碳二以上的烃含量低,冷量消耗大,经济上不合理;络合分离法乙烯回收率较高,但对原料中的杂质要求严格,预处理费用较高,需要特殊的络合吸收剂;变压吸附法操作简单,能耗较低,但产品纯度低,乙烯回收率低,占地面积大;中冷油吸收法国内技术比较成熟,但是设备尺寸大,流程较复杂,产品纯度不高。
US6308532提出了一种从炼厂干气中回收乙烯和丙烯的工艺,该工艺包括从吸收塔釜抽出C3、C4、C5、C6液体并将部分塔釜液相物料循环至塔顶,从而保持塔顶冷凝器的冷冻温度不低于-95℃,同时在吸收塔的富含丙烯或乙烯-丙烯区域抽出气相侧线。该工艺结合油吸收法从催化干气中分离乙烯,但塔顶温度仍低至-95℃,属于深冷分离工艺的一种,投资较大,能耗较高。
CN1073422A提出了一种从炼油厂催化裂化装置产生的干气中吸附分离乙烯的工艺流程。该工艺是把经过脱除酸性气体及水的催化裂化干气通过可对C2和C3以上重组分有效分离的活性炭吸附剂床除去C3以上重组分,此活性炭吸附剂可加热脱附再生,冷却后重复吸附。已脱除C3以上重组分的干气进入对乙烯有高吸附容量和选择性的分子筛吸附剂选择吸附乙烯,吸余气主要为氢气、甲烷、乙烷和氮气等,可作为燃料气并入瓦斯管网系统,或进一步提浓氢气。吸附乙烯的吸附剂可以采用升温或减压或升温与减压相结合的方法进行脱附。但是,此方法的缺点是设备庞大,轻烃回收率低,产品纯度低。
CN1338449A公开了从含有烃类的混合气中分离回收乙烯、乙烷、丙烯和氢气的方法。通过吸收将含有烃类的混合气中的酸性气体脱除。通过吸附过程将含有烃类的混合气分离为一股富集氢气、甲烷的气体和一股富集乙烯、乙烷、丙烯的气体。将富集有乙烯、乙烷、丙烯的气体通过深冷分离过程,分别得到乙烯、乙烷、丙烯和较重烃类馏分。将富集氢气和甲烷的气体通过另一吸附过程得到氢气和富集有甲烷的气体。此方法把变压吸附法和深冷分离法结合在一起,与单纯的变压吸附法和单纯的深冷分离法相比,提高了轻烃的回收率和产品的纯度,并节省了能耗。但是,该方法仍需要乙烯制冷压缩机,流程复杂。
CN101063048A提出一种由压缩、脱除酸性气体、干燥及净化、吸收、解吸、冷量回收和粗分等步骤组成的中冷油吸收分离炼厂催化干气的方法。此发明具有吸收剂成本低廉,损失低,不需要乙烯制冷压缩机等优点。但该方法吸收剂循环量大,设备尺寸大,流程较复杂,产品纯度不高。
综上所述,现有的从炼厂催化干气中回收乙烯的工艺存在着能耗高、设备规模大、投资多等问题。
发明内容
本发明的目的在于针对现有的从炼厂干气中回收乙烯工艺存在的能耗高、设备规模大、投资多等问题,提出了利用混合制冷分离催化干气中乙烯的方法。该方法利用氢气、甲烷、乙烯、丙烯、丁烷等的混合气作为制冷剂,通过三段压缩制冷,采用膨胀机和冷箱回收冷量,使乙烯的回收率大幅提高,并降低了能耗。
具体技术方案如下:
本发明采用以混合气作为制冷剂的混合制冷技术回收催化干气中的乙烯,包括以下步骤:
(1)催化干气冷却:来自炼厂催化裂化装置的催化干气经过脱除酸性气体、干燥和脱除NOx、氧气后进入冷箱冷却,冷却后进入重烃分离罐,罐顶气体再次进入冷箱深冷,罐底液体送入脱甲烷塔;重烃分离罐顶气体经过深冷、节流,进入闪蒸罐,闪蒸罐顶气体经过膨胀,进入冷箱以回收冷量,然后自冷箱排出,闪蒸罐底液体进入脱甲烷塔;
(2)脱除甲烷:在脱甲烷塔中经精馏作用将进入脱甲烷塔的液体中的甲烷和氢气脱除,脱甲烷塔顶得到的气体进入冷箱以回收冷量,然后自冷箱排出,脱甲烷塔釜得到富含乙烯的物流;
(3)混合制冷:包含氢气、甲烷、乙烯、丙烯和丁烷的混合气进入一段吸入罐,罐顶气体经过两段压缩且段间冷却,进入二段排出罐;二段排出罐顶气体进入冷箱与催化干气换热以回收冷量,温度降低后进入三段吸入罐;二段排出罐底液体经加压后进入冷箱,温度降低后经节流阀节流,返回冷箱回收冷量,然后进入一段吸入罐;三段吸入罐顶气体进入第三段压缩机压缩,然后进入冷箱,温度降低后进入气液分离罐;气液分离罐分离的气体和液体分别进入冷箱,分别经节流后进入冷箱以回收冷量,然后所述气体和液体混合,进入一段吸入罐,反复压缩制冷。
优选地,在步骤(1)中,来自炼厂催化裂化装置的催化干气经过脱除酸性气体、干燥和脱除NOx、氧气后进入冷箱冷却,冷却至-95~-115℃,优选-100~-110℃,然后进入重烃分离罐,罐顶气体再次进入冷箱深冷,冷却至-135~-155℃,优选-140~-150℃,罐底液体送入脱甲烷塔;重烃分离罐顶气体经过深冷、节流,进入闪蒸罐,闪蒸罐顶气体经过膨胀,膨胀后压力为0.15~0.30MPa,温度降至-150~-175℃,优选-160~-170℃,进入冷箱以回收冷量,然后自冷箱排出,闪蒸罐底液体进入脱甲烷塔。
所述脱甲烷塔的理论板数优选为10~30,操作压力优选为0.5~1.0MPa。
所述包含氢气、甲烷、乙烯、丙烯和丁烷的混合气优选包含0.5%~6%的氢气、10%~30%的甲烷、15%~35%的乙烯、8%~25%的丙烯和20%~40%的丁烷,更优选包含1%~4%的氢气、20%~25%的甲烷、20%~30%的乙烯、10%~20%的丙烯和25%~35%的丁烷,所述组分的含量之和不超高100%,所述百分比为体积百分比。
优选地,在步骤(3)中,包含氢气、甲烷、乙烯、丙烯和丁烷的混合气进入一段吸入罐,罐顶气体经过两段压缩且段间冷却,压力提高至1.3~2.2MPa,优选1.5~2.0MPa,温度为40℃,进入二段排出罐;二段排出罐顶气体进入冷箱与催化干气换热以回收冷量,温度降低至10~30℃,优选15~25℃,然后进入三段吸入罐;二段排出罐底液体经加压后进入冷箱,温度降低至-10~-40℃,优选-20~-30℃,然后经节流阀节流,返回冷箱回收冷量,然后进入一段吸入罐;三段吸入罐顶气体进入第三段压缩机压缩,压力提高至3.8~5.5MPa,优选4.0~5.0MPa,然后进入冷箱,温度降低至-10~-40℃,优选-20~-30℃,进入气液分离罐;气液分离罐分离的气体和液体分别进入冷箱,气体在冷箱中温度降至-135~-155℃,优选-140~-150℃,经节流后温度降至-150~-175℃,优选-160~-170℃,进入冷箱以回收冷量;液体在冷箱中温度降至-90~-115℃,优选-100~-110℃,经节流后返回冷箱以回收冷量,然后所述气体和液体混合,进入一段吸入罐,反复压缩制冷。
本发明的方法可显著降低能耗,主要原因有:(1)复叠式制冷的供冷曲线为非连续的(级跃式),故平均传热温差较大,能量利用效率不高。而本发明的混合制冷的供冷曲线为连续且平滑的,大大缩小了传热平均温差,提高了冷量利用效率,降低了压缩机功耗;(2)来自炼厂催化裂化装置的催化干气的压力一般约为0.7~0.9MPa,与复叠式制冷相比,减少了两套压缩系统,与中冷油吸收相比,减少了一套压缩系统,从而节省了能耗,减少了投资;(3)炼厂催化干气进入冷箱冷却后进入重烃分离罐,罐底液相直接送入脱甲烷塔,降低了冷箱的负荷。(4)采用膨胀机和冷箱有效地回收了冷量。
本发明的方法具有以下特点:
(1)本发明的方法与炼厂催化干气的组成关系不大,原料适应性强;(2)用氢气、甲烷、乙烯、丙烯、丁烷等组成的混合气作为制冷剂,来源容易,成本低廉;(3)能耗低,操作费用低;(4)碳二回收率高,乙烯的回收率可达95%以上;(5)本发明设备少,流程简单,冷冻循环简单,投资少。
附图说明
图1是本发明的回收催化干气中乙烯的方法的流程示意图。
符号说明:
1一段吸入罐;2一、二段压缩机;3二段排出罐;4三段吸入罐;5压缩机;6气液分离罐;7冷箱;8净化系统;9干燥器;10重烃分离罐;11脱甲烷塔;12膨胀机;13闪蒸罐。
具体实施方式
下面参照图1进一步解释本发明的工艺。
(1)催化干气冷却:来自炼厂催化裂化装置的催化干气的压力一般约为0.7~0.9MPa,经过净化系统8脱除酸性气体、氧气、NOx,再经干燥器9脱除水分,然后进入冷箱7换热,换热后温度降低为-95~-115℃,优选-100~-110℃,进入重烃分离罐10;罐顶气体再次进入冷箱7深冷,冷却到-135~-155℃,优选-140~-150℃,罐底液体直接送入脱甲烷塔11;深冷后的气体进入闪蒸罐13,罐顶气体经膨胀机12膨胀后,膨胀后压力为0.15~0.30MPa,温度降至-150~-175℃,优选-160~-170℃,作为制冷剂进入冷箱7回收冷量,罐底液体进入脱甲烷塔11;
(2)脱除甲烷、氢气:在脱甲烷塔11内把进料液体中的甲烷、氢气等组分脱除,脱甲烷塔的理论板数优选为10~30,操作压力为0.5~1.0MPa,优选0.6~0.9MPa,塔顶气体包含氢气、氮气、甲烷、少量乙烯、乙烷等气体,进入冷箱7回收冷量,最终送入燃料管网系统作为燃料气使用,脱甲烷塔塔釜得到富含乙烯和乙烷的物流,可以送往乙烯分离系统或者作为精细化工的原料;
(3)混合制冷:一股由氢气0.5~6Vol%(优选1~4Vol%)、甲烷10~30Vol%(优选20~25Vol%)、乙烯15~35Vol%(优选20~30Vol%)、丙烯8~25Vol%(优选10~20Vol%)、丁烷20~40Vol%(优选25~35Vol%)等组成的混合气进入一段吸入罐1,罐顶气体经一段、二段压缩机2压缩后,压力提高至1.3~2.2MPa,优选1.5~2.0MPa,经段间冷却到40℃后进入二段排出罐3。罐顶气体进入冷箱7与催化干气换热回收其冷量,温度降至10~30℃,优选15~25℃,进入三段吸入罐4。二段排出罐底液相经过泵加压后进入冷箱7,温度降低到-10~-40℃,优选-20~-30℃,经节流阀节流后,返回冷箱7回收冷量后进入一段吸入罐1。三段吸入罐罐顶出来的气体进入三段压缩机5压缩,压力提高至3.8~5.5MPa,优选4.0~5.0MPa,进入冷箱7,温度降低到-10~-40℃,优选-20~-30℃,进入气液分离罐6。气液分离罐6分离的气体和液体分别进入冷箱7,气体温度降低到-135~-155℃,优选-140~-150℃,经节流后温度降低到-150~-175℃,优选-160~-170℃,返回冷箱回收冷量,来自气液分离罐6的液体在冷箱内温度降低到-90~-115℃,优选-100~-110℃,经节流阀节流后,返回一段吸入罐1,反复压缩制冷。
实施例1
本实施例以从某炼厂催化干气中回收乙烯为例进一步解释本发明的方法,催化干气的组成列于表1中。
表1某炼厂催化干气的组成
组分 | 质量流量kg/h | 组成wt% |
氢气 | 482.88 | 3.58 |
氮气 | 3056.89 | 22.64 |
氧气 | 97.33 | 0.72 |
一氧化碳 | 170.40 | 1.26 |
二氧化碳 | 669.33 | 4.96 |
甲烷 | 2976.66 | 22.04 |
乙烯 | 2645.29 | 19.59 |
乙烷 | 2743.91 | 20.32 |
碳三 | 386.29 | 2.86 |
碳四 | 151.63 | 1.12 |
碳五 | 54.87 | 0.41 |
水 | 68.50 | 0.51 |
(1)催化干气冷却:将流量为13504kg/h的催化干气经过净化系统8和干燥器9脱除二氧化碳、氧、NOx和水后,进入冷箱7。催化干气深冷到-105℃后,进入重烃分离罐10。罐顶得到质量流量为7495kg/h的气相再次进入冷箱7继续深冷,罐底得到质量流量为5003kg/h的液相直接送入甲烷塔11。经再次深冷后的气相温度为-142℃,进入闪蒸罐13,罐顶得到质量流量为5631kg/h的气相经膨胀机12膨胀后,压力降低为0.2MPa,温度降低到-168℃,进入冷箱7与催化干气换热回收冷量,罐底得到质量流量为1864kg/h的液相直接送入甲烷塔11。
(2)脱除甲烷、氢气:脱甲烷塔板数为30,在塔顶温度-104℃、塔釜温度-63℃、压力0.77MPa和质量回流比为8的操作条件下,从塔顶把干气中的甲烷、氢等轻组分脱除出去,其质量流量为907kg/h,进入冷箱7与催化干气换热,在塔底得到质量流量为5960kg/h富含乙烯和乙烷的重烃,可以送往乙烯分离系统或者作为精细化工的原料。
(3)混合制冷:一股质量流量为25148kg/h由3vol%氢气、23vol%甲烷、26vol%乙烯、20vol%丙烯、28vol%丁烷等组成的混合气进入一段吸入罐1,罐顶气体经一段、二段压缩机2压缩后,压力提高为1.8MPa,经段间冷却到40℃后进入二段排出罐3,罐顶气体进入冷箱7与催化干气换热,温度降低到18℃,进入三段吸入罐4。二段排出罐底液相经过泵加压后进入冷箱7,温度降低到-25℃,经节流阀节流后,返回冷箱7,最后进入一段吸入罐1。三段吸入罐顶部出来的气体进入三段压缩机5压缩,压力提高为4.6MPa,进入冷箱7,温度降低到-25℃,进入气液分离罐6,分离的气体和液体分别进入冷箱7,气体温度降低到-142℃,经节流后温度降低到-168℃,返回冷箱提供冷量。液体温度降低到-105℃后,经节流后与低压气体混合,进入冷箱提供冷量,最后返回一段吸入罐1,反复压缩制冷。
所得的碳二馏分产品组成如表2。
表2碳二馏分产品的组成
组分 | 质量流量kg/h | 组成wt% |
甲烷 | 154.36 | 2.59 |
乙烯 | 2512.93 | 42.16 |
乙烷 | 2700.51 | 45.31 |
碳三 | 385.78 | 6.47 |
碳四 | 151.62 | 2.54 |
碳五 | 54.87 | 0.92 |
乙烯的回收率为95%。
Claims (8)
1.一种回收催化干气中乙烯的方法,其特征在于,所述方法包括以下步骤:
(1)催化干气冷却:来自炼厂催化裂化装置的催化干气经过脱除酸性气体、干燥和脱除NOx、氧气后进入冷箱冷却,冷却后进入重烃分离罐,罐顶气体再次进入冷箱进一步冷却,罐底液体送入脱甲烷塔;重烃分离罐顶气体经过深冷、节流,进入闪蒸罐,闪蒸罐顶气体经过膨胀,进入冷箱以回收冷量,然后自冷箱排出,闪蒸罐底液体进入脱甲烷塔;
(2)脱除甲烷:在脱甲烷塔中经精馏作用将进入脱甲烷塔的液体中的甲烷和氢气脱除,脱甲烷塔顶得到的气体进入冷箱以回收冷量,然后自冷箱排出,脱甲烷塔釜得到富含乙烯的物流;
(3)混合制冷:包含氢气、甲烷、乙烯、丙烯和丁烷的混合气进入一段吸入罐,罐顶气体经过两段压缩且段间冷却,进入二段排出罐;二段排出罐顶气体进入冷箱与催化干气换热以回收冷量,温度降低后进入三段吸入罐;二段排出罐底液体经加压后进入冷箱放热,温度降低后经节流阀节流,返回冷箱回收冷量,然后进入一段吸入罐;三段吸入罐顶气体进入第三段压缩机压缩,然后进入冷箱放热,温度降低后进入气液分离罐;气液分离罐分离的气体和液体分别进入冷箱,分别经节流后进入冷箱以回收冷量,然后所述气体和液体混合,进入一段吸入罐,反复压缩制冷。
2.如权利要求1所述的方法,其特征在于,在步骤(1)中,来自炼厂催化裂化装置的催化干气经过脱除酸性气体、干燥和脱除NOx、氧气后进入冷箱冷却,冷却至-95~-115℃,然后进入重烃分离罐,罐顶气体再次进入冷箱深冷,冷却至-135~-155℃,罐底液体送入脱甲烷塔;重烃分离罐顶气体经过深冷、节流,进入闪蒸罐,闪蒸罐顶气体经过膨胀,膨胀后压力为0.15~0.30MPa,温度降至-150~-175℃,进入冷箱以回收冷量,然后自冷箱排出,闪蒸罐底液体进入脱甲烷塔。
3.如权利要求2所述的方法,其特征在于,在步骤(1)中,来自炼厂催化裂化装置的催化干气经过脱除酸性气体、干燥和脱除NOx、氧气后进入冷箱冷却,冷却至-100~-110℃,然后进入重烃分离罐,罐顶气体再次进入冷箱深冷,冷却至-140~-150℃,罐底液体送入脱甲烷塔;重烃分离罐顶气体经过深冷、节流,进入闪蒸罐,闪蒸罐顶气体经过膨胀,膨胀后压力为0.15~0.30MPa,温度降至-160~-170℃,进入冷箱以回收冷量,然后自冷箱排出,闪蒸罐底液体进入脱甲烷塔。
4.如权利要求1所述的方法,其特征在于,所述脱甲烷塔的理论板数为10~30,操作压力为0.5~1.0MPa。
5.如权利要求1所述的方法,其特征在于,所述包含氢气、甲烷、乙烯、丙烯和丁烷的混合气包含0.5%~6%的氢气、10%~30%的甲烷、15%~35%的乙烯、8%~25%的丙烯和20%~40%的丁烷,所述组分的含量之和不超过100%,所述百分比为体积百分比。
6.如权利要求5所述的方法,其特征在于,所述包含氢气、甲烷、乙烯、丙烯和丁烷的混合气包含1%~4%的氢气、20%~25%的甲烷、20%~30%的乙烯、10%~20%的丙烯和25%~35%的丁烷,所述组分的含量之和不超过100%,所述百分比为体积百分比。
7.如权利要求1所述的方法,其特征在于,在步骤(3)中,包含氢气、甲烷、乙烯、丙烯和丁烷的混合气进入一段吸入罐,罐顶气体经过两段压缩且段间冷却,压力提高至1.3~2.2MPa,温度为40℃,进入二段排出罐;二段排出罐顶气体进入冷箱与催化干气换热以回收冷量,温度降低至10~30℃,然后进入三段吸入罐;二段排出罐底液体经加压后进入冷箱,温度降低至-10~-40℃,然后经节流阀节流,返回冷箱回收冷量,然后进入一段吸入罐;三段吸入罐顶气体进入第三段压缩机压缩,压力提高至3.8~5.5MPa,然后进入冷箱,温度降低至-10~-40℃,进入气液分离罐;气液分离罐分离的气体和液体分别进入冷箱,气体在冷箱中温度降至-135~-155℃,经节流后温度降至-150~-175℃,进入冷箱以回收冷量;液体在冷箱中温度降至-90~-115℃,经节流后返回冷箱以回收冷量,然后所述气体和液体混合,进入一段吸入罐,反复压缩制冷。
8.如权利要求1所述的方法,其特征在于,在步骤(3)中,包含氢气、甲烷、乙烯、丙烯和丁烷的混合气进入一段吸入罐,罐顶气体经过两段压缩且段间冷却,压力提高至1.5~2.0MPa,温度为40℃,进入二段排出罐;二段排出罐顶气体进入冷箱与催化干气换热以回收冷量,温度降低至15~25℃,然后进入三段吸入罐;二段排出罐底液体经加压后进入冷箱,温度降低至-20~-30℃,然后经节流阀节流,返回冷箱回收冷量,然后进入一段吸入罐;三段吸入罐顶气体进入第三段压缩机压缩,压力提高至4.0~5.0MPa,然后进入冷箱,温度降低至-20~-30℃,进入气液分离罐;气液分离罐分离的气体和液体分别进入冷箱,气体在冷箱中温度降至-140~-150℃,经节流后温度降至-160~-170℃,进入冷箱以回收冷量;液体在冷箱中温度降至-100~-110℃,经节流后返回冷箱以回收冷量,然后所述气体和液体混合,进入一段吸入罐,反复压缩制冷。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN200810117087A CN101633595B (zh) | 2008-07-24 | 2008-07-24 | 回收催化干气中乙烯的方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN200810117087A CN101633595B (zh) | 2008-07-24 | 2008-07-24 | 回收催化干气中乙烯的方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101633595A true CN101633595A (zh) | 2010-01-27 |
CN101633595B CN101633595B (zh) | 2012-10-24 |
Family
ID=41592960
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN200810117087A Active CN101633595B (zh) | 2008-07-24 | 2008-07-24 | 回收催化干气中乙烯的方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN101633595B (zh) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103449950A (zh) * | 2012-11-19 | 2013-12-18 | 中国寰球工程公司 | 用贫液效应在脱甲烷过程中回收尾气中乙烯的方法及系统 |
CN103727742A (zh) * | 2014-01-16 | 2014-04-16 | 王嘉文 | 一种炼化干气的回收方法及设备 |
CN105330503A (zh) * | 2014-08-14 | 2016-02-17 | 中国石油化工股份有限公司 | 一种回收烃类气体的方法 |
CN106831291A (zh) * | 2017-01-05 | 2017-06-13 | 中石化上海工程有限公司 | 甲烷氧化偶联制乙烯的方法 |
CN106831292A (zh) * | 2017-01-05 | 2017-06-13 | 中石化上海工程有限公司 | 甲烷氧化偶联制乙烯反应产物的分离工艺 |
CN109045929A (zh) * | 2018-08-28 | 2018-12-21 | 上海东化环境工程有限公司 | 一种炼厂干气回收系统及方法 |
CN110055098A (zh) * | 2019-04-22 | 2019-07-26 | 大连理工大学 | 一种富乙烯裂解干气分级用于乙苯生产装置的分离工艺 |
CN111056904A (zh) * | 2019-12-18 | 2020-04-24 | 宁波同润和海科技有限公司 | 一种回收炼厂焦化装置干气中各种有效组分的方法 |
CN113350974A (zh) * | 2021-03-19 | 2021-09-07 | 北京欧谊德科技有限公司 | 一种饱和干气中h2、c1、c2和c3的分离回收方法 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1195717C (zh) * | 2000-08-18 | 2005-04-06 | 成都华西化工科技股份有限公司 | 从含有烃类的混合气中分离回收乙烯、乙烷、丙烯和氢气的方法 |
-
2008
- 2008-07-24 CN CN200810117087A patent/CN101633595B/zh active Active
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103449950A (zh) * | 2012-11-19 | 2013-12-18 | 中国寰球工程公司 | 用贫液效应在脱甲烷过程中回收尾气中乙烯的方法及系统 |
CN103449950B (zh) * | 2012-11-19 | 2015-04-01 | 中国寰球工程公司 | 用贫液效应在脱甲烷过程中回收尾气中乙烯的方法及系统 |
CN103727742A (zh) * | 2014-01-16 | 2014-04-16 | 王嘉文 | 一种炼化干气的回收方法及设备 |
CN105330503B (zh) * | 2014-08-14 | 2017-11-07 | 中国石油化工股份有限公司 | 一种回收烃类气体的方法 |
CN105330503A (zh) * | 2014-08-14 | 2016-02-17 | 中国石油化工股份有限公司 | 一种回收烃类气体的方法 |
CN106831291A (zh) * | 2017-01-05 | 2017-06-13 | 中石化上海工程有限公司 | 甲烷氧化偶联制乙烯的方法 |
CN106831292A (zh) * | 2017-01-05 | 2017-06-13 | 中石化上海工程有限公司 | 甲烷氧化偶联制乙烯反应产物的分离工艺 |
CN106831292B (zh) * | 2017-01-05 | 2019-06-11 | 中石化上海工程有限公司 | 甲烷氧化偶联制乙烯反应产物的分离工艺 |
CN109045929A (zh) * | 2018-08-28 | 2018-12-21 | 上海东化环境工程有限公司 | 一种炼厂干气回收系统及方法 |
CN110055098A (zh) * | 2019-04-22 | 2019-07-26 | 大连理工大学 | 一种富乙烯裂解干气分级用于乙苯生产装置的分离工艺 |
CN110055098B (zh) * | 2019-04-22 | 2021-01-05 | 大连理工大学 | 一种富乙烯裂解干气分级用于乙苯生产装置的分离工艺 |
CN111056904A (zh) * | 2019-12-18 | 2020-04-24 | 宁波同润和海科技有限公司 | 一种回收炼厂焦化装置干气中各种有效组分的方法 |
CN113350974A (zh) * | 2021-03-19 | 2021-09-07 | 北京欧谊德科技有限公司 | 一种饱和干气中h2、c1、c2和c3的分离回收方法 |
Also Published As
Publication number | Publication date |
---|---|
CN101633595B (zh) | 2012-10-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101633595B (zh) | 回收催化干气中乙烯的方法 | |
CN101638584B (zh) | 采用浅冷油吸收法分离炼厂催化干气的方法 | |
CN101759518B (zh) | 采用油吸收分离炼厂催化干气的方法 | |
JP7546555B2 (ja) | 軽質炭化水素の分離方法及びシステム | |
CN103333039B (zh) | 一种降低吸收剂用量的轻质烯烃分离方法及其装置 | |
CN103087772A (zh) | 一种采用油吸收分离炼厂干气的装置及方法 | |
CN104419464B (zh) | 一种炼厂干气回收系统及干气回收方法 | |
CN102382680B (zh) | 一种催化裂化吸收稳定系统和碳三中冷油吸收的组合工艺 | |
CN101812322B (zh) | 一种采用油吸收分离炼厂催化干气的方法 | |
CN101759516B (zh) | 一种采用油吸收分离炼厂催化干气的方法 | |
CN104557387A (zh) | 一种炼厂混合干气回收系统及回收方法 | |
CN101113365B (zh) | 从炼厂干气中回收轻烃的工艺 | |
EP4053251A1 (en) | Method and device for recovering c2-c4 components in methane-containing industrial gas | |
CN104557384A (zh) | 一种炼厂混合干气回收系统及回收方法 | |
CN101575254A (zh) | 一种从炼厂干气中回收聚合级乙烯工艺 | |
CN105441130A (zh) | 一种回收烃类尾气方法 | |
CN103626619B (zh) | 一种用于甲醇制烯烃装置中的轻烃分离方法 | |
CN104557386A (zh) | 一种炼厂混合干气回收系统及回收方法 | |
CN109678641A (zh) | 一种甲烷氧化偶联制乙烯反应气体的分离方法和装置 | |
CN113121301B (zh) | 一种炼厂干气中轻烃的回收方法 | |
CN105062545A (zh) | 一种轻烃回收方法 | |
CN104560194B (zh) | 一种炼厂饱和干气回收系统及回收方法 | |
CN102634395A (zh) | 煤层气净化精制工艺及系统 | |
CN113354506B (zh) | 一种组合吸收回收分离炼厂饱和干气中低碳烃的方法 | |
CN107602333B (zh) | 一种甲醇制烯烃反应气的分离方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant |