一种用于铅蓄电池的单极向极板及其积木式电池和电池组
技术领域
本发明涉及一种铅蓄电池的单极向极板及积木式电池组结构,特别涉及一种內阻低、比功率高、比能量大、可大电流快速充放电、易组合成高电动势电池组的极板及其组装的结构。
背景技术
铅蓄电池是目前市场用量最大的一类电池,不仅材料来源广、价格低廉,具有安全可靠、大容量、放电强度大等电气性能优势,而且在众多的电池中,唯有铅蓄电池回收效率高达96~99%,材料资源几乎可完全重复性循环利用,因此,在面对材料资源不断消耗的的大背景中,铅蓄电池在近年获得了越来越广泛的市场。
经过100多年来的技术工业进步,铅蓄电池制造业在20世纪80年代已打下良好的材料工业基础,很多先进的配套材料获得制造业广泛应用。例用电池壳体采用ABS材料,免维护型电池普遍应用AGM隔膜,自控单向排气压力阀的广泛使用,板栅由热铸式向冷轧方向发展,硫酸液胶体化等等一系列技术进步,给铅蓄电池制造业注入了技术不断创新的活力。
铅蓄电池除了材料技术不断进步外,结构方法的技术进步同样不断创新。铅蓄电池最常见的一种极板制造方法,是采用带极耳13的网格状板栅作为集电体1/3,如图1所示,板栅的两侧面对称,横竖向筋条交叉形成的栅格14通常是空心,以便涂布更多的铅膏量。然后,在板栅1/3上涂布铅膏2/4,使板栅的栅格内及两侧面粘结铅膏,经一定温度时间控制的烘干工序,将铅膏硬化固定在带网格的板栅上,称之为极板固化,用类同的方法分别制成两面带极性的正板2,如图2A和2B所示,及负板3,如图3A和3B所示。正极板制造通常还有一种制造方法,将条形集电体置在空心的管状微孔网中,管网与条形集电体之间填充铅粉,称之为管式极板。
当需求更大容量的电池时,通常是将若干块正板与若干块负板的正/负极交叉(之间加隔离板)堆叠组合成极群,堆叠极群的同极极板之间通过极耳13并联集合电流,分别引导出极群的正极和负极端。当需要4V或更高的电动势时,通过格与格之间的金属跨桥15的连接形式,将不处于同一格内的极群与极群串联成电池组,称之为电池组的内串联,如图4所示。这种集电方式的优点是容量组合简单,工艺成熟,是近年铅蓄电池产品结构的主流。这种常规结构由于跨桥15引起的电压降,以及极群中各极板汇流不均匀引起的容量差异,带来了行业内公知的大电流充放电效率低、比能量低特别是比功率低,难适应快速充放电等缺点。
近年出现了多种不同于传统的铅蓄电池结构方法,例如水平连接极群的电池,其核心技术是在玻璃纤维丝上覆铅层,用编网的方式织成类似常规板栅的形式,网格为空心,在覆铅玻璃纤维丝网上涂布铅膏。又如卷绕式电池,其核心技术是将正负极板制成薄长条形,中间加软性隔板后卷绕成圆柱型的电池。这些新结构方法,其设计的共同特点是尽量提升集电体的集电能力,缩短同一极群集中电流的通道,力图提高大电流充放电效率。但在常规工艺制造中,铅网式水平连接电池容易出现串格,卷绕电池在极板卷绕中容易出现脱膏,工艺相对复杂,成品率及生产效率相对较低。同时,当需要更高的电动势时,其电池组的内部串联,仍然需依靠金属跨桥连通处于不同格之间的极群(或极对),内串联电池组的大电流快速充放电能力仍然受到格与格之间的跨桥制约。
双极性电池结构近年在电池行业的出现,是基于极对之间连接无需连桥的巧妙设计,内串联电池组时不再需要金属跨桥。例如在2006年9月6日公开的一份中国发明专利中(公开号CN1828981A),提及一种“蓄电池双极电极”的主要技术特征是“以导电电极为中间层,阳极及阴极分别贴片在其两侧”。又例如2008年6月4日公开的中国发明专利中(公开号CN101192684A),日产自动车株式会社提及一种“双极性电池及其制造方法”的主要技术特征是“在该双极性电极中,在集电极的一侧形成阴极而在集电极的另一侧形成阳极,通过相互堆叠电解质层形成层叠体”。
铅蓄电池制造主流是采用涂膏式极板,如果双极电极原理应用于涂膏式极板,会存在一些不容忽视的材料组合及工艺实现问题,例如:
(1)电池正负极的工作电位不同,通常正极集电体采用适应正电位的铅合金制造,负极集电体采用适应负电位的铅合金制造。如果采用同一铅合金作为正负极共用的集电体,需要求集电体材料在正极电位和负极电位下都很稳定。
(2)同一集电体两面隔离性分别涂不同铅膏的工艺要求过高,因正负极铅膏的配方不同,在工艺过程中的集电体两面铅膏只要有接触,即会降低极板质量甚至报废。
(3)铅蓄电池正负极铅膏活性物质的化学反应效率不同,所以集电极两面需要匹配的铅膏量不同,即集电体两面需涂不同膏量的铅膏,而不同膏量的极板固化时,需要不同的温控程序及固化时间,如果在同一集电体两面涂不同膏量的铅膏,将使极板固化的温控程序及固化时间基准无所适从,很难同步保障正极与负极的质量。
由于铅蓄电池制造业公知的这些技术原因,双极性电极在铅蓄电池涂膏式极板领域实现产品化的工业难度很大。
发明内容
本发明的目的在于:克服现有铅蓄电池结构技术的不足之处,为铅蓄电池业提供一种结构更简单,工艺容易实现的单极向极板的制造原理方法,从而运用这种单极向结构的极板,堆叠积木式地形成电池和电池组。
本发明的主要目的是提供的一种用于铅蓄电池的单极向极板,其特征在于:该单极向极板包括导电材料制成的板状集电体和固定在板状集电体单侧面上的电活性物质,所述的集电体的另一侧为集电面;固连不同的电活性物质分别形成单极向正板或单极向负板。所述的板状集电体为无栅孔板体。
所述的电活性物质以涂布铅膏的形式固定在板状集电体单侧面上。
所述的板状集电体涂布铅膏的侧面为平面、表面规则的或表面不规则的粗糙面或带齿,可带有边框;另一侧的集电面为平面或规则的带齿;所述的集电面可设有极耳形式的引极;板状集电体加边框是为容易控制好在板上的涂膏范围,集电体上的齿形及边框截面形状任意。
所述的单极向正板/单极向负板可若干块分别同极性沿板面平展上、下、左、右电固连倍容组合成单极向正极群/单极向负极群。即所述的单极向极板可若干片同极向平铺式电固连组合成更大容量的极群板。用于连接极对或极群的单极向极板无须设置集流用的极耳,只在用于电池或电池组正/负引极的单极向极板带极耳形式的引极,引极在集电体的非涂布铅膏面以任意延伸至外接端子的方式设置。
所述的集电体采用导电材料制成,所述的导电材料包括:铅及其合金、覆铅铜材、覆铅塑料、覆铅碳纤维、导电碳纤维或导电塑料;所述的板状集电体的厚度为0.5~50mm,形状为矩形、正方形、多边形或圆形。
本发明的又一目的是提供一种铅蓄电池的积木式电池,其特征在于:该积木式铅蓄电池包括:座架、隔板、电解质、和若干单极向极板;所述的单极向极板包括导电材料制成的板状集电体和固定在板状集电体单侧面上的电活性物质,所述的集电体的另一侧为集电面;固连不同的电活性物质分别形成单极向正板或单极向负板;
所述的积木式铅蓄电池包括一对单极向正板和单极向负板;
所述的单极向正板的铅膏面和单极向负板的铅膏面相向设置,中间隔有隔板,集电体位于偶极对的两端,形成极对向偶极对;
所述的极对向偶极对设置在电解质中形成单格电池。
本发明的再一目的是提供一种铅蓄电池的积木式电池,其特征在于:该积木式铅蓄电池包括:座架、隔板、电解质、和若干单极向极板,所述的单极向极板包括导电材料制成的板状集电体和固定在板状集电体单侧面上的电活性物质,所述的集电体的另一侧为集电面;固连不同的电活性物质分别形成单极向正板或单极向负板;
所述的积木式铅蓄电池包括n对单极向正板和单极向负板,n为≥2的正整数;
所述的单极向正板/单极向负板可分别同极向沿板面平展上、下、左、右倍容组合成单极向正极群/单极向负极群;
所述的单极向正极群的铅膏面和单极向负极群的铅膏面相向设置,中间隔有隔板,集电体位于偶极对的两端,形成极对向偶极对;
所述的极对向偶极对设置在电解质中形成单格电池。
本发明的另一主要目的是提供一种铅蓄电池的积木式电池组,其特征在于:该电池组包括座架、若干隔板、电解质、正引极极板、负引极极板、n对单极向正板和单极向负板,n为≥1的正整数;
所述的电池组的正引极极板为一设有引极的单极向正板,其负引极极板为一设有引极的单极向负板,分别单独设置在电池组的座架的两端壁内,引极外端可采用在极板的集电体上一体化设计或组合形式;
所述的n对单极向正板和单极向负板的集电面相对电连接构成若干组反极向偶极对层叠安装在座架上;
所述的电池组的座架有若干个内壁,内壁上对应设有呈突起状的格壁,若干组反极向偶极对的集电体板面作为相邻两格池之间的隔离件,安装在座架的若干个内壁上,在电池组座架内形成若干个互相隔离的格池;座架上仼一组反极向偶极对的极板的正/负极与两侧相邻极板的负/正极的极性相反,格池内的正极与负极之间设置有极板隔板;
所述的电池组座架包括格池的密封盖,密封盖设置有单向排气阀连通格池内部空间,排气方向由里向外,格池中加电解质。
仼一极板的正/负极与相邻极板的负/正极也相对层叠设置,形成中间是正板与负板的集电面固定电连接,一组反极向偶极对的两极分别位于相邻的两个格池;所述的电池座架内设置的若干个格池,可沿水平方向排列,也可沿竖向排列;所述的隔板,可采用正负极板极向相对之间的夹心形式,或将极板套装入专门设计的极板袋形式。
反极向偶极对的两极分别位于相邻的两个格池。使用中,通过活动的排气阀在阀孔中向格池内加电解质。所述电池组的反极向偶极对为2对或2对以上,包括引极的正/负板。电池组的的单极向的正/负板引极,其极向与电池组的两端偶极对的极向相反。
所述的单极向正板/单极向负板可分别同极向沿板面平展上、下、左、右电固连倍容组合成单极向的正极群/单极向负极群,所述的单极向正/负极群的集电面相对组成一组大容量的反极向偶极对。
所述组成反极向偶极对的单极向正/负板的集电面之间接口周边,可局部或全部加导电材料电导通固连,该导电材料采用:锡、铅或其合金以及导电塑料;所述的反极向偶极对的集电体板体与座架内壁的接口间隙,可填充电绝缘的隔板和加环氧树脂或热熔材料密封。
所述的极板隔板的材料,可以采PP、PE、PVC、AGM、橡胶以及所有不影响电解质电子迁移运动的多微孔状电绝缘膜,隔板为1层或1层以上;
所述的电池座架的壳体材料,可以是PP、PE、PVC、ABS以及所有电绝缘的成形材料。
所述的电解质,包括添加或不添加电活性物质的硫酸液,以及混合任何电活性物质制作的硫酸基胶体,含酸密度1.20~1.40/25℃。
实际应用中,首先制作一种不同于已有结构的单极向极板,如图5~9所示。极板的集电体呈板状结构,不同于常规板栅,无网状空心栅格,A、B两侧面机械不导通,如图5和6所示。该集电体仅在B面涂布铅膏,使之固化后形成B面为电活性物质、A面为集电面的单极向极板,如图7A、图7B、图8A、图8B、图9A和图9B所示。
对集电体A、B两面的一般工艺要求是,A面为方便与相反极的集电体对接,通常设计成平滑的平板或规则性凹凸面,集电面设计成平板加工简单,如图8A和8B所示。规则性凹凸面是为了正负极反向组合成偶极对时,使集电体偶对更方便地组装固连,如图9A和9B所示。B面是为了粘结铅膏,表面要求设计一些筋肋或蜂窝等形式的粗糙面,或设计微齿,如图7A和7B所示,目的是加大与铅膏的粘结表面积,增强集电体与铅膏的粘着力。对于作电池或电池组引极用的单极向极板,可在集电体的上部加长设计作为一体化引极,如图8A和8B所示;或在集电面的侧面部分凸出作为一体化引极,如图14和16电池组两端的引极极板的集电体所示。
用类同方法分别制成单极向的正极板和单极向的负极板。
根据应用需要将单极向极板组合成偶极对,偶极对有两种组合方式,其中技术优势最明显的是反极向偶极对,其组合是将正板集电体1与负板集电体3的集电面(即以上所述的A面)紧密机械固连、电导通,如图10A和10B所示。集电面接口周边一般加导电材料固连,为防止其它部件电接触及方便安装,接口边沿可用硬性或软性绝缘材料包裹。
如图11所示,偶极对可以采用另一种组合方式,是正极铅膏面2和负极铅膏面4相对,中间加隔板6,集电体1/3位于偶极对的两端,称极对向偶极对,加隔板、放入电解质后成为单格2V的电池,如图15所示。但当极对向偶极对形成的单格电池在同一座架內串联成电池组时,仍需在格与格之间加常规的內串联跨桥连接,从而降低单极向极板应用在电池组的低内阻优势,因此这种极对向偶极对的应用范围及技术优势,远远不及反极向偶极对。
1对反极向偶极对不能在电解质中形成单电池,因偶极对的集电体是短路连接,不能形成电闭合回路,但当用1对正/负引极及1对以上的反极向偶极对內串联组合电池组时,其优势将全面显现。正是因为反极向偶极对的集电体是短路连接,所以在电池组中自然地构成了不同格与格之间的内串联,无需另外设计常规跨桥,使电池组大电流充放电的跨桥电压降为0。如图13所示,内串联电池组的正/负两极引出,需使用1片正板11和1片负板12作引极,引极的设计,是将单极向正/负极板的集电体向上、下或集电面侧面延展,将引极正/负极板的集电体延伸至电池组座架外部,直接作为端子或固连专用端子。单极向正/负引极极板在内串联电池组两端壁内,构成了匹配完整的单电池组合,这也是本发明单极向极板的另一特色优势,如图13、图14和图16电池组两端的正/负引极极板的结构所示。内串联电池组的电动势要求越高,优势越大。
用单极向极板组成反极向偶极对以内串联方式制作电池组时,反极向偶极对的安装方式与常规电池组截然不同,座架有若干个格池,偶极对是安装在格与格之间的内壁上,接口间隙可加绝缘性隔板以及用环氧树脂或热熔材料密封,充当隔离格与格之间的密封件的双重角式。反极向偶极对的两极分别位于相邻的两个格,任一极板的正/负极与相邻极板的负/正极相对,各极板的正极与负极之间设置有隔板。
在实际应用中,偶极对的集电体板体不一定能填满座架格池的内壁,极板上部需要留一定的格池空间作气体化合室,同时留出装排气阀的位置,所以集电体板体不一定设计为占满座架内壁。一般的解决方案为:1、电池组的密封盖配合座架内壁的接口向下延伸设计,使之与集电体板体接合,或2、在密封盖的格池内壁与集电体板体的间隙之间,加电绝缘隔板接合。所述的电绝缘隔板包括电绝缘塑料或其它任意电绝缘的成型材料,所有接口间隙加环氧树脂材料或热熔材料密封。
电池组座架每个格池的上部加密封盖密封,密封盖设置有单向排气阀连通格池的内部空间,排气方向由里向外,格池中加电解质。用1对正/负引极和1对以上的反极向偶极对,即可用堆叠积木的形式组成所需电动势的电池组,例如用1对正/负引极和5对偶极对堆叠积木式组合成12V的电池组,用1对正/负引极和23对偶极对堆叠积木式组合成48V的电池组,用1对正/负引极和54对偶极对堆叠积木式组合成110V的电池组,等等。
这种电池组安装结构的特点,是反极向偶极对在内部堆叠积木式串联组成。反极向偶极对的正极集电体和负极集电体是直接面机械接触固连,因无需连接不同格的极群之间的跨桥,所以集电体连接在内串联电池组中形成的内阻极小,等效为0,因此可适应大电流快速充电,理论上可达到5~8倍率充电的要求。
单极向极板还可沿板面平展上下左右组合电固连而成同极向平铺式极群,如图12A和12B所示,该同极向平铺式极群等效于若干容量相加的单极向极板,目的是将单片容量小的极板同极向组合成容量更大的极板,克服制造单片大容量极板的工艺困难,这种平铺式极群的是单极向极板应用的另一重要特色。若干片同极向平铺式正板极群和若干片同极向平铺式负板极群的集电面固连,可形成一对容量更大的反极向偶极对。同理,若干片同极向平铺式正板极群和若干片同极向平铺式负板极群的的两极相对,可形成一对容量更大的极对向偶极对,加隔板电解质后可获得大平板状的单格2V的大容量电池,对某些外型要求为板状的特殊电池有其用途。
在铅蓄电池行业,众所周知极板集电体采用纯铅制造是最理想的,但在常规网状结构的板栅状集电体制造中,纯铅因太软,无法满足所需的机械强度,不得不加锑或钙增加机械强度,而锑或钙的加入也带来了电位改变及合金制作的毛病,继而需加一些锡、铝、铋、镉等金属改良特性。这些金属的加入,不仅提高了极板集电体的材料成本,对纯粹的铅酸电化学反应来说无疑是利害相兼的杂质,因此多年来铅蓄电池行业一直在寻求极板集电体纯铅化的技术途径。本发明所述的结构简单的极板集电体,因无需在集电体中设计空心的网状栅格,集电体机械强度相对较大,为极板集电体纯铅化制造提供了可行的技术方案。
本发明的优点在于,本发明的单极向极板较之双极性电极的结构更简单,制造成本低,工艺容易实现。本发明的这种积木式电池和电池组组较之常规方式连接的电池组,较之玻璃纤维覆铅编网式板栅加水平连接极群的电池组、卷绕电池组,无需格与格之间的内部跨桥连接,具有内阻低、充放电效率高、比能量和比功率高、可大电流快速充电的优势。
附图说明
图1为现有技术中的常规网状板栅式集电体的结构示意图。
图2A和2B为现有技术中的板栅涂膏式极板的正板结构剖面示意图。
图3A和3B为现有技术中的板栅涂膏式极板的负板结构剖面示意图。
图4为现有技术中的极群集流及电池组跨桥内串联的结构剖面示意图。
图5A和5B为本发明单极向极板的一种正板集电体的基础结构示意图,无栅格,无极耳,在集电体的单侧涂铅膏。
图6A和6B为本发明单极向极板的另一种负板集电体的基础结构示意图,无栅格,无极耳,在集电体的单侧涂铅膏。
图7A和7B为本发明单极向极板的一种正/负板实施结构机械剖面示意图,集电体的集电面为平板,集电体的粘结铅膏面带框及不规则粗糙面。
图8A和8B为本发明的一种专用于电池或电池组引极的单极向正/负板实施结构剖面示意图,集电面为平板,集电体的上部加长设计,作为一体化引极。
图9A和9B为本发明单极向极板的又一种正/负板实施结构机械剖面示意图,集电体的粘结铅膏面带柱形齿,集电面带凹凸互补的偶连齿。
图10A为本发明单极向极板的一种反极向偶极对的实施结构机械剖面示意图,正/负板集电体的集电面平板对接。
图10B为本发明单极向极板的一种反极向偶极对的实施结构机械剖面示意图,正/负板集电面凹凸对接。
图11为本发明单极向极板的一种极对向偶极对的实施结构机械剖面示意图,正/负板的极向相对,正/负板的集电体位于偶极对两端。
图12A为本发明的单极向正板同极向固连成平铺式极群的实施结构示意图。
图12B为本发明的单极向负板同极向固连成平铺式极群的实施结构示意图。
图13为本发明的单极向极板用反极向偶极对连接方式,堆叠积木式装配电池组的一种实施结构剖面示意图,偶极对竖放,电池组的正/负极从座架两侧上部引出。
图14为本发明的单极向极板用反极向偶极对连接方式,堆叠积木式装配电池组的另一种实施结构剖面示意图,偶极对竖放,电池组正/负极从座架两端侧面引出。
图15为为本发明的单极向极板用极对向偶极对连接方式装配电池的一种实施结构剖面示意图,偶极对竖放,电池正/负极从座架两侧面引出。
图16为本发明的单极向极板用反极向偶极对连接方式,水平堆叠积木式装配电池组的又一种实施结构剖面示意图,偶极对水平放置,电池组正/负极从座架上下侧面引出。
附图标识
1、正极板集电体 2、正极板铅膏 3、负极板集电体
4、负极板铅膏 5、集电体接口周边的导电材料 6、隔板
7、电解质 8、排气阀 9、格壁
10、格池
11、正极板集电体引极/电池组正极端 12、负极板集电体引极/电池组负极端
13、常规板栅集流极耳 14、常规网状板栅的栅格
15、常规多格电池组的內部串联金属跨桥
具体实施方式
本发明改变了常规网状板栅涂膏极板的正负极交叉组合极群集流及跨桥串联连接电池组的方式,用单极向极板组成的反极向偶极对在内部堆叠积木式形成的电池组,无需集流桥和跨桥连接,内阻极小。因单极向极板的结构简单,工艺容易实现,适合制造需求大电流快速充放电的高压电池组,比能量高,比功率大,制造成本低。本发明的单极向极板以及用反极向偶极对、正/负引极内部串联成电池组的技术原理方法,适用于所有需求(2+2r)V的电池组(r为≥1的正整数),电池组的电动势要求越高,其结构技术优势越明显。
以电动自行车常见的48V10Ah电池组为例,现常规方法是制作12V电池,4只电池外串联使用;12V10Ah电池的内部结构,通常是采用网状板栅涂膏极板,8片正板与7片负板交叉组合成单格极群,极群正负极分别集流后通过格与格之间的5道跨桥内部串联而成,6个极群共需90片极板内部并、串联连接。在这类48V电池组中,隐含了4只电池共360片极板在充满酸雾的电池内部并、串联连接,接口多隐患也多,内部跨桥对电流传输的路径长,远远不能适应电动自行车快速充电的要求。如果在电动自行车实施本发明所述的单极向极板制造同类48V10Ah电池组,只需10Ah容量的单极向极板正、负板各24片(包括正/负极引板各1片),形成23对偶极对,将23对偶极对和正/负极引板在座架内部堆叠积木式安装,即可组成体积小重量轻的48V10Ah电池组,电池组內部串联因无需集流桥和跨桥连接,因而内阻极小,可适应电动自行车0.5h内大电流快速充满电的要求。
又例如通讯机站常见的48V500Ah电池组,常规方案是制造2V500Ah电池24只外串联使用。2V单格电池因无跨桥,单只工作很稳定,但当24只电池串联使用时,每只电池在电池组运行中保持一致的概率不高,任一只电池容量的落后都会拖累整组电池的工作状态,成为行业内公知的老问题。同时,因传统极群方式受内部集流桥的制约,电池内阻相对大,很难满足3倍率以上电流放电的容量要求。如果在通讯机站实施本发明所述的电池组结构,只需制造25Ah容量的单极向极板正、负板各24片(包括正/负极引板各1片),形成23对反极向偶极对,将23对偶极对和正/负极引板在电池组座架堆叠积木式安装,即可组成体积小重量轻的48V25Ah电池组。使用时,将20只48V25Ah电池并联成48V500Ah,替代常规24只2V500Ah外串联而成的48V500Ah电池组。由于电池组是外接并联使用,每只电池的充电工作状态都可以得到保障,即使某只电池发生容量落后,也不会拖累整组电池的工作状态,极大地提高了电池组运行的稳定可靠性。同时,本发明所述结构的电池组因无需极群集流桥,很容易满足通讯机站电池组3~5倍率大电流放电的容量要求。
电动公共汽车应用的电池组通常是设计使用384V,常规需32只12V电池外串联组成。一般来说,外连接无论是串联还是并联,外接口出故障的概率较低,问题主要出在12V电池的内部。在上述通讯机站常用的48V500Ah电池组中,使用的是2V单格电池,因内部无电池组串联跨桥,工作相对稳定。但在12V电池中,内部结构是由6个单格和5道跨桥组成,384V电池组中隐含了192个单格即192道集流桥和160道跨桥,任1道集流桥或道跨桥出故障都会引起384V电池组工作瘫痪,由此可见隐患之严重。同时,常规采用网状板栅涂膏极板、正/负极板交叉集群制造的铅蓄电池,在结构原理上很难满足1h内充满电的行业需求。如果在电动公共汽车使用的电池组中,实施本发明所述的单极向极板制造方法,应用以上所述的48V内串联积木结构,则384V电池组仅需8只电池外串联组成,如电池组需要更大容量,可通过外接并联方式解决。本发明解决该类高压电池组隐患的关键技术是:电池组内部串联无跨桥,接点少隐患也微,因内阻极小,可运用2~5倍率大电流充电,满足电动汽车应用对蓄电池0.5h内快速充满电的技术要求。
在铅蓄电池制造行业,对水平电池、卷绕电池及双极性电池较深入了解的普通专业人士,都可以在本发明所述的单极向极板及偶极对结构的基础上,举一反三地变形实施本发明。本发明所述的单极向极板和反极向偶极对内串联堆叠积木式形成电池组的原理方法,以及本发明原理方法衍生的技术变形实施,均应被列入本发明的保护范围。
实施例:
实施例1、制作48V动力用的电池组,电池组的两极从座架上端引出,如图13所示的电池组引极端子结构。电池组正/负极以单极向正/负极板的集电体1/3设计为延伸的方式作为引极11/12,从座架上部引出。
首先制作单极向正极板,正极板的集电体1用常规铅合金板制作,为150×150mm方形板结构,厚度1.2mm。集电板的一面为平面,另一面压制有30个直径1mm高度2mm的圆柱形齿,在集电体带齿一面涂常规正极板铅膏2。同理,单极向负极板的集电体3用常规铅合金板制作,集电板为150×150mm方形结构,厚度0.7mm。集电板的一面为平面,另一面压制有30个直径1mm高度1.5mm的圆柱形齿,在集电体带齿一面涂常规负极板铅膏4。正/负集电体涂膏面的铅合金板表面粗糙,涂铅膏后经过常规高温固化,分别制成单极向的正/负板。在若干单极向的正/负板中,用于电池组正/负引极用的极板集电体1/3带上部引极11/12。
装配时,电池组的正/负引极极板分别单独设置在电池组的座架的两端格壁内。将正板集电体1与负板集电体3平面紧密接触,接口周边加焊锡5固连,形成反极向偶极对。焊接集电体周边接口时,注意焊锡只能焊在集电体上,不得与两面铅膏接触,避免两个单极向极板的两面铅膏短路,接口边沿用软性绝缘材料包裹。电池座架有24个格池10共25道格壁9,格池宽2.7mm、长165mm、高170mm,格池上部密封盖设计有单向排气阀8。将23对反极向偶极对分别安装在座架中间的23个格壁9上,安装时注意偶极对的极向一致,即任一偶极对的正/负极与相邻偶极对的负/正极相对。电池组座架两端的格壁内,分别安装专门带引极的单极向正板/负板分别作为电池组正极端11/负极端12,正板的铅膏面2与相邻偶极对的负板铅膏面4相对,负板的铅膏面4与相邻偶极对的正板铅膏面2相对。格池10之间通过安装偶极对互相完全隔离,24个格池10加一厚0.3mm的橡胶隔板6,密封盖上对应毎一格池10设置有排气阀8,密封24个格后,通过排气阀口向24个格池内加115ml/格含酸密度为1.32/25℃的硫酸液凝胶体7。
本实施例得到的48V电池组,与常规电动自行车使用网状板栅涂膏极板集群结构的12V电池4只串联的电池组相比,单位体积重量轻,耗材降,其突出的优点是內阻比常规极群结构的电池组小一个数量级,适应2~5倍率大电流快速充电,在电动自行车中使用可满足15~30分钟基本充满电的市场需求。
实施例2、将实施例1的电池组的引极及外部接线部位变形实施,电池组的两极从座架侧面两端引出,即正极端11/负极端12用的极板的引极,是从集电体1/3的侧面设计引出,如图14所示。其余数据及制造方法与实施例1类同,制得的48V10Ah电池组与实施例1的电池组类同。
实施例3、将实施例1的电池组的外型和内部极板形状变形实施,正极及负极的集电体由150×150mm方形结构改变为半径85mm的圆形结构。为使偶极对组合安装方便,正极及负极的集电面制作成若干块凹凸,正极集电体的凹面与负极集电体的凸面互补,其余数据及制造方法与实施例1类同,制得的48V10Ah电池组与实施例1的电池组类同。
实施例4、用实施例1的类似方法制作48V50Ah电池组,采用实施例1所述方形结构的集电体,为使偶极对组合安装方便,正极集电体1及负极集电体3的集电面制作成若干块凹凸,如图9A、9B所示,正极集电体的凹面与负极集电体的凸面互补。将相关数据调整为:正极集电体1侧面积为280×280mm,平均厚度5.2mm的,另一面压制有60个直径2mm高度4mm的圆柱形齿,在集电体带圆柱形齿一面涂常规正极板所需的铅膏量,经常规高温固化后制成50Ah容量的单极向正板。同理,负极集电体3为280×280mm方形结构,平均厚度3.8mm,另一面压制有60个直径2mm高度3.5mm的圆柱形齿,在集电体带圆柱形齿一面涂常规正极板铅膏,经常规高温固化后制成匹配50Ah容量的单极向负板。在若干单极向的正/负板中,用于电池组正/负引极用的极板集电体1/3带侧面引极11/12。
装配时,电池组的正/负引极极板分别单独设置在电池组的座架的两端。将正板集电体1与负板集电体3的凹凸面紧密接触,接口周边加焊锡5固连,形成反极向组合的偶极对,如图10B所示。焊接集电体周边接口时,注意焊锡只能焊在集电体上,不得与两面铅膏接触,接口边沿用硬性绝缘材料包裹。电池组座架有24个格池共25道格壁9,格池宽8.5mm长295mm高330mm,格池10上部密封盖设置有单向排气阀8。将23对偶极对分别安装在座架中间的23个格壁上,安装时注意偶极对的极向一致,即任一偶极对的正/负极与相邻偶极对的负/正极相对。座架两端的格壁分别安装专用于引极的单极向正板及单极向负板,正板的铅膏面2与相邻偶极对的负极铅膏面4相对,负板的铅膏面4与相邻偶极对的正极铅膏面2相对。格池之间通过安装偶极对隔离,接口间隙加绝缘性环氧树脂密封,24个格池加一厚3.5mm的吸液膨胀型AGM隔板,密封24个格后,通过排气阀口向24个格池内加580ml/格含酸密度为1.29/25℃的硫酸液7,硫酸液中添加0.3%的无水硫酸钠。电池组引极端子采用图14所示的结构,座架两端的格壁9的壁内分别安装专门带引极11/12的单极向正板及单极向负板,电池组正/负极11/12从座架两侧面分别引出。
本实施例得到的48V50Ah电池组,与常规网状板栅涂膏极板集群结构的4只12V50Ah电池组相比,其突出的优点是体积小重量轻耗材降,大电流放电內阻要比常规极群结构的电池组小一个数量级,适应通讯机站应急3~5倍率大电流高功率放电的需求。
实施例5、将实施例4的电池组的外型和内部极板形状变形实施,正极及负极的集电体改为纯铅制作,集电体侧面由280×280mm方形结构改变为260×300mm矩形结构,正/负极板集电体的涂膏面带一环形框,框高与实施例4集电体的齿高相同,隔板改为常规AGM,格壁9通过安装偶极对隔离格池10的接口,加一无微孔的电绝缘隔板填补间隙,并加电绝缘的热熔材料密封,用设置有单向排气阀的密封盖密封24个格后,通过排气阀口向格池内加560ml/格含酸密度为1.285/25℃的硫酸聚合物凝胶体,其余数据及制造方法与实施例4类同。
本实施例得到的48V50Ah电池组,与常规网状合金板栅涂膏极板集群结构的4只12V50Ah的电池相比,突出的优点除了体积小重量轻耗材降外,结构一体化的內阻比常规极群结构的电池组小得多。由于集电体改为纯铅制作,造价下降且在长期浮充运行中电位稳定,当应用于替代邮电通讯机站常见的48V500Ah电池组时(24只2V500Ah外串联而成),由于48V500Ah电池组是10只48V50Ah电池外接并联使用,每只电池的充电工作状态都可以得到均衡充电保障,即使某只电池发生容量落后,也不会拖累整组电池的工作状态,极大地提高了邮电通讯机站电池组运行的稳定可靠性。
实施例6、将实施例1所述的电池组改为36V结构,单极向极板及偶极对的制造方法与实施例1相同。电池组座架设置有18个格池共19道格壁,格池宽2.7mm长165mm高170mm,格池10上部密封盖设计有单向排气阀8。将17对偶极对分别安装在座架中间的17个格壁9上,安装时注意偶极对的极向一致,即任一偶极对的正/负极与相邻偶极对的负/正极相对。座架两端的格壁9内分别安装专用于引极的单极向正板及单极向负板,正板的铅膏面与相邻偶极对的负极相对,负板的铅膏面与相邻偶极对的正极相对。格池之间完全隔离,18个格池加一厚1.3mm的AGM隔板,密封18个格后,通过排气阀口向18个格池内加110ml/格含酸密度为1.33/25℃的硫酸液凝胶体。电池组引极端孒采用附图13所示的结构,正/负引极用的引极11/12在极板集电体的上部引出。
实施例7、用实施例4所述的单极向极板制造方法,组合成450Ah的大容量偶极对,满足一些特殊场合需要的一体化的48V450Ah电池组。实施例4所述的正极集电体侧面积为280×280mm,平均厚度5.2mm,负极集电体的侧面积同样为280×280mm,平均厚度3.8mm。将实施例4所述的正/负集电面为规律的互补凸凹结构,改正/负集电面为平板,如图10A所示。
图12A给出了2片单极向正极板同极向固连成双倍电容量极板的实施示例,本实施例将9片单极向正板的集电体1同极向在同一平面按3×3片方式组合固连,等效于840×840mm的单极向正板,该同极向平铺式正极群的容量为9×50Ah。如图12B示例,同理将9片单极向负板的集电体3同向组合固连,等效于840×840mm的单极向负板,该同极向平铺式负极群的容量为9×50Ah。在24组正/负极群中,其中一组正/负极群为引极用,即在9片单极向正/负板组成的同极向平铺式负极群中,其中单极向正/负板各3片带引极11/12,组合在正/负极群的同一面作上部引极。
装配时,将同极向平铺式正极群与同极向平铺式负极群的平板集电面紧密接触,接口周边加焊锡5固连,形成反极向组合的450Ah的大容量反极向偶极对。焊接集电体组合的周边接口时,注意焊锡只能焊在集电体铅板上,不得与两面铅膏接触,避免两个单向极群两面的铅膏短路,接口边沿可用硬性或软性绝缘材料包裹。
电池组座架有24个格池10共25道格壁9,格池宽12mm长870mm高950mm,格池上部密封盖设计有单向排气阀。将23对偶极对分别安装在座架中间的23个格壁上,反极向偶极对的集电体板体与座架内壁的接口间隙,填充电绝缘的隔板以及加环氧树脂密封。座架两端的格壁内分别安装专用于引极的单极向正板及单极向负板,正板的铅膏面2与相邻偶极对的负极相对,负板的铅膏面4与相邻偶极对的正极相对。格池加一厚6mm的吸液膨胀型AGM隔板6,密封24个格后,通过排气阀口向24个格池内加6500ml/格含酸密度为1.325/25℃的硫酸液胶体,硫酸液胶体中添加0.6%的无水硫酸钠。电池组引极11/12采用附图13所示的基本结构,两极分别从电池组座架两端的上部引出。
本实施例得到的48V450Ah电池组,大电流放电內阻要比常规极群结构的电池组小一个数量级,适应一些需要电池组一体化的特殊场所,满足3~5倍率大电流高功率充放电的需求。
实施例8、制造一种平板型结构的高功率电池。采用实施例4所述的单极向的正/负极板,电池座架制作成内部空间300×330×16mm的矩形扁盒状,在座架壳体密封盖上安装一由里向外的单向排气阀。单极向的正/负极板均带引极。
安装时,将带引极的同极向正/负极板的极向相对,如图15所示,中间夹1层厚度为2.5mm面积为300×330mm的AGM隔板6,正板集电面1与负板集电面3位于两端,用任意硬质绝缘材料填入两端集电体与壳体的空隙,目的是将正板与负板之间的AGM隔板压紧,然后固牢密封盖,接口加环氧树脂粘合胶,在单向排气阀孔向盒内灌含酸密度为1.295/25℃的聚合物胶体电解液,液量以AGM吸液饱和见游离液面为限。盖上单向排气阀后,实施常规充电即可得到矩形板状的2V50Ah电池。本实施例获得的单格矩形板状电池,较之常规极群结构的同容量单格电池,最明显的优点是采用了单面涂膏的单极向极板,极板活性物质的化学反应效率高,同时将常规多片正负板堆叠极群的桥形汇流方式,改变为面接触的集流方式,内阻小,适合大电流充放电使用。
实施例9、制造一种平板型结构的大容量高功率电池。采用实施例7所述的单极向的正/负极板,以及实施例7所述的带引极的840×840mm同极向平铺式正/负极群,电池座架制作成内部空间900×950×18mm的矩形扁盒状,在座架壳体密封盖上安装一由里向外的单向排气阀。
安装时,将同极向平铺式正/负极群的极向相对,如图15所示,中间夹2层厚度为2mm面积为860×860mm的AGM隔板6,正板集电极1与负板集电极3位于两端,用任意硬质绝缘材料填入两端集电体与壳体的空隙,目的是将正板与负板之间的AGM隔板压紧,然后固牢密封盖,接口加环氧树脂粘合胶,在单向排气阀孔向盒内灌含酸密度为1.265/25℃的聚合物胶体电解液,液量以AGM吸液饱和见游离液面为限。盖上单向排气阀后,实施常规充电即可得到矩形扁盒状的2V450Ah大容量电池。本实施例获得的单格大容量电池,较之常规极群结构的同容量单格电池,最明显的优点,是将单面涂膏的单极向极板同极向倍容组合,克服了制造单片450Ah大容量极板的困难,同时将常规极群的桥形汇流方式,改变为面接触集流方式,内阻小,适合大电流充放电使用。
实施例10、将实施例9所述的平板型结构的大容量高功率电池,内串联为6V450Ah电池组。电池组座架制作成内部空间900×950×45mm×3的矩形扁盒状,即设置3个格,每格密封盖上安装一由里向外的单向排气阀。其余格内制造方法类同,安装时注意在3个格内的偶极对方向为+/-、+/-、+/-排向,中间两挌壁的格与格之间以常规跨桥方式连接。
实施例11、将实施例4得到的48V50Ah电池组的常规硫酸液改变为有机溶剂与二氧化硅凝聚的硫酸基胶体,含酸密度为1.325/25℃,其余数据不变。本实施例所得的48V50Ah胶体电池,由于采用了温度特性良好的有机溶剂与二氧化硅凝聚的硫酸基胶体作电解质,适合在户外四季环境充放电运行。例如在需求384V电池组的电动公共汽车使用时,只需本实施例的8只电池外串联即可满足电压要求,当需要更大的电池组容量时,可迭加一组或若干组串、并联连接使用。
实施例12、将实施例11所述电池组的内部极板结构变形,正极集电体和负极集电体的制作材料由常规铅合金改为纯铅制造,其余数据不变。本实施例极板集电体因采用了纯铅制作,有利于提高电池组的充放电循环使用寿命,工作性能稳定,集电体容易加工成型,并且降低了集电体制作的材料成本。
实施例13、将实施例10所述电池组的内部极板结构变形,正极集电体和负极集电体的制作材料由铅合金改为导电塑料,其余数据不变。本实施例所得的48V50Ah胶体电池,由于极板集电体采用了比重小得多的导电塑料制作,大大减轻了电池组的重量,提高了电池组的重量比能量,适合在电动汽车运行。
实施例14、将实施例12所述电池组的内部极板结构进一步变形,正极集电体材料改为导电塑料,负极集电体由导电碳纤维板制作,其余数据不变。本实施例所得的电池组,由于正极板集电体采用了比重小得多的导电塑料制作,负极板集电体采用了比重小得多的导电碳纤维板制作,大大减轻了电池组的重量,提高了电池组的重量比能量。
实施例15、将实施例13所述电池组的内部极板结构继续变形,正极集电体改为改为覆铅铜板制作,负极集电体改为覆铅塑料板制作,其余数据不变。本实施例所得的48V50Ah胶体电池,由于正极板集电体采用了比重比铅合金小的覆铅铜板制作,负极集电体采用了比重小得多的覆铅塑料板制作,大大提高了电池组的重量比能量。
实施例16、采用单片容量为100Ah的单极向正极板,以及与其匹配的单片容量为100Ah的单极向负极板,在建筑物式的座架壳体内,以工程嵌装形式建一座总容量为5KAh的电池堆式的储电库。方案为:5×10块单极向正板和5×10块单极向负板,以集电面1/3电固连的形式焊接安装在室壁上,正极和负极分别位于两个室内,形成5KAh集合容量的反极向偶极对。毎个室壁的焊接安装方法类同,每间室内的极向都是正极和负极相对,正极和负极之间加若干层AGM隔板6,每间室顶部都设置有单向排气阀8,室与室之间加热熔材料密封,室内填充有机溶剂与二氧化硅凝聚的硫酸基胶体,含酸密度为1.255/25℃,液量以AGM吸液饱和见游离液面为限。该电池堆的串联组合电动势可根据实际需要而定,例如需要48V建24个室体,需要220V建110个室体。在若干组5×10块单极向正/负极板组成的正/负极群中,储电库式电池组两端的正/负极群需专门设计储电库引极11/12,该引极采用固焊外接金属构件方案解决。本储电库的建造方案简单,工程容易实现,内阻几乎为0,充电效率高,输出功率大。当配合风能太阳能运用时,可改变小容量单机运行的方式,做到集中储电及集中供电,在未来社会中有着重要的用途。
实施例17、以实施例16为基础制造外型有艺术特色的储电库,采用若干80Ah容量的单极向正极板以及与其匹配的单极向负极板,在建筑物式的座架壳体内以工程嵌装形式建造。本实施例的极板外型改为三角形,极板集电体的侧面形状为等边三角形结构,若干块极板同极向组合成更大容量的极群,例如以3片、4片、5片、8片、9片等序列形式同极向平铺式组合成所需容量的极群,极群侧面外观为梯形或三角形,极板集电体之间接口加焊锡固连。若干块单极向正极板和若干块单极向负极板的集电体,以集电体背接固连形式焊接安装在室壁上,正极和负极分别位于两个室内。因本实施例的极群外观为梯形或三角形,室壁建造应与极群安装同步进行,其他安装方法与实施例16类同。
最后所应说明的是,以上实施例仅用以说明本发明的技术方案而非限制。尽管参照实施例对本发明进行了详细说明,本领域的普通技术人员应当理解,对本发明的技术方案进行修改或者等同替换,都不脱离本发明技术方案的精神和范围,其均应涵盖在本发明的权利要求范围当中。