CN101630364A - Method for gait information processing and identity identification based on fusion feature - Google Patents

Method for gait information processing and identity identification based on fusion feature Download PDF

Info

Publication number
CN101630364A
CN101630364A CN200910070174A CN200910070174A CN101630364A CN 101630364 A CN101630364 A CN 101630364A CN 200910070174 A CN200910070174 A CN 200910070174A CN 200910070174 A CN200910070174 A CN 200910070174A CN 101630364 A CN101630364 A CN 101630364A
Authority
CN
China
Prior art keywords
gait
feature
recognition
theta
prime
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN200910070174A
Other languages
Chinese (zh)
Inventor
明东
白艳茹
万柏坤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin University
Original Assignee
Tianjin University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin University filed Critical Tianjin University
Priority to CN200910070174A priority Critical patent/CN101630364A/en
Publication of CN101630364A publication Critical patent/CN101630364A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Image Analysis (AREA)

Abstract

本发明涉及人行走时的步态特征信息提取、处理及身份识别。为能减少复杂背景等外界因素的干扰,实现对现实条件具备更好的自适应性,更为准确地提取能反映运动人体行走特征的有效信息,从而提高步态识别正确率,本发明采用的技术方案是,基于融合特征的步态信息处理与身份识别方法,包括下列步骤:基于融合特征的步态信息处理与身份识别方法,包括下列步骤:输入视频序列,通过目标检测分割出视频图像中人体目标的轮廓信息,然后将边界中心距、Radon变换同时用于步态特征参数提取,再对得到的特征参数进行相应的后处理,最后选用支持向量机作为分类器进行分类识别,并对识别效果给予评价。本发明主要应用于基于步态特征信息进行身份识别。

Figure 200910070174

The invention relates to the extraction, processing and identification of gait feature information when people are walking. In order to reduce the interference of external factors such as complex backgrounds, achieve better adaptability to actual conditions, and more accurately extract effective information that can reflect the walking characteristics of a moving human body, thereby improving the accuracy of gait recognition, the present invention adopts The technical solution is that the gait information processing and identity recognition method based on fusion features includes the following steps: the gait information processing and identity recognition method based on fusion features includes the following steps: input a video sequence, and segment the video image through target detection. The contour information of the human target, and then use the boundary center distance and Radon transform to extract the gait feature parameters at the same time, and then perform corresponding post-processing on the obtained feature parameters, and finally select the support vector machine as the classifier for classification and recognition, and recognize The effect is evaluated. The invention is mainly applied to identity recognition based on gait feature information.

Figure 200910070174

Description

基于融合特征的步态信息处理与身份识别方法 Gait Information Processing and Identification Method Based on Fusion Feature

技术领域 technical field

本发明涉及人行走时的步态特征信息提取、处理及基于步态特征信息进行身份识别,具体讲涉及基于融合特征的步态信息处理与身份识别方法。The invention relates to the extraction and processing of gait feature information and identity recognition based on gait feature information when people are walking, in particular to the gait information processing and identity recognition method based on fusion features.

背景技术 Background technique

生物特征识别是通过各种高科技信息检测手段、利用人体所固有的生理或行为特征来进行个人身份鉴定。生物特征主要包括生理特征和行为特征两种:生理特征是指与生俱来的,先天性的人体物理特征,如指纹、虹膜、人脸等;行为特征是指从人所执行的运动中提取出来的特征,多为后天性的,如步态、笔迹等。近几年生物认证技术出现了跳跃式发展,成为产、学、研、管各方面广泛关注的热点。在2001年的MIT Technology Review杂志中,生物特征识别技术被列为10项最有可能改变世界的技术之一。预计未来10年左右,生物认证技术将深入到我们生活的方方面面,其综合影响力将不亚于互联网。Biometric identification is the identification of personal identity through various high-tech information detection methods and the use of the inherent physiological or behavioral characteristics of the human body. Biological characteristics mainly include physiological characteristics and behavioral characteristics: physiological characteristics refer to innate and congenital physical characteristics of the human body, such as fingerprints, irises, faces, etc.; behavioral characteristics refer to the characteristics extracted from the movements performed by people The characteristics that come out are mostly acquired, such as gait, handwriting and so on. In recent years, biometric authentication technology has experienced a leap-forward development and has become a hot spot widely concerned by industry, academia, research and management. In the MIT Technology Review magazine in 2001, biometric technology was listed as one of the 10 most likely technologies to change the world. It is expected that in the next 10 years or so, biometric authentication technology will penetrate into every aspect of our lives, and its comprehensive influence will be no less than that of the Internet.

步态识别(Gait Recognition)是生物特征识别技术中的新兴领域之一。它旨在根据人们的走路姿势实现对个人身份的识别或生理、病理及心理特征的检测,具有广阔的应用前景。步态是一种复杂的行为特征,是人的生理、心理及对外界反应的一个综合体现。由于个体之间存在差异,步态也不尽相同,这些差异是整个肌肉和骨架(身体重量、肢体长度、骨骼结构等)的函数,且完全决定于几百个运动学参数。早期的医学研究表明:人的步态中有24种不同的成分,如果把这些成分都考虑到,则步态是为个体所特有的,这使得利用步态进行身份识别成为可能。相对于其他生物认证技术,步态识别具有非侵犯性、远距离识别、简化细节、难以伪装等独特优势。Gait Recognition is one of the emerging fields in biometric technology. It aims to realize the identification of personal identity or the detection of physiological, pathological and psychological characteristics according to people's walking posture, and has broad application prospects. Gait is a complex behavioral feature, and it is a comprehensive reflection of human physiology, psychology and reaction to the outside world. Gaits vary due to inter-individual variability, these differences are a function of the overall musculature and skeleton (body weight, limb length, bone structure, etc.) and are entirely determined by hundreds of kinematic parameters. Early medical research shows that there are 24 different components in human gait. If these components are taken into account, gait is unique to the individual, which makes it possible to use gait for identification. Compared with other biometric authentication technologies, gait recognition has unique advantages such as non-invasiveness, long-distance recognition, simplified details, and difficulty in camouflage.

现有的步态识别算法大致分为基于模型和基于非模型两大类。基于模型的方法,是指通过对人体结构建立模型或者对人体在步态序列图像中所表现出的明显的行走特征建立模型,利用模型衍生出来的参数提取步态特征。其特点是可以较精确地描述步态特征,大幅度降低对外部条件变化的敏感性,但是巨大的运算量是重视实时性的实用化所面临的难题。基于非模型方法,是指直接对人体在行走过程中的形状或动作进行分析而提取出来的特征。其特点是计算量相对较小,有助于在实用环节中达到实时运算的目的,但对背景和光照信号的变化敏感,一旦场景中出现遮挡现象,识别能力将受到较大影响。The existing gait recognition algorithms can be roughly divided into two categories: model-based and non-model-based. The model-based method refers to building a model of the human body structure or the obvious walking characteristics of the human body in the gait sequence images, and using the parameters derived from the model to extract the gait features. Its characteristic is that it can more accurately describe the gait characteristics and greatly reduce the sensitivity to changes in external conditions, but the huge amount of calculation is a difficult problem for practical applications that emphasize real-time performance. Based on the non-model method, it refers to the features extracted by directly analyzing the shape or movement of the human body during walking. Its characteristic is that the amount of calculation is relatively small, which is helpful to achieve the purpose of real-time calculation in practical links, but it is sensitive to changes in background and light signals. Once occlusion occurs in the scene, the recognition ability will be greatly affected.

步态识别融合了计算机视觉、模式识别与视频/图像序列处理等多项技术。随着生物认证技术的快速发展,基于步态特征的身份识别技术愈加显示出它的优势,尤其在门禁系统、安全监控、人机交互、医疗诊断等领域具有广泛的应用前景和经济价值。因而引起了国内外许多研究者的浓厚兴趣,成为近年来生物医学信息检测领域备受关注的前沿方向。Gait recognition combines multiple technologies such as computer vision, pattern recognition and video/image sequence processing. With the rapid development of biometric authentication technology, the identification technology based on gait features has increasingly shown its advantages, especially in the fields of access control system, security monitoring, human-computer interaction, medical diagnosis and other fields, which has broad application prospects and economic value. Therefore, it has aroused the strong interest of many researchers at home and abroad, and has become a frontier direction that has attracted much attention in the field of biomedical information detection in recent years.

然而,没有任何一种技术是完美的,现实条件下从环境中捕捉图像会受到多种因素(如气候条件的变化、光照条件的变化、背景的混乱干扰、运动目标的影子、物体与环境之间或者物体与物体之间的遮挡、摄像机的运动等)的影响,这给步态的最终识别带来了许多困难。如何消除这些因素的影响,更准确地提取运动人体的有效步态特征,是步态识别领域面临的难题。However, no technology is perfect. Capturing images from the environment under realistic conditions will be affected by various factors (such as changes in climate conditions, changes in lighting conditions, background chaos, shadows of moving objects, and the distance between objects and the environment. Occurrence or occlusion between objects, camera movement, etc.), which brings many difficulties to the final recognition of gait. How to eliminate the influence of these factors and extract the effective gait features of the moving human body more accurately is a difficult problem in the field of gait recognition.

发明内容 Contents of the invention

为克服现有技术的不足,本发明的目的是提供一种基于融合特征的步态信息处理与身份识别方法,以减少复杂背景等外界因素的干扰,对现实条件具备更好的自适应性,更为准确地提取能反映运动人体行走特征的有效信息,以提高步态识别正确率。In order to overcome the deficiencies of the prior art, the purpose of the present invention is to provide a gait information processing and identification method based on fusion features, to reduce the interference of external factors such as complex backgrounds, and to have better adaptability to actual conditions. More accurately extract effective information that can reflect the walking characteristics of a moving human body, so as to improve the accuracy of gait recognition.

本发明采用的技术方案是,基于融合特征的步态信息处理与身份识别方法,包括下列步骤:输入视频序列,通过目标检测分割出视频图像中人体目标的轮廓信息,然后将边界中心距、Radon变换同时用于步态特征参数提取,再对得到的特征参数进行相应的后处理,最后选用支持向量机作为分类器进行分类识别,并对识别效果给予评价。The technical scheme adopted by the present invention is that the gait information processing and identity recognition method based on the fusion feature includes the following steps: input video sequence, segment the outline information of the human body target in the video image through target detection, and then calculate the boundary center distance, Radon Transformation is also used to extract gait feature parameters, and then corresponding post-processing is performed on the obtained feature parameters. Finally, support vector machine is selected as a classifier for classification and recognition, and the recognition effect is evaluated.

所述的目标检测分割出视频图像中人体目标的轮廓信息,即运动目标检测与关键帧提取,包括下列步骤:The described target detection segmented the contour information of the human target in the video image, i.e. moving target detection and key frame extraction, including the following steps:

(1)最小中位方差法背景建模:(1) Minimum median variance method background modeling:

若令I(x,y) t表示采集的N帧序列图像,其中 ( x , y ) ∈ I ( x , y ) t , t代表帧索引值(t=1,2,…,N),则背景B(x,y)为:If let I (x, y) t represent the collected N frame sequence images, where ( x , the y ) ∈ I ( x , the y ) t , t represents the frame index value (t=1, 2, ..., N), then the background B (x, y) is:

BB (( xx ,, ythe y )) == minmin pp 22 {{ medmed tt (( II (( xx ,, ythe y )) tt -- PP )) 22 }}

式中P是像素位置(x,y)处待确定的灰度值,对R、G、B三个分量分别建模,经合成获得RGB格式的彩色背景图像;In the formula, P is the gray value to be determined at the pixel position (x, y), and the three components of R, G, and B are modeled separately, and a color background image in RGB format is obtained through synthesis;

(2)运动分割:(2) Motion Segmentation:

利用间接差分函数来执行差分操作:Use the indirect difference function to perform the difference operation:

ff (( aa ,, bb )) == 11 -- 22 (( aa ++ 11 )) (( bb ++ 11 )) (( aa ++ 11 )) ++ (( bb ++ 11 )) ×× 22 (( 256256 -- aa )) (( 256256 -- bb )) (( 256256 -- aa )) ++ (( 256256 -- bb ))

其中a,b分别表示当前图像与背景图像在同一像素点(x,y)处的灰度(强度)级,0≤f(a,b)≤1,0≤a,b ≤255。该差分函数的灵敏度可随背景灰度级自动改变,这种自适应性提高了图像分割的准确度,差分后通过阈值分割即可得到运动目标二值化图像:Where a and b represent the grayscale (intensity) levels of the current image and the background image at the same pixel (x, y) respectively, 0≤f(a,b)≤1, 0≤a, b≤255. The sensitivity of the difference function can be changed automatically with the gray level of the background. This adaptability improves the accuracy of image segmentation. After the difference, the binarized image of the moving target can be obtained by threshold segmentation:

SS (( xx ,, ythe y )) == 11 ff (( aa (( xx ,, ythe y )) ,, bb (( xx ,, ythe y )) )) ≥&Greater Equal; TT 00 Otherwiseotherwise ;;

(3)形态学处理与连通域分析:(3) Morphological processing and connected domain analysis:

对运动目标二值化图像进行形态学处理和连通域分析相结合的后处理,以去除残余噪声,获得更优的分割效果;Perform post-processing combining morphological processing and connected domain analysis on the binarized image of the moving target to remove residual noise and obtain better segmentation results;

(4)步态周期的划分与关键帧提取:(4) Division of gait cycle and key frame extraction:

利用人体的轮廓宽度随时间发生同步周期性改变的特性,通过人体轮廓的宽度变化信号来划分步态周期,并提取一个步态周期中两个极大值点作为关键帧。Taking advantage of the feature that the width of the human body contour changes synchronously and periodically over time, the gait cycle is divided by the width change signal of the human body contour, and two maximum points in a gait cycle are extracted as key frames.

所述的步态特征提取包括下列步骤:Described gait feature extraction comprises the following steps:

首先利用边界跟踪算法进行人体轮廓线的提取,并进行必要的归一化和重采样,从而得到运动人体轮廓。然后提取基于轮廓的边界中心距特征和Radon变换特征。边界中心距特征是指:Firstly, the boundary tracking algorithm is used to extract the contour of the human body, and the necessary normalization and resampling are performed to obtain the contour of the moving human body. Then the contour-based boundary center distance feature and Radon transform feature are extracted. The boundary center distance feature refers to:

将原始的二维轮廓形状通过一维距离信号D=(d1,d2,…d256)间接的表示,且具有平移不变性和旋转不变性,其中,The original two-dimensional contour shape is indirectly represented by a one-dimensional distance signal D=(d 1 , d 2 ,...d 256 ), and has translation invariance and rotation invariance, where,

dd ii == (( xx ii -- xx cc )) 22 ++ (( ythe y ii -- ythe y cc )) 22 ,, (( ii == 1,21,2 ,, ·&Center Dot; ·· ·· ·&Center Dot; ·· ·&Center Dot; 256256 )) ,,

Radon变换特征是指:The Radon transform feature refers to:

Radon变换的实质是图像矩阵在指定方向上的投影,投影可沿任意角度进行,通常情况下,f(x,y)的Radon变换是在平行于旋转坐标系中的y轴方向上的线积分,形式如下:The essence of Radon transformation is the projection of the image matrix in the specified direction. The projection can be carried out along any angle. Generally, the Radon transformation of f(x, y) is the line integral in the direction parallel to the y-axis in the rotating coordinate system. , of the form:

RR ee (( xx ′′ )) == ∫∫ -- ∞∞ ∞∞ ff (( xx ′′ coscos θθ -- ythe y ′′ sinsin θθ ,, xx ′′ sinsin θθ ++ ythe y ′′ coscos θθ )) dydy ′′

其中: x ′ y ′ = cos θ sin θ - sin θ cos θ x y . in: x ′ the y ′ = cos θ sin θ - sin θ cos θ x the y .

所述的再对得到的特征参数进行相应的后处理是指数据降维与特征融合策略,即将主成分分析PCA运用于数据降维中。The corresponding post-processing of the obtained feature parameters refers to the strategy of data dimensionality reduction and feature fusion, that is, principal component analysis (PCA) is applied to data dimensionality reduction.

选用支持向量机作为分类器进行分类识别是,采用“一对一”策略,即一个分类器每次完成二选一,该方法对N类训练数据两两组合,构建 C N 2 = N ( N - 1 ) / 2 个支持向量机。最后分类时采取投票方式决定分类结果:假设待识别的步态有m类,记为S1,S2,…,Sm,每一类中随机选取其中一个样本Sij,其中i为类别,j为该类中的样本序号,进行训练,其它样本Sit(j≠t)用于测试,测试时,将测试样本Sit输入到经过训练得到的分类器中,如果输出为i,则将该样本判为第i类;如果输出为j,则判定为识别错误。When selecting the support vector machine as the classifier for classification and recognition, the "one-to-one" strategy is adopted, that is, one classifier completes two choices each time. This method combines two pairs of N-type training data to construct C N 2 = N ( N - 1 ) / 2 a support vector machine. In the final classification, the voting method is adopted to determine the classification result: suppose there are m categories of gaits to be recognized, which are recorded as S 1 , S 2 , ..., S m , and one of the samples S ij is randomly selected from each category, where i is the category, j is the serial number of the sample in this class for training, and other samples S it (j≠t) are used for testing. During the test, the test sample S it is input into the trained classifier. If the output is i, then the The sample is judged as the i-th class; if the output is j, it is judged as a recognition error.

本发明提供的可以带来如下效果:The present invention provides can bring following effect:

本发明将边界中心距、Radon变换同时用于步态特征参数提取,能够反映出原始轮廓的大部分能量信息,既有步态的外观信息,又有动态信息,可有效降低多种干扰,如阴影、光照、遮挡以及背景混乱等因素的影响,并且通过特征融合有效弥补了单一特征的不足,更为准确地提取能反映运动人体行走特征的有效信息,提高步态识别正确率。The present invention simultaneously uses boundary center distance and Radon transform to extract gait characteristic parameters, which can reflect most of the energy information of the original contour, including both appearance information of gait and dynamic information, and can effectively reduce various disturbances, such as Influenced by factors such as shadows, lighting, occlusion, and background chaos, and through feature fusion, it effectively makes up for the lack of a single feature, more accurately extracts effective information that can reflect the walking characteristics of a moving human body, and improves the accuracy of gait recognition.

本发明通过将主成分分析(PCA)的思想运用于数据降维中,能够在保留原始大部分信息量的基础上有效减少数据维数,因而本发明计算量大为减少,提高了效率、降低了成本。The present invention applies the idea of Principal Component Analysis (PCA) to data dimensionality reduction, and can effectively reduce the dimensionality of data on the basis of retaining most of the original information, thus greatly reducing the amount of computation in the present invention, improving efficiency, reducing costs.

附图说明 Description of drawings

图1本发明技术流程图。Fig. 1 technical flow chart of the present invention.

图2本发明运动目标检测流程图。Fig. 2 is a flow chart of moving target detection in the present invention.

图3本发明归一化边界中心距曲线图。Fig. 3 is a curve diagram of the normalized boundary center distance of the present invention.

图4本发明Radon变换坐标示意图。Fig. 4 is a schematic diagram of Radon transformation coordinates of the present invention.

图5本发明Radon变换特征向量图。Fig. 5 is a Radon transformation eigenvector diagram of the present invention.

图6不同特征的累积匹配分值曲线。Figure 6 Cumulative matching score curves for different features.

具体实施方式 Detailed ways

本发明将Radon变换的思想巧妙引入其中。Radon变换广泛用于图像中的线段检测,正好符合腿部在图像轮廓中近似为某一方向上的线段,在行走过程中相对于水平轴会发生较大幅度的角度变化的特性。这意味着Radon变换得到的特征参数能够反映出原始轮廓的大部分能量信息,既有步态的外观信息,又有动态信息,可有效降低自遮挡及影子带来的影响。此外,提取了基于轮廓的边界中心距特征,并将其与Radon变换特征相融合,从而有效弥补了单一特征的不足。融合特征最终输入至支持向量机(Support Vector Machines,SVM)进行步态的分类识别。The invention cleverly introduces the idea of Radon transformation into it. The Radon transform is widely used in the line segment detection in the image, which just fits the characteristics that the leg is approximated as a line segment in a certain direction in the image contour, and a large angle change will occur relative to the horizontal axis during walking. This means that the characteristic parameters obtained by Radon transformation can reflect most of the energy information of the original contour, including both the appearance information of the gait and the dynamic information, which can effectively reduce the influence of self-occlusion and shadows. In addition, the contour-based boundary center distance feature is extracted and fused with the Radon transform feature, which effectively makes up for the lack of a single feature. The fusion features are finally input to Support Vector Machines (SVM) for gait classification and recognition.

本发明的利用双特征融合技术进行步态识别的方法,所涉及到的关键技术包括:视频处理、图像处理、模式识别等。其技术流程为:对于输入的视频序列,通过目标检测分割出视频图像中运动目标,再运用边界跟踪算法提取出运动人体轮廓,对轮廓进行重采样及归一化处理;然后将边界中心距、Radon变换等理论同时用于步态特征参数的提取,并实现两种特征的融合;最后选用支持向量机作为分类器进行分类识别。较之同类技术,该方法对于衣着、携带品、遮挡物等变化具有较强的鲁棒性,能有效抑制复杂背景等外界因素的干扰,为今后探索更可靠的步态身份识别方法提供了新思路。The method for gait recognition using dual-feature fusion technology of the present invention involves key technologies including: video processing, image processing, pattern recognition, and the like. The technical process is as follows: for the input video sequence, the moving target in the video image is segmented through target detection, and then the contour of the moving human body is extracted by using the boundary tracking algorithm, and the contour is resampled and normalized; then the boundary center distance, Radon transform and other theories are used to extract gait feature parameters at the same time, and realize the fusion of the two features; finally, the support vector machine is selected as the classifier for classification and recognition. Compared with similar technologies, this method is more robust to changes in clothing, carrying items, occlusions, etc., and can effectively suppress the interference of external factors such as complex backgrounds. It provides a new method for exploring more reliable gait identification methods in the future. train of thought.

下面结合附图和实施例,进一步说明本发明。Below in conjunction with accompanying drawing and embodiment, further illustrate the present invention.

步态识别主要是针对含有人的运动图像序列进行分析处理,通常包括:人体检测、步态特征提取以及身份识别等。图1所示为本发明的技术流程图:总体目标是输入视频序列,通过目标检测分割出视频图像中人体目标的轮廓信息,然后将边界中心距、Radon变换等理论同时用于步态特征参数提取,以便寻求对衣着、携带品、遮挡物等的变化具有较强鲁棒性的步态识别方法,并对特征数据进行相应的后处理,最后选用支持向量机作为分类器进行分类识别,并对识别效果给予评价。Gait recognition is mainly for the analysis and processing of moving image sequences containing people, usually including: human body detection, gait feature extraction, and identity recognition. Fig. 1 shows the technical flow chart of the present invention: the overall goal is to input a video sequence, segment the contour information of the human target in the video image through target detection, and then apply theories such as boundary center distance and Radon transformation to the gait characteristic parameters at the same time In order to find a gait recognition method with strong robustness to changes in clothing, carrying items, occlusions, etc., and perform corresponding post-processing on the feature data, finally select the support vector machine as a classifier for classification and recognition, and Evaluate the recognition effect.

1运动目标检测与关键帧提取1 Moving target detection and key frame extraction

要提取步态特征信息,就要涉及到复杂背景中的运动目标提取,这是进行步态识别的前期预处理。由于实际应用环境中往往存在着多种干扰,如阴影、光照、遮挡以及背景混乱等因素,这就对算法的实时性和可靠性提出了较高的要求。本发明采用的运动目标检测的具体流程如图2所示。To extract gait feature information, it involves the extraction of moving objects in complex backgrounds, which is the pre-processing of gait recognition. Because there are many kinds of interference in the actual application environment, such as shadow, light, occlusion and background chaos, etc., this puts forward higher requirements for the real-time and reliability of the algorithm. The specific process of moving target detection adopted by the present invention is shown in FIG. 2 .

(1)最小中位方差法背景建模(1) Minimum median variance method background modeling

最小中位方差法(LmedS)是以稳健统计为理论基础提出的一种算法。The least median variance method (LmedS) is an algorithm proposed based on the theory of robust statistics.

若令I(x,y) t表示采集的N帧序列图像,其中 ( x , y ) ∈ I ( x , y ) t , t代表帧索引值(t=1,2,…,N),则背景B(x,y)为:If let I (x, y) t represent the collected N frame sequence images, where ( x , the y ) ∈ I ( x , the y ) t , t represents the frame index value (t=1, 2, ..., N), then the background B (x, y) is:

BB (( xx ,, ythe y )) == minmin pp {{ medmed tt (( II (( xx ,, ythe y )) tt -- PP )) 22 }} -- -- -- (( 11 ))

式中P是像素位置(x,y)处待确定的灰度值,其中med表示取中间值,min表示取最小值。对R、G、B三个分量分别建模,经合成获得RGB格式的彩色背景图像。In the formula, P is the gray value to be determined at the pixel position (x, y), where med means to take the middle value, and min means to take the minimum value. The three components of R, G, and B are modeled separately, and a color background image in RGB format is obtained through synthesis.

算法的具体流程为:The specific process of the algorithm is:

step[1]选定像素点位置(x,y);step[1] selects the pixel point position (x, y);

step[2]令P=0;step[2] Let P=0;

step[3]依次计算(I1 (x,y)-P)2,(I2 (x,y)-P)2,...,(IN (x,y)-P)2step[3] sequentially calculate (I 1 (x, y) -P) 2 , (I 2 (x, y) -P) 2 ,..., (I N (x, y) -P) 2 ;

step[4]对计算结果排序,若N为偶数,取排序后第N/2和(N+1)/2个数的平均值,若N为奇数,则取第N/2个数,结果保存到数组med中,即med0Step[4] sorts the calculation results. If N is an even number, take the average of the N/2th and (N+1)/2 numbers after sorting. If N is an odd number, take the N/2th number. The result Save to the array med, namely med 0 ;

step[5]P=P+1,当P<=255,返回step[3],重复执行step[3]、[4]、[5],结果保存为medP,否则执行step[6];step[5]P=P+1, when P<=255, return to step[3], repeat step[3], [4], [5], save the result as med P , otherwise execute step[6];

step[6]找出med0,med1,...,med255中的最小值,对应P的大小即为该像素点位置的背景灰度级;step[6] Find out the minimum value among med 0 , med 1 , ..., med 255 , and the corresponding P is the background gray level of the pixel position;

step[7]重新选择像素点位置,返回step[2]重复执行,直到图像中所有像素点均计算完毕。Step[7] reselects the pixel position, returns to step[2] and repeats until all the pixels in the image are calculated.

(2)运动分割(2) Motion Segmentation

利用间接差分函数来执行差分操作:Use the indirect difference function to perform the difference operation:

ff (( aa ,, bb )) == 11 -- 22 (( aa ++ 11 )) (( bb ++ 11 )) (( aa ++ 11 )) ++ (( bb ++ 11 )) &times;&times; 22 (( 256256 -- aa )) (( 256256 -- bb )) (( 256256 -- aa )) ++ (( 256256 -- bb )) -- -- -- (( 22 ))

其中a,b分别表示当前图像与背景图像在同一像素点(x,y)处的灰度(强度)级,0≤f(a,b)≤1,0≤a,b≤255。该差分函数的灵敏度可随背景灰度级自动改变,这种自适应性提高了图像分割的准确度。Where a and b represent the grayscale (intensity) levels of the current image and the background image at the same pixel point (x, y) respectively, 0≤f(a, b)≤1, 0≤a, b≤255. The sensitivity of the difference function can change automatically with the gray level of the background, and this adaptability improves the accuracy of image segmentation.

差分后通过阈值分割即可得到运动目标二值化图像:After the difference, the binarized image of the moving target can be obtained by threshold segmentation:

SS (( xx ,, ythe y )) == 11 ff (( aa (( xx ,, ythe y )) ,, bb (( xx ,, ythe y )) )) &GreaterEqual;&Greater Equal; TT 00 Otherwiseotherwise -- -- -- (( 33 ))

(3)形态学处理与连通域分析(3) Morphological processing and connected domain analysis

由于天气、光照、影子等其他外界因素的影响,运动分割后的图像中难免会存在噪声,同时运动目标中会有少量点被误判为背景,因此还需要对图像做进一步处理,以获得最佳的分割效果。本发明使用形态学滤波来消除二值图像中的噪声并填补运动目标的缺失。作为一种常用的图像滤噪方法,形态学用于图像滤波的最基本运算是膨胀与腐蚀,由膨胀与腐蚀的相互组合又派生出另外两种运算:开运算与闭运算。开运算可平滑对象的凸轮廓,断开狭窄的连接,去掉细小的突起部分;闭运算可平滑对象的凹轮廓,将狭长的缺口连接成细长的弯口。利用这些性质可以实现滤波和填充空洞的目的。Due to the influence of weather, light, shadow and other external factors, there will inevitably be noise in the image after motion segmentation, and at the same time, a small number of points in the moving target will be misjudged as the background, so the image needs to be further processed to obtain the best Good segmentation effect. The present invention uses morphological filtering to eliminate noise in binary images and fill in the absence of moving objects. As a commonly used image noise filtering method, the most basic operation of morphology used in image filtering is dilation and erosion, and the combination of dilation and erosion derives two other operations: opening operation and closing operation. The open operation can smooth the convex contour of the object, disconnect the narrow connection, and remove the small protrusions; the closed operation can smooth the concave contour of the object, and connect the narrow and long gaps into slender bends. These properties can be used to achieve the purpose of filtering and filling holes.

形态学滤波处理后,仍可能存在部分杂散噪声形成大小不一的块,而真正的运动目标往往是这些块中最大的。因此对图像进一步进行连通域分析,目的在于仅保留图像中的运动目标。After morphological filtering, there may still be some stray noise forming blocks of different sizes, and the real moving target is often the largest of these blocks. Therefore, the connected domain analysis is further carried out on the image, with the purpose of retaining only the moving objects in the image.

(4)步态周期的划分与关键帧提取(4) Division of gait cycle and key frame extraction

人的行走是一个周期性的行为,定义步态周期为:从足跟着地到同侧腿足跟再次着地所经历的时间,包括两个站立期和两个摆动期。为了提高效率,本发明利用人体的轮廓宽度随时间发生同步周期性改变的特性,通过人体轮廓的宽度变化信号来划分步态周期,并提取一个步态周期中两个极大值点作为关键帧,从而简化了研究过程。Human walking is a periodic behavior. The gait cycle is defined as: the time from the heel strike to the heel strike of the same side leg again, including two stance periods and two swing periods. In order to improve efficiency, the present invention utilizes the feature that the width of the human body outline changes synchronously and periodically over time, divides the gait cycle through the width change signal of the human body outline, and extracts two maximum points in a gait cycle as key frames , thus simplifying the research process.

2步态特征提取2 Gait feature extraction

如何提取有效的步态特征参数是步态识别的关键。由于步态身份识别在很大程度上依赖于人体轮廓形状随时间的变化,因而本发明选取的两个步态特征都是基于轮廓的。运动人体轮廓线提取的实质就是边界跟踪,并对其进行必要的归一化和重采样,得到运动人体轮廓。How to extract effective gait feature parameters is the key to gait recognition. Since gait identification largely depends on the change of human body contour shape over time, the two gait features selected in the present invention are both contour-based. The essence of moving human body contour extraction is boundary tracking, and necessary normalization and resampling to obtain the moving human body contour.

2.1边界中心距特征2.1 Boundary Center Distance Features

边界中心距的定义是边界点到质心的距离。这样就将原始的二维轮廓形状通过一维距离信号D=(d1,d2,...d255)间接的表示,且具有平移不变性和旋转不变性。The boundary center distance is defined as the distance from the boundary point to the centroid. In this way, the original two-dimensional contour shape is represented indirectly by the one-dimensional distance signal D=(d 1 , d 2 , . . . d 255 ), and has translation invariance and rotation invariance.

其中,in,

dd ii == (( xx ii -- xx cc )) 22 ++ (( ythe y ii -- ythe y cc )) 22 ,, (( ii == 1,21,2 ,, &CenterDot;&CenterDot; &CenterDot;&CenterDot; &CenterDot;&CenterDot; &CenterDot;&CenterDot; &CenterDot;&Center Dot; &CenterDot;&CenterDot; 256256 )) ;; -- -- -- (( 44 ))

图3所示为归一化后的边界中心距曲线,波峰与波谷反映了轮廓的凸出与凹陷,波峰和波谷的幅度与人体的解剖结构、走路姿态等有一定的关系,波峰和波谷的数目与人的姿态密切相关。正是因为这些性质,我们可以利用它来区分不同的对象。Figure 3 shows the normalized boundary center distance curve. The peaks and troughs reflect the protrusion and depression of the contour. The amplitude of the peaks and troughs has a certain relationship with the anatomical structure of the human body and walking posture. Numbers are closely related to human posture. It is because of these properties that we can use it to distinguish different objects.

2.2Radon变换特征2.2 Radon Transform Features

Radon变换具有迭加、线性、伸缩、延迟和旋转不变性,广泛用于图像中的线段检测。Radon变换的实质是图像矩阵在指定方向上的投影,投影可沿任意角度进行,通常情况下,f(x,y)的Radon变换是在平行于旋转坐标系中的y轴方向上的线积分,形式如下:Radon transform has superposition, linearity, scaling, delay and rotation invariance, and is widely used for line segment detection in images. The essence of Radon transformation is the projection of the image matrix in the specified direction. The projection can be carried out along any angle. Generally, the Radon transformation of f(x, y) is the line integral in the direction parallel to the y-axis in the rotating coordinate system. , of the form:

RR ee (( xx &prime;&prime; )) == &Integral;&Integral; -- &infin;&infin; &infin;&infin; ff (( xx &prime;&prime; coscos &theta;&theta; -- ythe y &prime;&prime; sinsin &theta;&theta; ,, xx &prime;&prime; sinsin &theta;&theta; ++ ythe y &prime;&prime; coscos &theta;&theta; )) dydy &prime;&prime; -- -- -- (( 55 ))

其中: x &prime; y &prime; = cos &theta; sin &theta; - sin &theta; cos &theta; x y . - - - ( 6 ) in: x &prime; the y &prime; = cos &theta; sin &theta; - sin &theta; cos &theta; x the y . - - - ( 6 )

腿部在图像轮廓中近似为某一方向上的线段,Radon变换后在其垂直方向上的量值较大;人在行走的过程中,腿部相对于水平轴会发生较大幅度的角度变化。也就意味着Radon变换得到的特征参数能够反映出原始轮廓的大部分能量信息,且这些参数随着时间的推移发生显著变化,即表现为下肢的摆动。因此,通过学习和分析这些参数,可以得到关于个体形态和步态的重要信息。The leg is approximated as a line segment in a certain direction in the image outline, and its value in the vertical direction is larger after Radon transformation; in the process of walking, the leg will have a large angle change relative to the horizontal axis. It means that the characteristic parameters obtained by Radon transformation can reflect most of the energy information of the original contour, and these parameters change significantly over time, which is manifested as the swing of the lower limbs. Therefore, by learning and analyzing these parameters, important information about individual morphology and gait can be obtained.

图像Radon变换提取的特征既有步态的外观信息,又有动态信息,可有效降低自遮挡及影子带来的影响。这种算法的另一个显著的优势体现在,每一个Radon变换参数都包含了很多像素的集体贡献,因此不容易受到原轮廓图像的伪像素干扰所产生的影响。The features extracted by image Radon transform include not only appearance information of gait, but also dynamic information, which can effectively reduce the influence of self-occlusion and shadow. Another significant advantage of this algorithm is that each Radon transformation parameter includes the collective contribution of many pixels, so it is not easily affected by the pseudo-pixel interference of the original contour image.

图4描绘了Radon变换后的角度信息与下肢角度的关系。当积分方向与大腿所在线段垂直时,积分值最大。由于人行走过程中大小腿与竖直方向的角度在0°~60°的范围内变化,而侧影图像中其他方向上的像素点多为影子等噪声,所以本发明仅对图像在0°~60°、120°~180°的方向上进行Radon变换,分别得到两个区间上各角度峰值,并将二者合并得到特征向量,如图5所示。这样提取的特征信息不受身体自遮挡的影响,且有效的减少了运算量,相对于其他模型化的方法简单快速。Figure 4 depicts the relationship between the angle information after Radon transformation and the angle of the lower limbs. When the integral direction is perpendicular to the line segment of the thigh, the integral value is the largest. Since the angle between the thigh and the vertical direction changes in the range of 0° to 60° during the walking process of a person, and the pixels in other directions in the silhouette image are mostly noises such as shadows, so the present invention only detects the image in the range of 0° to 60°. Radon transformation is performed in the directions of 60°, 120°~180°, and the peak values of the angles on the two intervals are obtained respectively, and the two are combined to obtain the feature vector, as shown in Figure 5. The feature information extracted in this way is not affected by the self-occlusion of the body, and effectively reduces the amount of calculation. Compared with other modeling methods, it is simple and fast.

3数据降维与特征融合策略3 Data Dimensionality Reduction and Feature Fusion Strategy

为了减少运算量,剔除冗余信息,本发明将主成分分析(PCA)的思想运用于数据降维中,它能够在保留原始大部分信息量的基础上有效减少数据维数。PCA降维过程的具体步骤可归纳如下:In order to reduce the amount of computation and eliminate redundant information, the present invention applies the idea of Principal Component Analysis (PCA) to data dimensionality reduction, which can effectively reduce the dimensionality of data on the basis of retaining most of the original information. The specific steps of the PCA dimensionality reduction process can be summarized as follows:

(1)原始数据标准化:(1) Raw data standardization:

为了消除数据间不同量纲、不同数量级的影响,需要对原始数据进行标准化处理,使其具有可比性。本发明标准化的方法为:矩阵中的每个元素减去所在列的均值,然后除以所在列的标准差,使得每个变量标准化为均值为0,方差为1的矩阵X,即:In order to eliminate the impact of different dimensions and orders of magnitude among data, it is necessary to standardize the original data to make them comparable. The standardized method of the present invention is: each element in the matrix subtracts the mean value of the column in which it is located, and then divides it by the standard deviation of the column in which it is located, so that each variable can be standardized as a matrix X with a mean value of 0 and a variance of 1, namely:

Xx == [[ Xx 11 ,, Xx 22 ,, .. .. .. .. .. .. Xx nno ]] TT == [[ Xx ijij ]] (( nno &times;&times; pp )) -- -- -- (( 77 ))

其中,in,

Xx ijij == (( aa ijij -- AA jj &OverBar;&OverBar; )) // SS jj ,, ii == 1,21,2 ,, .. .. .. .. .. .. nno ,, jj == 1,21,2 ,, .. .. .. .. .. .. pp

AA jj &OverBar;&OverBar; == 11 nno &Sigma;&Sigma; ii == 11 nno aa ijij ,, SS jj == 11 nno -- 11 &Sigma;&Sigma; ii == 11 nno (( aa ijij -- AA &OverBar;&OverBar; jj )) 22 -- -- -- (( 88 ))

(2)计算相关系数矩阵:(2) Calculate the correlation coefficient matrix:

RR == rr 1111 rr 1212 &CenterDot;&Center Dot; &CenterDot;&Center Dot; &CenterDot;&Center Dot; rr 11 pp rr 21twenty one rr 22twenty two &CenterDot;&Center Dot; &CenterDot;&CenterDot; &CenterDot;&CenterDot; rr 22 pp &CenterDot;&Center Dot; &CenterDot;&CenterDot; &CenterDot;&CenterDot; &CenterDot;&CenterDot; &CenterDot;&Center Dot; &CenterDot;&Center Dot; &CenterDot;&CenterDot; &CenterDot;&Center Dot; &CenterDot;&CenterDot; &CenterDot;&CenterDot; &CenterDot;&Center Dot; &CenterDot;&CenterDot; rr pp 11 rr pp 22 &CenterDot;&CenterDot; &CenterDot;&Center Dot; &CenterDot;&Center Dot; rr pppp -- -- -- (( 99 ))

R是实对称矩阵(即rij=rji),其中rij(i,j=1,2,......,p)是标准化后的变量Xi,Xj的相关系数。其定义是变量协方差除以变量的标准差(方差),计算公式为:R is a real symmetric matrix (ie r ij =r ji ), where r ij (i, j=1, 2, . . . , p) is the correlation coefficient of standardized variables X i , X j . It is defined as the variable covariance divided by the standard deviation (variance) of the variable, calculated as:

rr ijij == &Sigma;&Sigma; kk == 11 nno (( Xx kithe ki -- Xx ii &OverBar;&OverBar; )) (( Xx kjkj -- Xx jj &OverBar;&OverBar; )) &Sigma;&Sigma; kk == 11 nno (( Xx kithe ki -- Xx ii &OverBar;&OverBar; )) 22 &Sigma;&Sigma; kk == 11 nno (( Xx kjkj -- Xx jj &OverBar;&OverBar; )) 22 -- -- -- (( 1010 ))

式中: X i &OverBar; = 1 n &Sigma; k = 1 n X ki , X j &OverBar; = 1 n &Sigma; k = 1 n X kj 分别表示原矩阵中Xi和Xj列各向量的均值。In the formula: x i &OverBar; = 1 no &Sigma; k = 1 no x the ki , x j &OverBar; = 1 no &Sigma; k = 1 no x kj Respectively represent the mean value of each vector in the X i and X j columns in the original matrix.

(3)特征分解,求特征值与特征向量:(3) Eigen decomposition, finding eigenvalues and eigenvectors:

解特征方程|R-λE|=0,求出相关系数矩阵R的特征值λi(i=1,2,......p),并将其按从大到小的顺序排列,即λ1≥λ2≥...≥λP;然后分别得到每个特征值λi对应的特征向量Ui(i=1,2,......p),。Solve the characteristic equation |R-λE|=0, find the eigenvalue λi (i=1, 2,...p) of the correlation coefficient matrix R, and arrange it in descending order, That is, λ 1 ≥λ 2 ≥...≥λ P ; then obtain the eigenvectors U i (i=1, 2,...p) corresponding to each eigenvalue λ i , respectively.

(4)通过累计贡献率确定主成分:(4) Determine the principal component through the cumulative contribution rate:

累计贡献率的计算公式为:The formula for calculating the cumulative contribution rate is:

&eta;&eta; ll == &Sigma;&Sigma; kk == 11 ll &lambda;&lambda; kk &Sigma;&Sigma; kk == 11 pp &lambda;&lambda; kk ,, (( ll == 1,21,2 ,, .. .. .. pp )) -- -- -- (( 1111 ))

当累计贡献率达到某一阈值(本发明取85%)时,将此时所有前m个特征值λ1,λ2,...≥λm(m≤p)以及它们对应的特征向量保留下来,作为主成分,其余的均舍弃。When the cumulative contribution rate reaches a certain threshold (the present invention takes 85%), all the first m eigenvalues λ 1 , λ 2 ,...≥λ m (m≤p) and their corresponding eigenvectors are retained down, as the main component, and the rest are discarded.

(5)计算得分矩阵(5) Calculate the score matrix

主成分特征值所对应的特征向量U=U1,U2,...Um构成新的矢量空间,作为新变量(主成分)的坐标轴,又称为载荷轴。利用下式计算得分矩阵:The eigenvectors U=U 1 , U 2 , . Calculate the scoring matrix using the following formula:

F(n×m)=X(n×p)·U(p×m)    (12)F (n×m) = X (n×p) U (p×m) (12)

其中,X是原数据矩阵,U是主成分载荷,得分矩阵F即为PCA降维后所得到的最终结果。它的每一行相当于原数据矩阵的所有行(即原始变量构成的向量)在主成分坐标轴(载荷轴)上的投影,这些新的投影构成的向量就是主成分得分向量。Among them, X is the original data matrix, U is the principal component load, and the score matrix F is the final result obtained after PCA dimensionality reduction. Each row of it is equivalent to the projection of all the rows of the original data matrix (that is, the vector composed of the original variables) on the principal component coordinate axis (load axis), and the vector formed by these new projections is the principal component score vector.

通过上面的步骤可以看出,PCA算法通过几个最大的主成分得分来近似反映原始数据阵的全部信息。这样做不仅达到降维的目的,而且大大减小了数据间的相关性,使数据得到优化重组。It can be seen from the above steps that the PCA algorithm approximately reflects all the information of the original data array through several maximum principal component scores. This not only achieves the purpose of dimension reduction, but also greatly reduces the correlation between data, so that the data can be optimized and reorganized.

单一步态特征往往不够稳定,鲁棒性也不强,不足于为识别提供足够的信息。鉴于此,本发明尝试了多步态特征融合的思想,将上述提取的两种步态特征——边界中心特征和Radon变换特征在特征层进行融合,针对同一步态序列,将利用不同算法分别提取的边界中心距特征与Radon变换参数特征进行融合,属于特征层的融合。融合的过程实质上就是将上述提取的两种特征拼接起来,合并成为一个特征向量,从而获得比任何单一特征更准确、更完备和更有意义的信息,然后将此融合特征送入分类器进行分类识别,以获得识别效果的改善。Single gait features are often not stable enough and not robust enough to provide enough information for recognition. In view of this, the present invention tries the idea of multi-gait feature fusion, and fuses the two kinds of gait features extracted above—the boundary center feature and the Radon transformation feature at the feature layer. For the same gait sequence, different algorithms will be used respectively The extracted boundary center distance feature is fused with the Radon transformation parameter feature, which belongs to the fusion of the feature layer. The process of fusion is essentially splicing the above two extracted features together and merging them into a feature vector, so as to obtain more accurate, complete and meaningful information than any single feature, and then send this fusion feature into the classifier for classification. Classification recognition to obtain improvement of recognition effect.

4基于支持向量机的步态识别4 Gait recognition based on support vector machine

传统的统计模式识别是在样本数目足够多的前提下进行的,只有在样本数趋向无穷大时其性能才有理论上的保证。而在步态识别的应用中,样本数目是有限的,这时很多方法都难以取得理想效果。支持向量机(Support Vector Machines,SVM)通过结构风险最小化原则建模,将期望风险降至最低,使其模型识别力显著提高。该识别方法在解决小样本、非线性及高维模式识别问题中表现出许多特有的优势。支持向量机的主要思想是:寻找一个满足分类要求的最优分类超平面,使得该超平面在保证分类精度的同时,能够使超平面的间隔最大化。从理论上说,支持向量机能够实现对线性可分数据的最优分类。Traditional statistical pattern recognition is carried out on the premise that the number of samples is sufficient, and its performance can be guaranteed theoretically only when the number of samples tends to infinity. In the application of gait recognition, the number of samples is limited, and it is difficult for many methods to achieve ideal results. Support vector machines (Support Vector Machines, SVM) model through the principle of structural risk minimization, which minimizes the expected risk and significantly improves its model recognition. This recognition method shows many unique advantages in solving small sample, nonlinear and high-dimensional pattern recognition problems. The main idea of the support vector machine is to find an optimal classification hyperplane that meets the classification requirements, so that the hyperplane can maximize the interval of the hyperplane while ensuring the classification accuracy. In theory, support vector machines can achieve the optimal classification of linearly separable data.

步态识别是一个多类别的分类问题,支持向量机方法是针对二类别的分类而提出的,不能直接应用于多类别分类问题。对于多类模式识别问题,支持向量机方法可通过两类问题的组合来实现。本发明采用“一对一”策略,即一个分类器每次完成二选一,该方法对N类训练数据两两组合,构建 C N 2 = N ( N - 1 ) / 2 个支持向量机。最后分类时采取“投票”方式决定分类结果。假设待识别的步态有m类,记为S1,S2,…,Sm,每一类中随机选取其中一个样本Sij(其中i为类别,j为该类中的样本序号)进行训练,其它样本Sit(j≠t)用于测试。测试时,将测试样本Sit输入到经过训练得到的分类器中,如果输出为i,则将该样本判为第i类;如果输出为j,则判定为识别错误。Gait recognition is a multi-category classification problem, and the support vector machine method is proposed for the classification of two categories, which cannot be directly applied to multi-class classification problems. For multi-class pattern recognition problems, the support vector machine method can be realized through the combination of two kinds of problems. The present invention adopts a "one-to-one" strategy, that is, one classifier completes the selection of two each time, and the method combines two pairs of N types of training data to construct C N 2 = N ( N - 1 ) / 2 a support vector machine. In the final classification, the "voting" method is adopted to determine the classification results. Assuming that there are m categories of gaits to be recognized, denoted as S 1 , S 2 , ..., S m , one of the samples S ij is randomly selected from each category (where i is the category, and j is the sample number in this category) for For training, other samples S it (j≠t) are used for testing. During the test, the test sample S it is input into the trained classifier, if the output is i, the sample is judged as the i-th class; if the output is j, it is judged as a recognition error.

有益效果Beneficial effect

本发明的实验数据来源于CASIA步态数据库中的Dataset B,从中抽取20个人,仅考虑90°的视角,分两种状态:自然行走和背包行走。每个人作为一类,每类均含有多个样本,其中包括6个正常行走的步态周期和4个背包的步态周期。The experimental data of the present invention comes from Dataset B in the CASIA gait database, from which 20 people are extracted, only considering the viewing angle of 90°, divided into two states: natural walking and backpack walking. Each person is regarded as a class, and each class contains multiple samples, including 6 gait cycles of normal walking and 4 gait cycles of backpacking.

为了更全面有效的评价识别结果,将正确识别率(Probability of Correct Recognition,PCR)与累积匹配分值(Cumulative Match Scores,CMS)两种评价方法相配合,共同作为评价指标。In order to evaluate the recognition results more comprehensively and effectively, two evaluation methods, Probability of Correct Recognition (PCR) and Cumulative Match Scores (CMS), are used together as evaluation indicators.

正确识别率的定义为:The correct recognition rate is defined as:

PCR=T/N×100%    (7)PCR=T/N×100% (7)

式中T为识别正确的样本数,N为总测试样本数。测试时将Ti输入到经过训练得到的分类器中,如果输出为i,则认定本次识别正确;如果输出为j(i≠j),则判定本次识别错误。正确识别率统计结果见表1。In the formula, T is the number of correctly identified samples, and N is the total number of test samples. During the test, input T i into the trained classifier, if the output is i, it is determined that this recognition is correct; if the output is j (i≠j), it is determined that this recognition is wrong. The statistical results of the correct recognition rate are shown in Table 1.

累积匹配分值定义为一个测试度量的实际类别在它的最前k个匹配值之间的累积概率p(k)。通过累积匹配分值评价,不仅能获得最高匹配度的识别率,而且能得到匹配度排在前n位的数据识别率,从而对识别系统有了一个更为全面的评价。如图6所示为正常行走状态下不同步态特征的累积匹配分值曲线,它从另一个角度也反映了算法的收敛速度。The cumulative matching score is defined as the cumulative probability p(k) of a test metric's actual class among its top k matching values. Through the evaluation of the accumulated matching scores, not only the recognition rate with the highest matching degree can be obtained, but also the data recognition rate with the top n places in the matching degree can be obtained, so that a more comprehensive evaluation of the recognition system can be obtained. Figure 6 shows the cumulative matching score curves of different gait features in the normal walking state, which also reflects the convergence speed of the algorithm from another angle.

表1  20位受试者识别结果统计Table 1 Statistics of the recognition results of 20 subjects

实验表明,边界中心距特征和Radon变换特征均是较为有效的步态特征,含有丰富的轮廓信息,能较全面的反映人的步态信息,表现出良好的识别效果;Experiments show that both the boundary center distance feature and the Radon transform feature are more effective gait features, which contain rich contour information, can comprehensively reflect human gait information, and show a good recognition effect;

将二者融合后的融合特征用于识别,可明显改善识别性能,为多特征融合步态识别的探索拓展了新的思路。Using the fusion features after the fusion of the two for recognition can significantly improve the recognition performance and expand new ideas for the exploration of multi-feature fusion gait recognition.

本发明提出一种新的步态识别方法,将基于轮廓的边界中心距特征和Radon变换特征进行有效融合,以减少复杂背景等外界因素的干扰,对现实条件具备更好的自适应性,更为准确地提取能反映运动人体行走特征的有效信息,以提高步态识别正确率。The invention proposes a new gait recognition method, which effectively fuses the contour-based boundary center distance feature and Radon transformation feature to reduce the interference of external factors such as complex backgrounds, and has better adaptability to actual conditions, and is more In order to accurately extract effective information that can reflect the walking characteristics of a moving human body, and improve the accuracy of gait recognition.

该项发明可为监控系统的有效使用及监控效果的可靠评价提供帮助,并获得可观的社会效益和公共安全服务的提升。且可集成应用于安防门禁系统中,从而使被监控区域的物理通道控制管理达到更高的安全级别,创造更为安全和谐的社会生活环境。最佳实施方案拟采用专利转让、技术合作或产品开发。The invention can provide help for the effective use of the monitoring system and the reliable evaluation of the monitoring effect, and can obtain considerable social benefits and the improvement of public security services. And it can be integrated and applied in the security access control system, so that the physical channel control management of the monitored area can reach a higher security level and create a safer and more harmonious social living environment. The best implementation plan is to use patent transfer, technical cooperation or product development.

Claims (5)

1.一种基于融合特征的步态信息处理与身份识别方法,其特征是,包括下列步骤:输入视频序列,通过目标检测分割出视频图像中人体目标的轮廓信息,然后将边界中心距、Radon变换同时用于步态特征参数提取,再对得到的特征参数进行相应的后处理,最后选用支持向量机作为分类器进行分类识别,并对识别效果给予评价。1. a kind of gait information processing and identity recognition method based on fusion feature, it is characterized in that, comprise the following steps: input video sequence, segment out the outline information of human target in video image by target detection, then boundary center distance, Radon Transformation is also used to extract gait feature parameters, and then corresponding post-processing is performed on the obtained feature parameters. Finally, support vector machine is selected as a classifier for classification and recognition, and the recognition effect is evaluated. 2.根据权利要求1所述的一种基于融合特征的步态信息处理与身份识别方法,其特征是,所述的目标检测分割出视频图像中人体目标的轮廓信息,即运动目标检测与关键帧提取,包括下列步骤:2. a kind of gait information processing and identification method based on fusion feature according to claim 1, it is characterized in that, described object detection is segmented out the contour information of human target in video image, namely moving object detection and key Frame extraction, including the following steps: (1)最小中位方差法背景建模:(1) Minimum median variance method background modeling: 若令I(x,y) t表示采集的N帧序列图像,其中 ( x , y ) &Element; I ( x , y ) t , t代表帧索引值t=1,2,…,N,则背景B(x,y)为:If let I (x, y) t represent the collected N frame sequence images, where ( x , the y ) &Element; I ( x , the y ) t , t represents the frame index value t=1, 2, ..., N, then the background B (x, y) is: BB (( xx ,, ythe y )) == minmin pp {{ medmed tt (( II (( xx ,, ythe y )) tt -- PP )) 22 }} 式中P是像素位置(x,y)处待确定的灰度值,med表示取中间值,min表示取最小值,对R、G、B三个分量分别建模,经合成获得RGB格式的彩色背景图像;In the formula, P is the gray value to be determined at the pixel position (x, y), med means to take the middle value, and min means to take the minimum value. The three components of R, G, and B are modeled separately, and the RGB format is obtained through synthesis. colored background image; (2)运动分割:(2) Motion Segmentation: 利用间接差分函数来执行差分操作:Use the indirect difference function to perform the difference operation: ff (( aa ,, bb )) == 11 -- 22 (( aa ++ 11 )) (( bb ++ 11 )) (( aa ++ 11 )) ++ (( bb ++ 11 )) &times;&times; 22 (( 256256 -- aa )) (( 256256 -- bb )) (( 256256 -- aa )) ++ (( 256256 -- bb )) 其中a,b分别表示当前图像与背景图像在同一像素点(x,y)处的灰度即强度级,0≤f(a,b)≤1,0≤a,b≤255,该差分函数的灵敏度可随背景灰度级自动改变,差分后通过阈值分割即可得到运动目标二值化图像:Among them, a and b respectively represent the gray level of the current image and the background image at the same pixel point (x, y), that is, the intensity level, 0≤f(a, b)≤1, 0≤a, b≤255, the difference function The sensitivity can be changed automatically with the gray level of the background. After the difference, the binarized image of the moving target can be obtained by threshold segmentation: SS (( xx ,, ythe y )) == 11 ff (( aa (( xx ,, ythe y )) ,, bb (( xx ,, ythe y )) )) &GreaterEqual;&Greater Equal; TT 00 Otherwiseotherwise ;; (3)形态学处理与连通域分析:(3) Morphological processing and connected domain analysis: 对运动目标二值化图像进行形态学处理和连通域分析相结合的后处理,以去除残余噪声,获得更优的分割效果;Perform post-processing combining morphological processing and connected domain analysis on the binarized images of moving targets to remove residual noise and obtain better segmentation results; (4)步态周期的划分与关键帧提取:(4) Division of gait cycle and key frame extraction: 利用人体的轮廓宽度随时间发生同步周期性改变的特性,通过人体轮廓的宽度变化信号来划分步态周期,并提取一个步态周期中两个极大值点作为关键帧。Taking advantage of the feature that the width of the human body contour changes synchronously and periodically over time, the gait cycle is divided by the width change signal of the human body contour, and two maximum points in a gait cycle are extracted as key frames. 3.根据权利要求1所述的一种基于融合特征的步态信息处理与身份识别方法,其特征是,所述的步态特征提取包括下列步骤:同时采用边界中心距特征、Radon变换特征对运动人体轮廓线进行提取即边界跟踪,并进行必要的归一化和重采样,得到运动人体轮廓,边界中心距特征是指:3. a kind of gait information processing and identification method based on fusion feature according to claim 1, it is characterized in that, described gait feature extraction comprises the following steps: adopt boundary center distance feature, Radon transformation feature pair simultaneously The contour line of the moving human body is extracted, that is, boundary tracking, and necessary normalization and resampling are performed to obtain the contour of the moving human body. The feature of the center distance of the boundary refers to: 将原始的二维轮廓形状通过一维距离信号D=(d1,d2,...,d256)间接的表示,且具有平移不变性和旋转不变性,其中,The original two-dimensional contour shape is represented indirectly by a one-dimensional distance signal D=(d 1 , d 2 ,...,d 256 ), and has translation invariance and rotation invariance, where, d i = ( x i - x c ) 2 + ( y i - y c ) 2 (i=1,2,……256), d i = ( x i - x c ) 2 + ( the y i - the y c ) 2 (i=1, 2, ... 256), Radon变换特征是指:The Radon transform feature refers to: Radon变换的实质是图像矩阵在指定方向上的投影,投影可沿任意角度进行,通常情况下,f(x,y)的Radon变换是在平行于旋转坐标系中的y轴方向上的线积分,形式如下:The essence of Radon transformation is the projection of the image matrix in the specified direction. The projection can be carried out along any angle. Generally, the Radon transformation of f(x, y) is the line integral in the direction parallel to the y-axis in the rotating coordinate system. , of the form: RR ee (( xx &prime;&prime; )) == &Integral;&Integral; -- &infin;&infin; &infin;&infin; ff (( xx &prime;&prime; coscos &theta;&theta; -- ythe y &prime;&prime; sinsin &theta;&theta; ,, xx &prime;&prime; sinsin &theta;&theta; ++ ythe y &prime;&prime; coscos &theta;&theta; )) dydy &prime;&prime; 其中: x &prime; y &prime; = cos &theta; sin &theta; - sin &theta; cos &theta; x y . in: x &prime; the y &prime; = cos &theta; sin &theta; - sin &theta; cos &theta; x the y . 4.根据权利要求1所述的一种基于融合特征的步态信息处理与身份识别方法,其特征是,所述的再对得到的特征参数进行相应的后处理是指数据降维与特征融合策略,即将主成分分析PCA运用于数据降维中。4. a kind of gait information processing and identification method based on fusion feature according to claim 1, it is characterized in that, described then carrying out corresponding post-processing to the feature parameter that obtains refers to data dimensionality reduction and feature fusion The strategy is to apply principal component analysis (PCA) to data dimensionality reduction. 5.根据权利要求1所述的一种基于融合特征的步态信息处理与身份识别方法,其特征是,选用支持向量机作为分类器进行分类识别是,采用“一对一”策略,即一个分类器每次完成二选一,该方法对N类训练数据两两组合,构建 C N 2 = N ( N - 1 ) / 2 个支持向量机,最后分类时采取投票方式决定分类结果:假设待识别的步态有m类,记为S1,S2,…,Sm,每一类中随机选取其中一个样本Sij,其中i为类别,j为该类中的样本序号,进行训练,其它样本Sit(j≠t)用于测试,测试时,将测试样本Sit输入到经过训练得到的分类器中,如果输出为i,则将该样本判为第i类;如果输出为j,则判定为识别错误。5. a kind of gait information processing and identification method based on fusion feature according to claim 1, it is characterized in that, select support vector machine for use as classifier to carry out classification identification, adopt " one to one " strategy, i.e. one The classifier selects one of the two each time, and this method combines two pairs of N types of training data to construct C N 2 = N ( N - 1 ) / 2 In the final classification, voting is used to determine the classification result: Suppose there are m categories of gaits to be recognized, which are denoted as S 1 , S 2 ,..., S m , and one of the samples S ij is randomly selected from each category, Where i is the category, j is the serial number of the sample in this class, for training, other samples S it (j≠t) are used for testing, when testing, input the test sample S it into the classifier obtained after training, if the output If it is i, the sample is judged as the i-th class; if the output is j, it is judged as a recognition error.
CN200910070174A 2009-08-20 2009-08-20 Method for gait information processing and identity identification based on fusion feature Pending CN101630364A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN200910070174A CN101630364A (en) 2009-08-20 2009-08-20 Method for gait information processing and identity identification based on fusion feature

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN200910070174A CN101630364A (en) 2009-08-20 2009-08-20 Method for gait information processing and identity identification based on fusion feature

Publications (1)

Publication Number Publication Date
CN101630364A true CN101630364A (en) 2010-01-20

Family

ID=41575467

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200910070174A Pending CN101630364A (en) 2009-08-20 2009-08-20 Method for gait information processing and identity identification based on fusion feature

Country Status (1)

Country Link
CN (1) CN101630364A (en)

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101807245A (en) * 2010-03-02 2010-08-18 天津大学 Artificial neural network-based multi-source gait feature extraction and identification method
CN102289672A (en) * 2011-06-03 2011-12-21 天津大学 Infrared gait identification method adopting double-channel feature fusion
CN102298145A (en) * 2011-08-15 2011-12-28 天津职业技术师范大学 Pseudo-random code measuring device with capacity of simultaneously extracting walking features of multiple pedestrians
CN102542292A (en) * 2011-12-26 2012-07-04 湖北莲花山计算机视觉和信息科学研究院 Method for determining roles of staffs on basis of behaviors
CN102663374A (en) * 2012-04-28 2012-09-12 北京工业大学 Multi-class Bagging gait recognition method based on multi-characteristic attribute
CN101739557B (en) * 2010-01-26 2012-10-31 重庆大学 Human abnormal behavior recognition method and device based on motion cycle analysis
CN102768732A (en) * 2012-06-13 2012-11-07 北京工业大学 Face Recognition Method Fused with Sparse Preserving Mapping and Multi-category Attribute Bagging
CN102831378A (en) * 2011-06-14 2012-12-19 株式会社理光 Method and system for detecting and tracking human object
CN102982323A (en) * 2012-12-19 2013-03-20 重庆信科设计有限公司 Quick gait recognition method
CN103049758A (en) * 2012-12-10 2013-04-17 北京工业大学 Method for realizing remote authentication by fusing gait flow images (GFI) and head and shoulder procrustes mean shapes (HS-PMS)
ES2432228A1 (en) * 2013-02-15 2013-12-02 Asociación Instituto De Biomecánica De Valencia Procedure and installation for characterizing the support pattern of a subject (Machine-translation by Google Translate, not legally binding)
CN104123568A (en) * 2014-07-21 2014-10-29 国家电网公司 Method for intelligent video recognition of multi-work-type workers
CN104331705A (en) * 2014-10-28 2015-02-04 中国人民公安大学 Automatic detection method for gait cycle through fusion of spatiotemporal information
CN104537356A (en) * 2015-01-12 2015-04-22 北京大学 Pedestrian re-identification method and device for carrying out gait recognition through integral scheduling
CN104598722A (en) * 2014-12-25 2015-05-06 中国科学院合肥物质科学研究院 Parkinson patient walking ability evaluation method based on gait time-space parameters and three-dimensional force characteristics
CN105023013A (en) * 2015-08-13 2015-11-04 西安电子科技大学 Target detection method based on local standard deviation and Radon transformation
CN105335725A (en) * 2015-11-05 2016-02-17 天津理工大学 Gait identification identity authentication method based on feature fusion
CN106156695A (en) * 2015-03-30 2016-11-23 日本电气株式会社 Outlet and/or entrance area recognition methods and device
CN106504267A (en) * 2016-10-19 2017-03-15 东南大学 A kind of motion of virtual human data critical frame abstracting method
CN106971059A (en) * 2017-03-01 2017-07-21 福州云开智能科技有限公司 A kind of wearable device based on the adaptive health monitoring of neutral net
CN107403084A (en) * 2017-07-21 2017-11-28 中国计量大学 A kind of personal identification method based on gait data
CN107480604A (en) * 2017-07-27 2017-12-15 西安科技大学 Gait recognition method based on the fusion of more contour features
CN108182716A (en) * 2017-12-28 2018-06-19 厦门大学 A kind of image line based on vector field towards 3D printing portrays generation method
CN108224691A (en) * 2017-12-22 2018-06-29 银河水滴科技(北京)有限公司 A kind of air conditioner system control method and device
CN108491769A (en) * 2018-03-08 2018-09-04 四川大学 Atrial fibrillation sorting technique based on phase between RR and multiple characteristic values
CN108830834A (en) * 2018-05-23 2018-11-16 重庆交通大学 A kind of cable-climbing robot video artefacts information automation extraction method
CN109345551A (en) * 2018-09-18 2019-02-15 清华大学 Method, system and computer storage medium for detecting concave envelope in outer contour of image
CN109460727A (en) * 2018-10-31 2019-03-12 中国矿业大学 A kind of examination hall monitoring system and method based on Human bodys' response
CN109493555A (en) * 2018-12-05 2019-03-19 郑州升达经贸管理学院 A kind of campus dormitory building safety defense monitoring system based on intelligent monitoring technology
CN109919999A (en) * 2019-01-31 2019-06-21 深兰科技(上海)有限公司 Method and device for detecting target position
CN110456320A (en) * 2019-07-29 2019-11-15 浙江大学 An ultra-wideband radar identification method based on free-space gait time-series features
CN111476078A (en) * 2019-02-28 2020-07-31 杭州芯影科技有限公司 Identity recognition method and system based on millimeter wave gait biological characteristics
CN111882006A (en) * 2020-09-28 2020-11-03 大唐环境产业集团股份有限公司 Data preprocessing method of desulfurization system based on PCA and correlation function
JP2021515321A (en) * 2018-04-12 2021-06-17 テンセント・テクノロジー・(シェンジェン)・カンパニー・リミテッド Media processing methods, related equipment and computer programs
CN117421605A (en) * 2023-10-27 2024-01-19 绍兴清研微科技有限公司 Gait recognition method and system based on block chain technology
CN118134840A (en) * 2024-01-12 2024-06-04 东北农业大学 Method and system for detecting rice paraffin pollution based on hyperspectral and deep learning

Cited By (59)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101739557B (en) * 2010-01-26 2012-10-31 重庆大学 Human abnormal behavior recognition method and device based on motion cycle analysis
CN101807245A (en) * 2010-03-02 2010-08-18 天津大学 Artificial neural network-based multi-source gait feature extraction and identification method
CN101807245B (en) * 2010-03-02 2013-01-02 天津大学 Artificial neural network-based multi-source gait feature extraction and identification method
CN102289672A (en) * 2011-06-03 2011-12-21 天津大学 Infrared gait identification method adopting double-channel feature fusion
CN102831378A (en) * 2011-06-14 2012-12-19 株式会社理光 Method and system for detecting and tracking human object
CN102831378B (en) * 2011-06-14 2015-10-21 株式会社理光 The detection and tracking method and system of people
CN102298145A (en) * 2011-08-15 2011-12-28 天津职业技术师范大学 Pseudo-random code measuring device with capacity of simultaneously extracting walking features of multiple pedestrians
CN102542292A (en) * 2011-12-26 2012-07-04 湖北莲花山计算机视觉和信息科学研究院 Method for determining roles of staffs on basis of behaviors
CN102542292B (en) * 2011-12-26 2014-03-26 湖北莲花山计算机视觉和信息科学研究院 Method for determining roles of staffs on basis of behaviors
CN102663374A (en) * 2012-04-28 2012-09-12 北京工业大学 Multi-class Bagging gait recognition method based on multi-characteristic attribute
CN102663374B (en) * 2012-04-28 2014-06-04 北京工业大学 Multi-class Bagging gait recognition method based on multi-characteristic attribute
CN102768732A (en) * 2012-06-13 2012-11-07 北京工业大学 Face Recognition Method Fused with Sparse Preserving Mapping and Multi-category Attribute Bagging
CN102768732B (en) * 2012-06-13 2015-04-29 北京工业大学 Face recognition method integrating sparse preserving mapping and multi-class property Bagging
CN103049758A (en) * 2012-12-10 2013-04-17 北京工业大学 Method for realizing remote authentication by fusing gait flow images (GFI) and head and shoulder procrustes mean shapes (HS-PMS)
CN103049758B (en) * 2012-12-10 2015-09-09 北京工业大学 Merge the remote auth method of gait light stream figure and head shoulder mean shape
CN102982323B (en) * 2012-12-19 2016-05-11 重庆信科设计有限公司 Gait recognition method fast
CN102982323A (en) * 2012-12-19 2013-03-20 重庆信科设计有限公司 Quick gait recognition method
ES2432228A1 (en) * 2013-02-15 2013-12-02 Asociación Instituto De Biomecánica De Valencia Procedure and installation for characterizing the support pattern of a subject (Machine-translation by Google Translate, not legally binding)
CN104123568A (en) * 2014-07-21 2014-10-29 国家电网公司 Method for intelligent video recognition of multi-work-type workers
CN104331705A (en) * 2014-10-28 2015-02-04 中国人民公安大学 Automatic detection method for gait cycle through fusion of spatiotemporal information
CN104331705B (en) * 2014-10-28 2017-05-10 中国人民公安大学 Automatic detection method for gait cycle through fusion of spatiotemporal information
CN104598722A (en) * 2014-12-25 2015-05-06 中国科学院合肥物质科学研究院 Parkinson patient walking ability evaluation method based on gait time-space parameters and three-dimensional force characteristics
CN104598722B (en) * 2014-12-25 2017-04-19 中国科学院合肥物质科学研究院 Parkinson patient walking ability evaluation method based on gait time-space parameters and three-dimensional force characteristics
CN104537356A (en) * 2015-01-12 2015-04-22 北京大学 Pedestrian re-identification method and device for carrying out gait recognition through integral scheduling
CN106156695A (en) * 2015-03-30 2016-11-23 日本电气株式会社 Outlet and/or entrance area recognition methods and device
CN106156695B (en) * 2015-03-30 2019-09-20 日本电气株式会社 Outlet and/or entrance area recognition methods and device
CN105023013A (en) * 2015-08-13 2015-11-04 西安电子科技大学 Target detection method based on local standard deviation and Radon transformation
CN105023013B (en) * 2015-08-13 2018-03-06 西安电子科技大学 The object detection method converted based on Local standard deviation and Radon
CN105335725A (en) * 2015-11-05 2016-02-17 天津理工大学 Gait identification identity authentication method based on feature fusion
CN105335725B (en) * 2015-11-05 2019-02-26 天津理工大学 A Gait Recognition Identity Authentication Method Based on Feature Fusion
CN106504267A (en) * 2016-10-19 2017-03-15 东南大学 A kind of motion of virtual human data critical frame abstracting method
CN106504267B (en) * 2016-10-19 2019-05-17 东南大学 A kind of motion of virtual human data critical frame abstracting method
CN106971059A (en) * 2017-03-01 2017-07-21 福州云开智能科技有限公司 A kind of wearable device based on the adaptive health monitoring of neutral net
CN106971059B (en) * 2017-03-01 2020-08-11 福州云开智能科技有限公司 Wearable equipment based on neural network self-adaptation health monitoring
CN107403084B (en) * 2017-07-21 2019-12-20 中国计量大学 Gait data-based identity recognition method
CN107403084A (en) * 2017-07-21 2017-11-28 中国计量大学 A kind of personal identification method based on gait data
CN107480604A (en) * 2017-07-27 2017-12-15 西安科技大学 Gait recognition method based on the fusion of more contour features
CN108224691A (en) * 2017-12-22 2018-06-29 银河水滴科技(北京)有限公司 A kind of air conditioner system control method and device
CN108182716A (en) * 2017-12-28 2018-06-19 厦门大学 A kind of image line based on vector field towards 3D printing portrays generation method
CN108182716B (en) * 2017-12-28 2020-12-15 厦门大学 A vector field-based image line characterization generation method for 3D printing
CN108491769A (en) * 2018-03-08 2018-09-04 四川大学 Atrial fibrillation sorting technique based on phase between RR and multiple characteristic values
JP7089045B2 (en) 2018-04-12 2022-06-21 テンセント・テクノロジー・(シェンジェン)・カンパニー・リミテッド Media processing methods, related equipment and computer programs
JP2021515321A (en) * 2018-04-12 2021-06-17 テンセント・テクノロジー・(シェンジェン)・カンパニー・リミテッド Media processing methods, related equipment and computer programs
CN108830834A (en) * 2018-05-23 2018-11-16 重庆交通大学 A kind of cable-climbing robot video artefacts information automation extraction method
CN109345551B (en) * 2018-09-18 2020-11-20 清华大学 Method, system and computer storage medium for detecting concave envelope in outer contour of image
CN109345551A (en) * 2018-09-18 2019-02-15 清华大学 Method, system and computer storage medium for detecting concave envelope in outer contour of image
CN109460727A (en) * 2018-10-31 2019-03-12 中国矿业大学 A kind of examination hall monitoring system and method based on Human bodys' response
CN109460727B (en) * 2018-10-31 2021-04-06 中国矿业大学 Examination room monitoring system and method based on human body behavior recognition
CN109493555A (en) * 2018-12-05 2019-03-19 郑州升达经贸管理学院 A kind of campus dormitory building safety defense monitoring system based on intelligent monitoring technology
CN109919999A (en) * 2019-01-31 2019-06-21 深兰科技(上海)有限公司 Method and device for detecting target position
CN111476078A (en) * 2019-02-28 2020-07-31 杭州芯影科技有限公司 Identity recognition method and system based on millimeter wave gait biological characteristics
CN111476078B (en) * 2019-02-28 2024-06-25 杭州芯影科技有限公司 Identity recognition method and system based on millimeter wave gait biological characteristics
CN110456320A (en) * 2019-07-29 2019-11-15 浙江大学 An ultra-wideband radar identification method based on free-space gait time-series features
CN110456320B (en) * 2019-07-29 2021-08-03 浙江大学 A UWB Radar Identity Recognition Method Based on Free Space Gait Time Series Features
CN111882006A (en) * 2020-09-28 2020-11-03 大唐环境产业集团股份有限公司 Data preprocessing method of desulfurization system based on PCA and correlation function
CN117421605A (en) * 2023-10-27 2024-01-19 绍兴清研微科技有限公司 Gait recognition method and system based on block chain technology
CN117421605B (en) * 2023-10-27 2024-04-30 绍兴清研微科技有限公司 Gait recognition method and system based on block chain technology
CN118134840A (en) * 2024-01-12 2024-06-04 东北农业大学 Method and system for detecting rice paraffin pollution based on hyperspectral and deep learning
CN118134840B (en) * 2024-01-12 2025-01-24 东北农业大学 Rice paraffin pollution detection method and system based on hyperspectral and deep learning

Similar Documents

Publication Publication Date Title
CN101630364A (en) Method for gait information processing and identity identification based on fusion feature
CN101807245B (en) Artificial neural network-based multi-source gait feature extraction and identification method
Singh et al. Vision-based gait recognition: A survey
CN101558996B (en) Gait recognition method based on orthogonal projection three-dimensional reconstruction of human motion structure
Liu et al. Enhancing person re-identification by integrating gait biometric
CN100568266C (en) An Abnormal Behavior Detection Method Based on Local Statistical Feature Analysis of Sports Field
CN102289672A (en) Infrared gait identification method adopting double-channel feature fusion
Makihara et al. Gait-based age estimation using a whole-generation gait database
CN101226597B (en) A nighttime pedestrian recognition method and system based on thermal infrared gait
Hu et al. Gait-based gender classification using mixed conditional random field
CN101661554B (en) Automatic identification method of frontal human body under long-distance video
CN100395770C (en) A Hand Feature Fusion Authentication Method Based on Feature Relationship Measurement
CN105740758A (en) Internet video face recognition method based on deep learning
CN101571924B (en) Gait recognition method and system with multi-region feature integration
CN107491740A (en) A kind of neonatal pain recognition methods based on facial expression analysis
CN101251894A (en) Gait feature extraction method and gait recognition method based on infrared thermal imaging
CN102938070B (en) A kind of behavior recognition methods based on action subspace and weight behavior model of cognition
CN109522853A (en) Face datection and searching method towards monitor video
CN103942577A (en) Identity identification method based on self-established sample library and composite characters in video monitoring
CN106529504B (en) A kind of bimodal video feeling recognition methods of compound space-time characteristic
CN102663374B (en) Multi-class Bagging gait recognition method based on multi-characteristic attribute
CN102722721A (en) A human fall detection method based on machine vision
CN102222215B (en) Gait recognition method based on two-dimension wavelet packet decomposition and complete PCA (Principal Component Analysis)
CN103955671B (en) Human behavior recognition method based on rapid discriminant common vector algorithm
Kusakunniran et al. Automatic gait recognition using weighted binary pattern on video

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20100120