CN101627560B - Method and apparatus for transmitting and receiving control information to randomize inter-cell interference in a mobile communication system - Google Patents
Method and apparatus for transmitting and receiving control information to randomize inter-cell interference in a mobile communication system Download PDFInfo
- Publication number
- CN101627560B CN101627560B CN200880007435.1A CN200880007435A CN101627560B CN 101627560 B CN101627560 B CN 101627560B CN 200880007435 A CN200880007435 A CN 200880007435A CN 101627560 B CN101627560 B CN 101627560B
- Authority
- CN
- China
- Prior art keywords
- sequence
- control information
- channel signal
- control channel
- code
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Landscapes
- Mobile Radio Communication Systems (AREA)
Abstract
提供了一种用于在SC-FDMA系统中发送和接收控制信息的方法和装置。为子帧中各自包含多个SC-FDMA码元的不同时隙产生不同的正交码。通过把携带控制信息的控制码元和被分配用于所述控制信息的CDM的序列相乘产生控制信道信号。所述控制信道信号以SC-FDMA码元为基础乘以所述正交码的码片相乘,并在所述SC-FDMA码元中发送。
Provided are a method and apparatus for transmitting and receiving control information in an SC-FDMA system. Different orthogonal codes are generated for different slots in a subframe, each containing multiple SC-FDMA symbols. A control channel signal is generated by multiplying control symbols carrying control information by a sequence of CDMs allocated for said control information. The control channel signal is multiplied by the chips of the orthogonal code on the basis of SC-FDMA symbols, and sent in the SC-FDMA symbols.
Description
技术领域 technical field
本发明一般地涉及移动通信系统,更具体来说涉及用于在下一代多小区移动通信系统中发送和接收随机化由上行链路(UpLink,UL)传输引起的小区间干扰的控制信息的方法和装置。The present invention relates generally to mobile communication systems, and more particularly to a method for transmitting and receiving control information that randomizes inter-cell interference caused by uplink (UpLink, UL) transmission in a next-generation multi-cell mobile communication system and device.
背景技术 Background technique
在移动通信技术领域中,近来正交频分多址(Orthogonal FrequencyDivision Multiple Access,OFDMA)或单载波频分多址(SingleCarrier-Frequency Division Multiple Access,SC-FDMA)已被研究用于无线电信道上的高速传输。异步蜂窝移动通信标准化组织,第三代合作伙伴计划(3rdGeneration Partnership Project,3GPP)正致力于与多址接入方案有关的下一代移动通信系统的长期演进(Long Term Evolution,LTE)。In the field of mobile communication technology, recently Orthogonal Frequency Division Multiple Access (OFDMA) or Single Carrier Frequency Division Multiple Access (SingleCarrier-Frequency Division Multiple Access, SC-FDMA) has been studied for wireless communication on radio channels. High speed transmission. The asynchronous cellular mobile communication standardization organization, the 3rd Generation Partnership Project (3rdGeneration Partnership Project, 3GPP) is working on the long term evolution (Long Term Evolution, LTE) of the next generation mobile communication system related to the multiple access scheme.
根据数据传输还是非数据传输,LTE系统对于UL控制信息使用不同的传输格式(Transport Format,TP)。当在UL上同时发送数据和控制信息时,数据和控制信息通过时分复用(time Division Multiplexing,TDM)被复用。如果只发送控制信息,则给控制信息分配特定频带。According to data transmission or non-data transmission, the LTE system uses different transport formats (Transport Format, TP) for UL control information. When data and control information are simultaneously transmitted on the UL, the data and control information are multiplexed by time division multiplexing (TDM). If only control information is transmitted, a specific frequency band is allocated to the control information.
图1示出在常规的LTE系统中当在UL上只发送控制信息时的传输机制的图。水平轴表示时间,而垂直轴表示频率。在时间上定义了一个子帧102,并且在频率上定义了传输(TX)带宽120。FIG. 1 shows a diagram of a transmission mechanism when only control information is transmitted on UL in a conventional LTE system. The horizontal axis represents time, while the vertical axis represents frequency. A subframe 102 is defined in time and a transmission (TX) bandwidth 120 is defined in frequency.
参考图1,基本的UL时间传输单元即子帧102长为1毫秒,并包括两个时隙104和106,每一个均长0.5毫秒。每一个时隙104或106包括多个长块(Long Block,LB)108(或长SC-FDMA码元)和短块(Short Blocks,SB)110(或短SC-FDMA码元)。在图1所示情况中,一个时隙被配置成具有六个LB 108和两个SB 110。Referring to FIG. 1, the basic UL time transfer unit, a subframe 102, is 1 millisecond long and includes two slots 104 and 106, each 0.5 millisecond long. Each time slot 104 or 106 includes a plurality of long blocks (Long Block, LB) 108 (or long SC-FDMA symbols) and short blocks (Short Blocks, SB) 110 (or short SC-FDMA symbols). In the case shown in FIG. 1, a slot is configured with six LBs 108 and two SBs 110.
最小的频率传输单元是LB的频音(frequency tone),并且基本的资源分配单元是资源单元(Resource Unit,RU)。RU 112和RU 114均具有多个频音,这里,例如12个频音形成一个RU。通过利用分散的频音而非连续的频音形成RU,也可以实现频率分集(frequency diversity)。The smallest frequency transmission unit is the frequency tone (frequency tone) of the LB, and the basic resource allocation unit is the resource unit (Resource Unit, RU). Both RU 112 and RU 114 have multiple tones, here, for example, 12 tones form one RU. Frequency diversity can also be achieved by using discrete tones rather than continuous tones to form RUs.
由于LB 108和SB 110具有相同的采样率(sampling rate),所以SB 110具有的频音大小是LB 108的频音大小的两倍。在SB 110中分配给一个RU的频音的数量是在LB 108中分配给一个RU的频音数量的一半。在图1所示的情况中,LB 108携带控制信息,而SB 108携带导频信号(或参考信号(Reference Signal,RS))。导频信号是预先确定的序列,接收器利用所述序列执行信道估计,以进行相干解调。Since the LB 108 and the SB 110 have the same sampling rate, the SB 110 has a tone size twice that of the LB 108. The number of tones allocated to one RU in the SB 110 is half the number of tones allocated to one RU in the LB 108. In the case shown in FIG. 1, LB 108 carries control information, while SB 108 carries pilot signals (or Reference Signals (RS)). A pilot signal is a predetermined sequence that a receiver uses to perform channel estimation for coherent demodulation.
如果在UL上只发送控制信息,则在LTE系统中该控制信息在预先确定的频带中发送。在图1中,所述频带是位于TX带宽120的两侧的RU 112和RU 114中的至少一个。If only control information is transmitted on UL, the control information is transmitted in a predetermined frequency band in the LTE system. In FIG. 1 , the frequency band is at least one of RU 112 and RU 114 located on either side of TX bandwidth 120.
一般来说,携带控制信息的频带以RU为单元来定义。当要求多个RU时,使用连续的RU以满足单载波特性。为了增加用于一个子帧的频率分集,这里可以以时隙为基础发生跳频。Generally, a frequency band carrying control information is defined in units of RUs. When multiple RUs are required, contiguous RUs are used to satisfy single carrier characteristics. In order to increase frequency diversity for one subframe, here frequency hopping can occur on a slot basis.
在图1中,第一控制信息(控制#1)在第一时隙104中在RU 112中发送,并且通过跳频在第二时隙106中在RU 114中发送。同时,第二控制信息(控制#2)在第一时隙104中在RU 114中发送,并且通过跳频在第二时隙106中在RU 112中发送。In FIG. 1, the first control information (Control #1) is sent in the RU 112 in the first time slot 104, and is sent in the RU 114 in the second time slot 106 by frequency hopping. Meanwhile, the second control information (control #2) is transmitted in the RU 114 in the first slot 104, and is transmitted in the RU 112 in the second slot 106 by frequency hopping.
控制信息是例如指示成功或失败的下行链路(DownLink,DL)数据接收的反馈信息,即肯定应答/否定应答(ACKnowledgment/NagativeACKnowledgment,ACK/NACK),它一般是1比特。其在多个LB中重复,以便提高接收性能,并扩展小区覆盖范围。当从不同的用户发送1比特的控制信息时,可以考虑把码分复用(Code Division Multiplexing,CDM)用于复用该1比特控制信息。和频分复用(Frequency Division Multiplexing,FDM)相比,CDM的特性是抗干扰的鲁棒性。The control information is, for example, feedback information indicating success or failure of downlink (DownLink, DL) data reception, that is, acknowledgment/negative acknowledgment (ACKnowledgment/NagativeACKnowledgment, ACK/NACK), which is generally 1 bit. It is repeated in multiple LBs to improve reception performance and extend cell coverage. When 1-bit control information is transmitted from different users, it may be considered that Code Division Multiplexing (Code Division Multiplexing, CDM) is used to multiplex the 1-bit control information. Compared with Frequency Division Multiplexing (FDM), the characteristic of CDM is the robustness against interference.
作为用于控制信息的CDM复用的码序列来讨论Zadoff-Chu(ZC)序列。ZC序列因其在时间和频率上的恒定包络而提供了良好的峰值平均功率比(Peak-to-Average Power Ratio,PAPR)特性和在频率上优秀的信道估计性能。对于UL传输,PAPR是最重要的考虑。较高的PAPR导致较小的小区覆盖范围,因而增大了对用户设备(User Equipment,UE)的信号功率要求。因此,首先应该致力于在UL传输中降低PAPR。Zadoff-Chu (ZC) sequences are discussed as code sequences for CDM multiplexing of control information. Due to its constant envelope in time and frequency, the ZC sequence provides good peak-to-average power ratio (Peak-to-Average Power Ratio, PAPR) characteristics and excellent channel estimation performance in frequency. For UL transmission, PAPR is the most important consideration. A higher PAPR results in a smaller cell coverage, thus increasing the signal power requirement on the User Equipment (UE). Therefore, first efforts should be made to reduce PAPR in UL transmission.
具有良好的PAPR特性的ZC序列对于非零移位(non-zero shift)具有为零的循环自相关值。下面的等式(1)在数学上描述了ZC序列。A ZC sequence with good PAPR properties has a cyclic autocorrelation value of zero for non-zero shifts. Equation (1) below mathematically describes the ZC sequence.
其中,N表示ZC序列的长度,p表示ZC序列的索引,并且n表示ZC序列的采样的索引(n=0,...,N-1)。因为p和N应该互质,所以序列索引p的数量随着序列长度N变化。因此,对于N=6,p=1,5,产生两个ZC序列。如果N是质数,则产生N-1个序列。Wherein, N represents the length of the ZC sequence, p represents the index of the ZC sequence, and n represents the index of the sample of the ZC sequence (n=0, . . . , N−1). Since p and N should be relatively prime, the number of sequence indices p varies with sequence length N. Therefore, for N=6, p=1,5, two ZC sequences are generated. If N is a prime number, N-1 sequences are generated.
由等式(1)产生的两个具有不同p值的ZC序列具有复数互相关,其绝对值是,相位随着p变化。Two ZC sequences with different p-values resulting from equation (1) have a complex cross-correlation whose absolute value is , the phase varies with p.
通过ZC序列把来自一个用户的控制信息与来自其他用户的控制信息区分,这将通过举例来更详细地描述。Control information from one user is distinguished from control information from other users by the ZC sequence, which will be described in more detail by way of example.
在同一小区内,来自不同UE的1比特控制信息由ZC序列的时域循环移位值(cyclic shift value)标识。循环移位值是特定于UE的,以满足其大于无线电传输路径的最大传输延迟的条件,从而确保UE间的相互正交。因此,对于多址接入可容纳的UE的数量依赖于ZC序列的长度和循环移位值。例如,如果ZC序列长为12个采样,并且确保ZC序列之间的正交性的最小循环移位值是2个采样,则六个UE(=12/2)可获得多址接入。In the same cell, 1-bit control information from different UEs is identified by the time-domain cyclic shift value of the ZC sequence. The cyclic shift value is UE-specific to meet the condition that it is greater than the maximum transmission delay of the radio transmission path, thereby ensuring mutual orthogonality among UEs. Therefore, the number of UEs that can be accommodated for multiple access depends on the length of the ZC sequence and the cyclic shift value. For example, if the ZC sequence is 12 samples long, and the minimum cyclic shift value ensuring the orthogonality between ZC sequences is 2 samples, six UEs (=12/2) can obtain multiple access.
图2示出了来自UE的控制信息被CDM复用的传输机制。FIG. 2 shows a transmission mechanism in which control information from a UE is multiplexed by CDM.
参考图2,在小区202(小区A)中,第一和第二UE 204和206(UE#1和UE#2)在LB中使用相同的ZC序列,即ZC#1,并且为了用户识别分别将ZC#1循环移位0208和Δ210。在图2所示的情况中,为了扩展小区覆盖范围,UE#1和UE#2均通过把预期(intended)的1比特UL控制信息的调制码元重复六次,即在六个LB中重复该调制码元,并且在每一个LB中把重复的码元和经过循环移位的ZC序列即ZC#1相乘来产生控制信道信号。由于ZC序列的循环自相关特性,这些控制信道信号在UE#1和UE#2之间保持正交而没有干扰。Δ210被设置为大于无线电传输路径的最大传输延迟。每一个时隙中的两个SB携带用于控制信息的相干解调的导频。为了说明的目的,图2中只示出了控制信息的一个时隙。Referring to FIG. 2, in cell 202 (cell A), first and second UEs 204 and 206 (UE#1 and UE#2) use the same ZC sequence in LB, that is, ZC#1, and for user identification respectively Cyclic shift ZC#1 by 0208 and Δ210. In the situation shown in Figure 2, in order to expand the coverage of the cell, both UE#1 and UE#2 repeat the modulation symbol of the expected (intended) 1-bit UL control information six times, that is, repeat it in six LBs The symbols are modulated, and the repeated symbols are multiplied by the cyclically shifted ZC sequence, ZC#1, in each LB to generate a control channel signal. Due to the cyclic autocorrelation property of the ZC sequence, these control channel signals remain orthogonal between UE#1 and UE#2 without interference. Δ210 is set to be larger than the maximum transmission delay of the radio transmission path. The two SBs in each slot carry pilots for coherent demodulation of control information. For illustration purposes, only one slot for control information is shown in FIG. 2 .
在小区220(小区B)中,第三和第四UE 222和224(UE#3和UE#4)在LB中使用相同的ZC序列即ZC#2,并且为了用户识别分别将ZC#2循环移位0226和Δ228。由于ZC序列的循环自相关特性,来自UE#3和UE#4的控制信道信号在它们之间保持正交而没有干扰。In cell 220 (cell B), the third and fourth UEs 222 and 224 (UE#3 and UE#4) use the same ZC sequence, ZC#2, in LB, and cycle ZC#2 for user identification, respectively Shift 0226 and Δ228. Due to the cyclic autocorrelation property of the ZC sequence, the control channel signals from UE#3 and UE#4 remain orthogonal between them without interference.
但是,当来自不同小区的UE的控制信道信号使用不同的ZC序列时,这个控制信息传输方案引起这些小区之间的干扰。在图2中,小区A的UE#1和UE#2使用不同于小区B的UE#3和UE#4的ZC序列。ZC序列的互相关特性导致UE间的与ZC序列之间的互相关成比例的干扰。因此,需要一种用于降低由如上所述的控制信息传输引起的小区间干扰的方法。However, when the control channel signals of UEs from different cells use different ZC sequences, this control information transmission scheme causes interference between these cells. In FIG. 2 , UE#1 and UE#2 of cell A use different ZC sequences than UE#3 and UE#4 of cell B. The cross-correlation property of ZC sequences leads to interference between UEs that is proportional to the cross-correlation between ZC sequences. Therefore, there is a need for a method for reducing inter-cell interference caused by the transmission of control information as described above.
发明内容 Contents of the invention
已做出了本发明以便至少解决上面的问题和/或缺点,并至少提供下面描述的优点。因此,本发明的一个方面提供了一种用于当在多小区环境中复用来自不同用户的控制信息时减小小区间干扰的方法和装置。The present invention has been made to address at least the above problems and/or disadvantages and to provide at least the advantages described below. Accordingly, an aspect of the present invention provides a method and apparatus for reducing inter-cell interference when multiplexing control information from different users in a multi-cell environment.
本发明的另一个方面提供了一种用于通过把特定于小区的或者特定于UE的随机序列施加于子帧中的控制信息进一步随机化小区间干扰的方法和装置。Another aspect of the present invention provides a method and apparatus for further randomizing inter-cell interference by applying a cell-specific or UE-specific random sequence to control information in a subframe.
本发明的又一个方面提供了一种通过第一层/第二层(L1/L2)信令向UE通知施加于子帧中的控制信息的随机序列的方法和装置。Yet another aspect of the present invention provides a method and apparatus for notifying a UE of a random sequence of control information applied in a subframe through Layer 1/Layer 2 (L1/L2) signaling.
本发明的再一个方面提供了一种用于有效接收子帧中的控制信息而无小区间干扰的方法和装置。Yet another aspect of the present invention provides a method and apparatus for efficiently receiving control information in a subframe without inter-cell interference.
根据本发明的一个方面,提供了一种用于在SC-FDMA系统中发送控制信息的方法。为子帧中各自包含多个SC-FDMA码元的不同时隙产生不同的正交码。通过把携带控制信息的控制码元和被分配用于所述控制信息CDM的序列相乘来产生控制信道信号。所述控制信道信号以SC-FDMA码元为基础与所述正交码的码片相乘,并在所述SC-FDMA码元中发送。According to an aspect of the present invention, a method for transmitting control information in an SC-FDMA system is provided. Different orthogonal codes are generated for different slots in a subframe, each containing multiple SC-FDMA symbols. A control channel signal is generated by multiplying control symbols carrying control information by a sequence allocated for said control information CDM. The control channel signal is multiplied by the chips of the orthogonal code on an SC-FDMA symbol basis, and transmitted in the SC-FDMA symbol.
根据本发明的又一个方面,提供了一种用于在SC-FDMA系统中接收控制信息的方法。为子帧中各自包含多个SC-FDMA码元的不同时隙产生不同的正交码。将接收到的控制信道信号和被分配用于所述控制信息的CDM的序列的共轭序列相乘。通过以SC-FDMA码元为基础将相乘后的控制信道信号和所述正交码的码片相乘,来获取所述控制信息。According to still another aspect of the present invention, a method for receiving control information in an SC-FDMA system is provided. Different orthogonal codes are generated for different slots in a subframe, each containing multiple SC-FDMA symbols. The received control channel signal is multiplied by the conjugate sequence of the sequence assigned to the CDM for said control information. The control information is obtained by multiplying the multiplied control channel signal and the chips of the orthogonal code on the basis of SC-FDMA symbols.
根据本发明的又一个方面,提供了一种用于在SC-FDMA系统中发送控制信息的装置。控制信道信号生成器通过将包含控制信息的控制码元和被分配用于所述控制信息的CDM的序列相乘来产生控制信道信号。发送器为子帧中各自包含多个SC-FDMA码元的不同时隙产生不同的正交码,以SC-FDMA码元为基础将所述控制信道信号和所述正交码的码片相乘,并在所述SC-FDMA码元中发送所述相乘后的控制信道信号。According to still another aspect of the present invention, an apparatus for transmitting control information in an SC-FDMA system is provided. The control channel signal generator generates a control channel signal by multiplying control symbols containing control information and a sequence of CDMs allocated for the control information. The transmitter generates different orthogonal codes for different time slots each containing a plurality of SC-FDMA symbols in the subframe, and compares the control channel signal with the chips of the orthogonal codes based on the SC-FDMA symbols and transmit the multiplied control channel signal in the SC-FDMA symbol.
根据本发明的再一个方面,提供了一种用于在SC-FDMA系统中接收控制信息的装置。接收器接收包括控制信息的控制信道信号。控制信道信号接收器把所述控制信道信号和被分配用于所述控制信息的CDM的序列的共轭序列相乘,并通过以SC-FDMA码元为基础把相乘后的控制信道信号和用于子帧中各自包含多个SC-FDMA码元的不同时隙的不同正交码的码片相乘,来获取所述控制信息。According to still another aspect of the present invention, an apparatus for receiving control information in an SC-FDMA system is provided. A receiver receives a control channel signal including control information. The control channel signal receiver multiplies the control channel signal by the conjugate sequence of the CDM sequence allocated for the control information, and combines the multiplied control channel signal and The control information is obtained by multiplying chips of different orthogonal codes for different slots in a subframe, each containing a plurality of SC-FDMA symbols.
附图说明 Description of drawings
当结合附图时,根据下面的详细描述,本发明的某些示范性实施例的上述和其他方面、特征和优点将更为清楚,其中:The above and other aspects, features and advantages of certain exemplary embodiments of the present invention will become more apparent from the following detailed description when taken in conjunction with the accompanying drawings, in which:
图1是示出常规LTE系统中用于控制信息的传输机制的图;FIG. 1 is a diagram illustrating a transmission mechanism for control information in a conventional LTE system;
图2示出了来自UE的控制信息被CDM复用的传输机制;Figure 2 shows the transmission mechanism in which the control information from the UE is multiplexed by CDM;
图3是示出根据本发明的实施例的用于在UE中发送控制信息的操作的流程图;3 is a flowchart illustrating operations for transmitting control information in a UE according to an embodiment of the present invention;
图4是示出根据本发明的实施例的用于在节点B中接收控制信息的操作的流程图;4 is a flowchart illustrating operations for receiving control information in a Node B according to an embodiment of the present invention;
图5是示出根据本发明的实施例的控制信息的传输机制的图;5 is a diagram illustrating a transmission mechanism of control information according to an embodiment of the present invention;
图6A和图6B是示出根据本发明的实施例的UE中的发送器的框图;6A and 6B are block diagrams illustrating a transmitter in a UE according to an embodiment of the present invention;
图7A和图7B是示出根据本发明的实施例的节点B中的接收器的框图;7A and 7B are block diagrams illustrating a receiver in a Node B according to an embodiment of the present invention;
图8是示出根据本发明的实施例的用于控制信息的传输机制的图;8 is a diagram illustrating a transmission mechanism for control information according to an embodiment of the present invention;
图9是示出根据本发明的实施例的用于控制信息的另一传输机制的图;9 is a diagram illustrating another transmission mechanism for control information according to an embodiment of the present invention;
图10A和图10B是示出根据本发明的实施例的MS中的发送器的框图;10A and 10B are block diagrams illustrating a transmitter in an MS according to an embodiment of the present invention;
图11A和图11B是示出根据本发明的实施例的节点B中的接收器的框图;11A and 11B are block diagrams illustrating a receiver in a Node B according to an embodiment of the present invention;
图12A和图12B是示出根据本发明的实施例的用于控制信息的传输机制的图;和12A and 12B are diagrams illustrating a transmission mechanism for control information according to an embodiment of the present invention; and
图13是示出根据本发明的实施例的用于控制信息的另一传输机制的图。FIG. 13 is a diagram illustrating another transmission mechanism for control information according to an embodiment of the present invention.
具体实施方式 Detailed ways
参考附图详细地描述本发明的优选实施例。应该注意,类似的部件尽管被在不同的附图中示出,但是它们被用类似的参考标号指示。可能省略对在技术上已知的结构或者过程的详细描述以避免使本发明显得不分明。Preferred embodiments of the present invention are described in detail with reference to the accompanying drawings. It should be noted that similar components are indicated with similar reference numerals although shown in different drawings. Detailed descriptions of constructions or processes known in the art may be omitted to avoid obscuring the present invention.
本发明的实施例提供了在来自多个UE的UL控制信息被在系统频带的预先确定的频率范围(frequency area)上复用的情况下,UE和节点B的发送和接收操作。Embodiments of the present invention provide transmission and reception operations of a UE and a Node B in a case where UL control information from a plurality of UEs is multiplexed over a predetermined frequency area of a system frequency band.
将在SC-FDMA蜂窝通信系统中对来自多个UE的控制信息进行CDM传输的情形下描述本发明的实施例。本发明的实施例也适用于不共享特定时-频资源的复用,例如控制信息的FDM或TDM传输。CDM可以是包括时域CDMA和频域CDM的各种CDMA方案其中之一。Embodiments of the present invention will be described in the context of CDM transmission of control information from multiple UEs in an SC-FDMA cellular communication system. Embodiments of the invention are also applicable to multiplexing that do not share specific time-frequency resources, such as FDM or TDM transmission of control information. CDM may be one of various CDMA schemes including time-domain CDMA and frequency-domain CDM.
对于CDM,使用了ZC序列,尽管任何其他具有类似特性的码序列也可供使用。控制信息是1比特控制信息,例如这里的ACK/NACK。但是,本发明的小区间干扰减小方法也适用于具有多个比特的控制信息,例如信道质量指示符(Channel Quality Indicator,CQI)。在这种情况下,控制信息的每一个比特被在一个SC-FDMA码元中发送。所述小区间干扰减小方法也适用于不同类型的控制信息的CDM传输,不同类型的控制信息例如1比特控制信息和具有多个比特的控制信息。For CDM, the ZC sequence is used, although any other code sequence with similar properties could be used. The control information is 1-bit control information, such as ACK/NACK here. However, the method for reducing inter-cell interference of the present invention is also applicable to control information with multiple bits, such as Channel Quality Indicator (CQI). In this case, each bit of control information is transmitted in one SC-FDMA symbol. The inter-cell interference reduction method is also applicable to CDM transmission of different types of control information, such as 1-bit control information and control information with multiple bits.
当相邻小区中的UE在M个SC-FDMA码元即M个作为UL时间传输单元的LB中使用长度为N的不同ZC序列发送它们的控制信息时,发生小区间干扰。Inter-cell interference occurs when UEs in neighboring cells transmit their control information using different ZC sequences of length N in M SC-FDMA symbols, ie, M LBs as UL time transmission units.
如果来自相邻小区内的UE的LB中的序列之间的相关的相位被随机化,同时保持ZC序列的循环自相关和互相关特性,则在接收器处相邻小区间干扰的相位在携带子帧的控制信息的LB的累积期间被跨LB随机化,从而降低了平均干扰功率。If the phases of the correlations between sequences in LBs from UEs in neighboring cells are randomized while maintaining the cyclic autocorrelation and cross-correlation properties of the ZC sequences, at the receiver the phase of the inter-neighboring cell interference is carried The accumulation period of LBs of control information of a subframe is randomized across LBs, thereby reducing average interference power.
根据本发明的实施例,每一个UE以子帧中的LB为基础产生其ZC序列,并把具有随机相位或者随机循环移位值的随机序列施加于每一个LB中的ZC序列,从而随机化该ZC序列。然后,UE利用被随机化的ZC序列发送控制信息。随机序列是特定于小区的。针对每一个UE使用相位值或循环移位值的不同随机序列进一步提高干扰随机化。According to the embodiment of the present invention, each UE generates its ZC sequence based on the LB in the subframe, and applies a random sequence with a random phase or a random cyclic shift value to the ZC sequence in each LB, thereby randomizing The ZC sequence. Then, the UE sends control information using the randomized ZC sequence. The random sequence is cell-specific. Interference randomization is further improved using a different random sequence of phase values or cyclic shift values for each UE.
本发明的实施例提出了三种方法。在下面的描述中,长度为N的ZC序列由gp(n)表示。ZC序列gp(n)被在M个LB上随机化,并且控制信息和随机化(randomized)ZC序列g′p,m,k(n)相乘,其中,k表示携带控制信息的信道的索引。Embodiments of the present invention propose three methods. In the following description, a ZC sequence of length N is denoted by g p (n). The ZC sequence g p (n) is randomized on M LBs, and the control information is multiplied by the randomized (randomized) ZC sequence g′ p,m,k (n), where k represents the channel carrying the control information index.
等式(2)描述了根据方法1的随机化ZC序列。Equation (2) describes the randomized ZC sequence according to Method 1.
g′p,m,k(n)=gp((n+dk)mod N)·SM,m,g' p, m, k (n) = g p ((n+d k ) mod N) S M, m ,
(m=1,2,...,M,n=0,1,2...,N-1).....(2)(m=1, 2,..., M, n=0, 1, 2..., N-1).....(2)
其中,dk表示相同ZC序列的循环移位值,通过dk标识携带控制信息的信道k。循环移位值最好是时域循环移位值,尽管其可以是频域循环移位值。在等式(2)中,mod代表模运算。例如,A mod B代表A除以B的余数。Wherein, d k represents the cyclic shift value of the same ZC sequence, and d k identifies the channel k carrying the control information. The cyclic shift value is preferably a time domain cyclic shift value, although it could be a frequency domain cyclic shift value. In Equation (2), mod stands for modulo operation. For example, A mod B means the remainder when A is divided by B.
SM,m表示长度为M的正交码,是+1s或-1s。这个正交码可以是沃尔什码。m表示控制信息被映射到的LB的索引。如果控制信息在子帧的时隙中被重复四次,则将长度为4的沃尔什序列的码片与每一个时隙的LB逐一相乘,并且子帧中的两个时隙的沃尔什序列的组合对于每个小区是不同的,因此把小区间干扰随机化。为了另外的随机化,沃尔什序列的不同组合可以被用于每一个UE。S M, m represents an orthogonal code of length M, which is +1s or -1s. This orthogonal code may be a Walsh code. m represents the index of the LB to which the control information is mapped. If the control information is repeated four times in the slots of the subframe, the chips of the Walsh sequence of length 4 are multiplied by the LB of each slot one by one, and the Walsh sequence of two slots in the subframe The combination of Ersh sequences is different for each cell, thus randomizing the inter-cell interference. For additional randomization, different combinations of Walsh sequences can be used for each UE.
等式(3)描述了根据方法2的随机化ZC序列。Equation (3) describes the randomized ZC sequence according to method 2.
(m=1,2,...,M,n=0,1,2...,N-1).....(3)(m=1, 2,..., M, n=0, 1, 2..., N-1)....(3)
其中,φm表示在每一个LB中改变ZC序列gp(n)的相位的随机相位值。通过在子帧的LB中对于相邻小区使用不同的随机相位值的集合,即不同的随机相位序列{φm},小区间干扰被随机化。Among them, φ m represents a random phase value changing the phase of the ZC sequence g p (n) in each LB. The inter-cell interference is randomized by using different sets of random phase values, ie different random phase sequences {φ m }, for neighboring cells in the LB of a subframe.
等式(4)描述了根据方法3的随机化ZC序列。Equation (4) describes the randomized ZC sequence according to method 3.
g′p,m,k(n)=gp((n+dk+Δm)mod N),g' p, m, k (n) = g p ((n+d k +Δ m ) mod N),
(m=1,2,...,M,n=0,1,2...,N-1).....(4)(m=1, 2,..., M, n=0, 1, 2..., N-1).....(4)
其中,Δm表示在每一个LB中改变ZC序列gp(n)的时域循环移位值dk的随机循环移位值。通过在子帧的LB中对于相邻小区使用不同的随机时域循环移位值的集合,即不同的随机时域循环移位序列{Δm},小区间干扰被随机化。虽然这里随机循环移位值被用在时域中,但是它们可以被适配为用在频域中。Wherein, Δ m represents a random cyclic shift value that changes the time-domain cyclic shift value d k of the ZC sequence g p (n) in each LB. Inter-cell interference is randomized by using different sets of random time-domain cyclic shift values, ie different random time-domain cyclic shift sequences {Δ m }, for neighboring cells in the LB of a subframe. Although here random cyclic shift values are used in the time domain, they can be adapted for use in the frequency domain.
图3是示出根据本发明的实施例的使用随机化ZC序列发送控制信息的操作的流程图。FIG. 3 is a flowchart illustrating an operation of transmitting control information using a randomized ZC sequence according to an embodiment of the present invention.
参考图3,UE在步骤302中通过信令从节点B接收序列信息和随机序列信息。序列信息是关于用于在发送控制信息时使用的ZC序列,包括ZC序列的索引和循环移位值。随机序列信息被用于对ZC序列进行随机化,包括作为随机相位值集合的随机相位序列或作为随机时域循环移位值集合的随机时域循环移位序列,以供应用于子帧的LB。所述信令是上层(例如L2)信令或者物理层(L1)信令。为了随机化小区间干扰,随机相位序列或者随机时域循环移位序列对于每一个小区是不同的。为了进一步的干扰随机化,随机相位序列或者随机时域循环移位序列也可以被设置为对于每一个UE是不同的。Referring to FIG. 3 , the UE receives sequence information and random sequence information from the Node B through signaling in step 302 . The sequence information is about a ZC sequence for use in transmitting control information, including an index and a cyclic shift value of the ZC sequence. The random sequence information is used to randomize the ZC sequence, including a random phase sequence as a set of random phase values or a random time-domain cyclic shift sequence as a set of random time-domain cyclic shift values to supply the LB for a subframe . The signaling is upper layer (eg L2) signaling or physical layer (L1) signaling. To randomize inter-cell interference, the random phase sequence or random time-domain cyclic shift sequence is different for each cell. For further interference randomization, a random phase sequence or a random time-domain cyclic shift sequence can also be set to be different for each UE.
在步骤304中,UE产生控制信息,并使用该控制信息产生复数值调制码元(此后称为控制码元)。控制码元的数量等于被分配用于传输控制信息的LB的数量。例如,如果控制信息是1比特,则UE通过重复生成和所分配的LB的数量一样多的控制码元。In step 304, the UE generates control information and uses the control information to generate complex-valued modulation symbols (hereinafter referred to as control symbols). The number of control symbols is equal to the number of LBs allocated for transmission of control information. For example, if the control information is 1 bit, the UE generates as many control symbols as the number of allocated LBs by repetition.
在步骤306中,UE使用序列信息中包括的索引和循环移位值产生ZC序列。然后,在步骤308中,UE根据随机序列信息中包括的随机相位序列或者随机时域循环移位序列产生随机值。随机值是沃尔什序列、随机相位值或随机时域循环移位值。这些随机值对于每一个小区和/或每一个UE是不同的。在步骤310中,UE通过以LB为基础对ZC序列施加随机值来产生随机化ZC序列。在步骤312中,UE把随机化ZC序列和控制码元相乘,把乘积映射到LB,并发送经映射的LB。In step 306, the UE generates a ZC sequence using the index and cyclic shift value included in the sequence information. Then, in step 308, the UE generates a random value according to the random phase sequence or the random time domain cyclic shift sequence included in the random sequence information. Random values are Walsh sequences, random phase values, or random time-domain cyclic shift values. These random values are different for each cell and/or each UE. In step 310, the UE generates a randomized ZC sequence by applying a random value to the ZC sequence based on LB. In step 312, the UE multiplies the randomized ZC sequence and the control symbols, maps the product to LBs, and transmits the mapped LBs.
图4是示出根据本发明的实施例的用于在节点B中接收控制信息的操作的流程图。FIG. 4 is a flowchart illustrating operations for receiving control information in a Node B according to an embodiment of the present invention.
参考图4,在步骤402中,节点B通过在多个LB中把从预期UE接收到的信号与施加于该信号的ZC序列相关获取相关信号。在步骤404中,节点B对从UE接收到的导频信号执行信道估计,并利用信道估计对所述相关信号执行信道补偿。在步骤406中,节点B通过以LB为基础把对应于UE的随机值施加于经过信道补偿的相关信号,从而从经过信道补偿的相关信号去除随机值来获取控制信息。对应于UE的随机值是从节点B发送到UE的随机序列信息得知的。Referring to FIG. 4, in step 402, the Node B obtains a correlated signal by correlating a signal received from a prospective UE with a ZC sequence applied to the signal in a plurality of LBs. In step 404, the Node B performs channel estimation on the pilot signal received from the UE, and performs channel compensation on the correlated signal using the channel estimation. In step 406, the Node B acquires control information by removing the random value from the channel-compensated correlation signal by applying a random value corresponding to the UE to the channel-compensated correlation signal on an LB basis. The random value corresponding to the UE is known from the random sequence information sent by the Node B to the UE.
在上面的控制信息的发送和接收中,LB(即SC-FDMA码元)是基本单位,控制信息被映射到该基本单位,以进行传输。以LB为单位重复ZC序列,并且随机相位序列或随机时域循环移位序列的元素逐LB地变化。In the above sending and receiving of control information, LB (ie, SC-FDMA symbol) is a basic unit, and control information is mapped to this basic unit for transmission. The ZC sequence is repeated in units of LB, and elements of a random phase sequence or a random time-domain cyclic shift sequence vary LB by LB.
在多个小区存在于同一节点B下的情况中,每一个小区中的UE使用相同的ZC序列和不同的时域循环移位值复用它们的控制信道。如果在节点B的小区中以LB为基础使用不同的随机相位序列或者随机时域循环移位序列,则在UE间可能会失去正交性。因此,在这种环境下,随机相位序列或者随机时域循环移位序列是特定于节点B的,并且节点B的小区使用相同的随机序列。In case multiple cells exist under the same Node B, UEs in each cell multiplex their control channels using the same ZC sequence and different time-domain cyclic shift values. If different random phase sequences or random time-domain cyclic shift sequences are used on an LB basis in a Node B cell, orthogonality may be lost among UEs. Therefore, in this environment, the random phase sequence or the random time-domain cyclic shift sequence is specific to the Node B, and the cells of the Node B use the same random sequence.
本发明的第一实施例实施了等式(2)中描述的方法1。The first embodiment of the present invention implements method 1 described in equation (2).
图5示出了根据本发明的第一实施例的控制信息的传输机制。Fig. 5 shows the transmission mechanism of control information according to the first embodiment of the present invention.
参考图5,在一个子帧中,相同的1比特控制信息出现8次,并以时隙为基础经受跳频,以便实现频率分集。如果在每一个时隙中,两个SB以及第一和最后的LB携带用于信道估计的导频,则该时隙剩余的LB可被用于发送控制信息。虽然这里一个RU被用于发送控制信息,但是可以使用多个RU来支持多个用户。Referring to FIG. 5, in one subframe, the same 1-bit control information appears 8 times and is subjected to frequency hopping on a slot basis in order to achieve frequency diversity. If in each slot, two SBs and the first and last LBs carry pilots for channel estimation, the remaining LBs of the slot can be used to transmit control information. Although here one RU is used to transmit control information, multiple RUs may be used to support multiple users.
在第一时隙中,携带1比特控制信息的调制码元出现4次,以供在四个LB中传输,并且以LB为基础乘以长度为4的正交码S1502(=S14,1S14,2S14,3S14,4)。S14,x代表正交码S1的码片x。导频序列也以LB或SB为基础乘以长度为4的正交码S1′504(=S1′4,1S1′4,2S1′4,3S1′4,4)。使用正交码能够增加多址接入(multiple-access)用户的数量。例如,对于长度4,有四个正交码可用。使用四个正交码能够使在相同的时频资源中容纳的用户数量是不使用正交码时的四倍。In the first slot, the modulation symbol carrying 1-bit control information appears 4 times for transmission in four LBs, and is multiplied by an orthogonal code S1502 of length 4 (=S1 4, 1 S1 4, 2 S1 4 , 3 S1 4 , 4 ). S1 4, x represents the chip x of the orthogonal code S1. The pilot sequence is also multiplied by an orthogonal code S1' 504 of length 4 (= S1' 4,1 S1' 4,2 S1' 4,3 S1' 4,4 ) on the basis of LB or SB. Using orthogonal codes can increase the number of multiple-access users. For example, for length 4, four orthogonal codes are available. Using four orthogonal codes can make the number of users accommodated in the same time-frequency resource four times that of using no orthogonal codes.
在第二时隙中,1比特控制信息出现四次,并且以LB为基础乘以长度为4的正交码S2 506(=S24,1S24,2S24,3S24,4)。导频序列也以LB或SB为基础乘以长度为4的正交码S2′508(=S2′4,1S2′4,2S2′4,3S2′4,4)。In the second time slot, 1-bit control information appears four times, and is multiplied by an orthogonal code S2 506 of length 4 (=S2 4,1 S2 4,2 S2 4,3 S2 4,4 ) on the basis of LB . The pilot sequence is also multiplied on the basis of LB or SB by an orthogonal code S2' 508 of length 4 (=S2' 4,1 S2' 4,2 S2' 4,3 S2' 4,4 ).
节点B向UE发信号通知正交码S1502、S1′504、S2506和S2′508。由于正交码的性质所致,其长度应该是4的倍数。在图5中,长度为4的正交码被施加于每一个时隙。如果在图5的传输机制中,跳频不以时隙为基础发生,则可以认为控制信息在一个子帧传输期间经历了频率上小到可忽略的信道变化。因此,即使正交码的长度被扩展到一个子帧,也仍保持正交性。在这种情况下,长度为8的正交码可被用于在一个子帧中发送控制信息。The Node B signals the orthogonal codes S1 502, S1'504, S2506 and S2'508 to the UE. Due to the nature of the orthogonal code, its length should be a multiple of 4. In FIG. 5, an orthogonal code of length 4 is applied to each slot. If frequency hopping does not occur on a slot basis in the transmission mechanism of FIG. 5 , it can be considered that the control information undergoes a negligibly small channel change in frequency during the transmission of one subframe. Therefore, even if the length of the orthogonal code is extended to one subframe, the orthogonality is maintained. In this case, an orthogonal code of length 8 may be used to transmit control information in one subframe.
针对每一个小区设置要施加于一个子帧的时隙的正交码的不同组合,以便随机化小区间干扰。例如,为了在时隙中发送控制信息,小区A顺序地使用正交码{S1,S2},并且小区B顺序地使用正交码{S3,S4}。正交码组合{S3,S4}包括至少一个不同于正交码组合{S1,S2}的正交码。Different combinations of orthogonal codes to be applied to slots of one subframe are set for each cell in order to randomize inter-cell interference. For example, to transmit control information in a slot, cell A sequentially uses orthogonal codes {S1, S2}, and cell B sequentially uses orthogonal codes {S3, S4}. The orthogonal code combination {S3, S4} includes at least one orthogonal code different from the orthogonal code combination {S1, S2}.
图6A和图6B是示出根据本发明的示范性实施例的UE中的发送器的框图。6A and 6B are block diagrams illustrating a transmitter in a UE according to an exemplary embodiment of the present invention.
参考图6A,发送器包括控制器610、导频生成器612、控制信道信号生成器614、数据生成器616、复用器(Multiplexer,MUX)617、串-并(Serial-to-Parallel,S/P)转换器618、快速傅立叶变换(FFT)处理器619、映射器620、逆快速傅立叶变换器(IFFT)622、并-串(Parallel-to-Serial,P/S)转换器624、正交码生成器626、乘法器628、循环前缀(Cyclic Prefix,CP)添加器(adder)630和天线632。这里将不描述和UL数据传输有关的部件和操作。Referring to FIG. 6A, the transmitter includes a controller 610, a pilot generator 612, a control channel signal generator 614, a data generator 616, a multiplexer (Multiplexer, MUX) 617, a serial-to-parallel (Serial-to-Parallel, S /P) converter 618, Fast Fourier Transform (FFT) processor 619, mapper 620, inverse Fast Fourier Transformer (IFFT) 622, parallel-to-serial (Parallel-to-Serial, P/S) converter 624, positive Intersection code generator 626 , multiplier 628 , cyclic prefix (Cyclic Prefix, CP) adder (adder) 630 and antenna 632 . Components and operations related to UL data transmission will not be described here.
控制器610对发送器的操作提供总体控制,并产生MUX 617、FFT处理器619、映射器620、导频生成器612、控制信道信号生成器614、数据生成器616和正交码生成器626所需的控制信号。提供给导频生成器612的控制信号指示要用于产生导频序列的序列索引和时域循环移位值。与UL控制信息以及数据传输相关联的控制信号被提供给控制信道信号生成器614和数据生成器616。Controller 610 provides overall control over the operation of the transmitter and generates MUX 617, FFT processor 619, mapper 620, pilot generator 612, control channel signal generator 614, data generator 616 and orthogonal code generator 626 required control signal. The control signal provided to the pilot generator 612 indicates the sequence index and time domain cyclic shift value to be used to generate the pilot sequence. Control signals associated with UL control information and data transmissions are provided to a control channel signal generator 614 and a data generator 616 .
MUX 617根据由从控制器610接收到的控制信号所指示的定时信息复用从导频生成器612、数据生成器616和控制信道信号生成器614接收到的导频信号、数据信号和控制信道信号,以便在LB或SB中传输。映射器620根据从控制器610接收到的LB/SB定时信息和频率分配信息把复用的信号映射到频率资源。MUX 617 multiplexes pilot signals, data signals, and control channels received from pilot generator 612, data generator 616, and control channel signal generator 614 according to timing information indicated by control signals received from controller 610 signal for transmission in LB or SB. The mapper 620 maps the multiplexed signal to frequency resources according to the LB/SB timing information and frequency allocation information received from the controller 610 .
当只发送控制信息而无数据时,正交码生成器626根据从控制器610接收到的关于要被用于时隙的特定于小区或特定于UE的正交码的信息产生用于LB/SB的正交码,并根据从控制器610接收到的定时信息把正交码的码片施加于映射到LB的控制信道信号的控制码元。正交码信息通过节点B信令提供给控制器610。When only control information is transmitted without data, the orthogonal code generator 626 generates a cell-specific or UE-specific orthogonal code for the LB/ The orthogonal code of the SB, and apply the chips of the orthogonal code to the control symbols of the control channel signal mapped to the LB according to the timing information received from the controller 610. Orthogonal code information is provided to the controller 610 through Node B signaling.
S/P转换器618把来自MUX 617的复用信号转换为并行信号,并将其提供给FFT处理器619。FFT处理器619的输入/输出大小根据从控制器610接收到的控制信号变化。映射器620把来自FFT处理器619的FFT信号映射到频率资源。IFFT处理器622把被映射的频率信号转换为时间信号,并且P/S转换器624串行化所述时间信号。乘法器628将串行时间信号乘以从正交码生成器626产生的正交码。即,正交码生成器626根据从控制器610接收到的定时信息产生要被施加于将携带控制信息的子帧的时隙的正交码。The S/P converter 618 converts the multiplexed signal from the MUX 617 into a parallel signal, and supplies it to the FFT processor 619. The input/output size of the FFT processor 619 varies according to the control signal received from the controller 610 . The mapper 620 maps the FFT signal from the FFT processor 619 to frequency resources. The IFFT processor 622 converts the mapped frequency signal into a time signal, and the P/S converter 624 serializes the time signal. The multiplier 628 multiplies the serial time signal by the orthogonal code generated from the orthogonal code generator 626 . That is, the orthogonal code generator 626 generates an orthogonal code to be applied to a slot of a subframe that will carry control information according to timing information received from the controller 610 .
CP添加器630把CP加到从乘法器628接收到的信号,以避免码元间干扰,并通过发射天线632发射添加了CP的信号。The CP adder 630 adds CP to the signal received from the multiplier 628 to avoid inter-symbol interference, and transmits the CP-added signal through the transmit antenna 632 .
图6B是示出根据本发明的实施例的控制信道信号生成器614的详细框图。FIG. 6B is a detailed block diagram illustrating the control channel signal generator 614 according to an embodiment of the present invention.
参考图6B,控制信道信号生成器614的序列生成器642以LB为基础产生码序列,例如ZC序列。为了这么做,序列生成器642从控制器610接收序列信息,例如序列长度和序列索引。节点B和UE都已知序列信息。Referring to FIG. 6B, the sequence generator 642 of the control channel signal generator 614 generates a code sequence, such as a ZC sequence, on an LB basis. To do so, sequence generator 642 receives sequence information from controller 610, such as sequence length and sequence index. The sequence information is known to both the Node B and the UE.
控制信息生成器640产生具有1比特控制信息的调制码元,并且重复器643重复该控制码元以产生和分配给控制信息的LB的数量一样多的控制码元。乘法器646通过以LB为基础将该控制码元乘以ZC序列来对控制码元进行CDM复用,从而产生控制信道信号。The control information generator 640 generates modulation symbols having 1-bit control information, and the repeater 643 repeats the control symbols to generate as many control symbols as the number of LBs allocated to the control information. The multiplier 646 CDM-multiplexes the control symbols by multiplying the control symbols by the ZC sequence on an LB basis, thereby generating a control channel signal.
乘法器646的作用是通过将从重复器643输出的码元乘以ZC序列来产生用户复用的控制信道信号。通过用等效设备代替乘法器646,可以设想本发明的经修改的实施例。The role of the multiplier 646 is to generate a user multiplexed control channel signal by multiplying the symbols output from the repeater 643 by the ZC sequence. Modified embodiments of the invention are conceivable by replacing the multiplier 646 with an equivalent device.
图7A和图7B是示出根据本发明的实施例的节点B中的接收器的框图。7A and 7B are block diagrams illustrating a receiver in a Node B according to an embodiment of the present invention.
参考图7A,接收器包括天线710、CP去除器712、S/P转换器714、FFT处理器716、解映射器718、IFFT处理器720、P/S转换器722、解复用器(DEMUX)724、控制器726、控制信道信号接收器728、信道估计器730和数据解调器和解码器732。这里将不描述和UL数据接收相关联的部件和操作。7A, the receiver includes an antenna 710, a CP remover 712, an S/P converter 714, an FFT processor 716, a demapper 718, an IFFT processor 720, a P/S converter 722, a demultiplexer (DEMUX ) 724, controller 726, control channel signal receiver 728, channel estimator 730, and data demodulator and decoder 732. Components and operations associated with UL data reception will not be described here.
控制器726对接收器的操作提供总体控制,并产生DEMUX 724、IFFT处理器720、解映射器718、控制信道信号接收器728、信道估计器730和数据解调器和解码器732所需的控制信号。与UL控制信息和数据有关的控制信号被提供给控制信道信号接收器728和数据解调器和解码器732。指示序列索引和时域循环移位值的控制信道信号被提供给信道估计器730。序列索引和时域循环移位值被用来生成分配给UE的导频序列。A controller 726 provides overall control over the operation of the receiver and generates the required signals for the DEMUX 724, IFFT processor 720, demapper 718, control channel signal receiver 728, channel estimator 730, and data demodulator and decoder 732. control signal. Control signals related to UL control information and data are provided to control channel signal receiver 728 and data demodulator and decoder 732 . A control channel signal indicating a sequence index and a time-domain cyclic shift value is provided to a channel estimator 730 . The sequence index and time domain cyclic shift value are used to generate the pilot sequence assigned to the UE.
DEMUX 724根据从控制器726接收到的定时信息把从P/S转换器722接收到的信号解复用为控制信道信号、数据信号和导频信号。解映射器718根据从控制器726接收到的LB/SB定时信息和频率分配信息,从频率资源提取那些信号。The DEMUX 724 demultiplexes the signal received from the P/S converter 722 into a control channel signal, a data signal, and a pilot signal according to timing information received from the controller 726. The demapper 718 extracts those signals from the frequency resources based on the LB/SB timing information and frequency allocation information received from the controller 726 .
在通过天线710从UE接收到包括控制信息的信号时,CP去除器712从接收到的信号中去除CP。S/P转换器714把无CP的信号转换为并行信号,并且FFT处理器716通过FFT处理所述并行信号。在解映射器718中解映射后,FFT信号在IFFT处理器720中被转换为时间信号。IFFT处理器720的输入/输出大小根据从控制器726接收到的控制信号变化。P/S转换器722串行化所述IFFT信号,并且DEMUX 724把串行信号解复用为控制信道信号、导频信号和数据信号。Upon receiving a signal including control information from the UE through the antenna 710, the CP remover 712 removes the CP from the received signal. The S/P converter 714 converts the CP-free signal into a parallel signal, and the FFT processor 716 processes the parallel signal through FFT. After demapping in demapper 718 , the FFT signal is converted into a time signal in IFFT processor 720 . The input/output size of the IFFT processor 720 varies according to the control signal received from the controller 726 . P/S converter 722 serializes the IFFT signal, and DEMUX 724 demultiplexes the serial signal into control channel signals, pilot signals and data signals.
信道估计器730由从DEMUX 724接收到的导频信号中获取信道估计。控制信道信号接收器728利用该信道估计对从DEMUX 724接收到的控制信道信号进行信道补偿,并获取UE所发送的控制信息。数据解调器和解码器732利用该信道估计对从DEMUX 724接收到的数据信号进行信道补偿,然后基于控制信息获取UE所发送的数据。Channel estimator 730 obtains channel estimates from pilot signals received from DEMUX 724. The control channel signal receiver 728 uses the channel estimation to perform channel compensation on the control channel signal received from the DEMUX 724, and obtains the control information sent by the UE. The data demodulator and decoder 732 uses the channel estimate to perform channel compensation on the data signal received from the DEMUX 724, and then obtains the data transmitted by the UE based on the control information.
当在UL上只发送控制信息而无数据时,控制信道信号接收器728以参考图5描述的方式获取控制信息。When only control information is transmitted on the UL without data, the control channel signal receiver 728 acquires the control information in the manner described with reference to FIG. 5 .
图7B是示出根据本发明的实施例的控制信道信号接收器728的详细框图。FIG. 7B is a detailed block diagram illustrating a control channel signal receiver 728 according to an embodiment of the present invention.
参考图7B,控制信道信号接收器728包括相关器740和去随机化器742。相关器740的序列生成器744产生码序列,例如ZC序列,用于供UE产生1比特控制信息。为了这么做,序列生成器744从控制器726接收指示序列长度和序列索引的序列信息。节点B和UE都已知序列信息。Referring to FIG. 7B , the control channel signal receiver 728 includes a correlator 740 and a de-randomizer 742 . The sequence generator 744 of the correlator 740 generates a code sequence, such as a ZC sequence, for the UE to generate 1-bit control information. To do so, sequence generator 744 receives sequence information from controller 726 indicating sequence length and sequence index. The sequence information is known to both the Node B and the UE.
共轭器746计算ZC序列的共轭结果(consequence)。乘法器748通过以LB为基础把控制信道信号乘以该共轭序列来把从DEMUX 724接收到的控制信道信号进行CDM解复用。累积器750针对ZC序列的长度累积从乘法器748接收到的信号。信道补偿器752利用从信道估计器730接收到的信道估计对累积信号进行信道补偿。The conjugator 746 calculates the conjugation result (consequence) of the ZC sequence. Multiplier 748 CDM-demultiplexes the control channel signal received from DEMUX 724 by multiplying the control channel signal by the conjugated sequence on an LB basis. Accumulator 750 accumulates the signal received from multiplier 748 for the length of the ZC sequence. Channel compensator 752 uses the channel estimate received from channel estimator 730 to perform channel compensation on the accumulated signal.
在去随机化器742中,正交码生成器754根据正交码信息产生正交码,UE使用所述正交码发送1比特控制信息。乘法器758以LB为基础把经过信道补偿的信号乘以正交序列的码片。累积器760针对1比特信息被重复映射到的LB的数量累积从乘法器758接收到的信号,从而获取1比特控制信息。正交码信息被从节点B发信号通知给UE,以使节点B和UE都知晓该正交码信息。In the de-randomizer 742, an orthogonal code generator 754 generates an orthogonal code according to the orthogonal code information, and the UE uses the orthogonal code to send 1-bit control information. The multiplier 758 multiplies the channel compensated signal by the chips of the orthogonal sequence on an LB basis. The accumulator 760 accumulates the signal received from the multiplier 758 for the number of LBs to which 1-bit information is repeatedly mapped, thereby acquiring 1-bit control information. The orthogonal code information is signaled from the Node B to the UE so that both the Node B and the UE are aware of the orthogonal code information.
在本发明的修改的实施例中,信道补偿器752被置于乘法器758和累积器760之间。虽然在图7B中正交器740和去随机化器742被分开地配置,但是依赖于配置方法,相关器740的序列生成器744和去随机化器742的正交码生成器754可以被合并在单个设备中。例如,如果相关器740被配置成使得序列生成器744对于每个UE生成具有以LB为基础施加的正交码的ZC序列,则去随机化器742的乘法器758和正交码生成器754不被使用。因此,实现了等同于图7B中所示的设备。In a modified embodiment of the invention, the channel compensator 752 is placed between the multiplier 758 and the accumulator 760 . Although in FIG. 7B the orthogonalizer 740 and the derandomizer 742 are configured separately, depending on the configuration method, the sequence generator 744 of the correlator 740 and the orthogonal code generator 754 of the derandomizer 742 may be combined in a single device. For example, if the correlator 740 is configured such that the sequence generator 744 generates a ZC sequence with an orthogonal code applied on a LB basis for each UE, the multiplier 758 of the de-randomizer 742 and the orthogonal code generator 754 is not used. Thus, a device equivalent to that shown in Fig. 7B is realized.
本发明的第二实施例实施了等式(3)中描述的方法2。A second embodiment of the present invention implements method 2 described in equation (3).
图8是示出根据本发明的实施例的控制信息的传输机制的图。FIG. 8 is a diagram illustrating a transmission mechanism of control information according to an embodiment of the present invention.
参考图8,一个时隙包括总共7个LB,并且在每一个时隙中第四个LB携带导频信号。因此,一个子帧总共具有14个LB,并且2个LB被用于导频传输,12个LB用于控制信息传输。虽然这里一个RU被用于发送控制信息,但是可以使用多个RU来支持多个用户。Referring to FIG. 8, one slot includes a total of 7 LBs, and the fourth LB carries a pilot signal in each slot. Therefore, one subframe has 14 LBs in total, and 2 LBs are used for pilot transmission and 12 LBs are used for control information transmission. Although here one RU is used to transmit control information, multiple RUs may be used to support multiple users.
相同的1比特控制信息在每一个时隙中出现6次,因而在一个子帧中出现12次。为了频率分集,以时隙为基础对控制信息执行跳频。在每一个携带控制信息的LB中,随机相位被施加于ZC序列。作为结果的ZC序列的随机化使小区间干扰随机化。The same 1-bit control information appears 6 times in each slot, thus appears 12 times in a subframe. Frequency hopping is performed on control information on a slot basis for frequency diversity. In each LB carrying control information, a random phase is applied to the ZC sequence. The resulting randomization of the ZC sequence randomizes the inter-cell interference.
在LB中施加于ZC序列的随机相位值是φ1,φ2,...φ12 802到824。ZC序列乘以(m=1,2,...12),因而被相位旋转。因为用于LB的作为随机相位值集合的随机相位序列是特定于小区的,所以小区间干扰被随机化。即,由于用于不同小区的LB的随机化ZC序列之间的相关在一个子帧上被随机地相位旋转,所以来自这些小区的控制信道之间的干扰被降低。The random phase values applied to the ZC sequence in LB are φ 1 , φ 2 , . . . φ 12 802 to 824. The ZC sequence is multiplied by (m=1, 2, . . . 12), thus being phase rotated. Inter-cell interference is randomized because the random phase sequence used for LB as a set of random phase values is cell-specific. That is, since the correlation between randomized ZC sequences of LBs for different cells is randomly phase-rotated over one subframe, interference between control channels from these cells is reduced.
节点B向UE发信号通知随机相位序列,以使节点B和UE都知晓该随机相位序列。为了降低小区间干扰,特定于小区的随机相位值也可以被施加于导频信号。节点B向UE发信号通知所述随机相位值,以使节点B和UE都知晓该随机相位序列。The Node B signals the random phase sequence to the UE so that both the Node B and the UE are aware of the random phase sequence. To reduce inter-cell interference, cell-specific random phase values may also be applied to the pilot signals. The Node B signals the random phase value to the UE so that both the Node B and the UE are aware of the random phase sequence.
图9是示出根据本发明的实施例的控制信息的另一个传输机制的图。FIG. 9 is a diagram illustrating another transmission mechanism of control information according to an embodiment of the present invention.
参考图9,一个时隙包括总共6个LB和2个携带导频信号的SB。因此,一个子帧总共具有12个LB,并且4个SB被用于导频传输,12个LB用于控制信息传输。相同的1比特控制信息在每一个时隙中出现6次,因而在一个子帧中出现12次。为了频率分集,以时隙为基础对控制信息执行跳频。在LB中施加于ZC序列的随机相位值是φ1,φ2,...φ12 902到924。Referring to FIG. 9 , one slot includes a total of 6 LBs and 2 SBs carrying pilot signals. Therefore, one subframe has 12 LBs in total, and 4 SBs are used for pilot transmission, and 12 LBs are used for control information transmission. The same 1-bit control information appears 6 times in each slot, thus appears 12 times in a subframe. Frequency hopping is performed on control information on a slot basis for frequency diversity. The random phase values applied to the ZC sequence in LB are φ 1 , φ 2 , . . . φ 12 902 to 924.
图10A和图10B是示出根据本发明的实施例的UE中的发送器的框图。10A and 10B are block diagrams illustrating a transmitter in a UE according to an embodiment of the present invention.
参考图10A,所述发送器包括控制器1010、导频生成器1012、控制信道信号生成器1014、数据生成器1016、MUX 1017、S/P转换器1018、FFT处理器1019、映射器1020、IFFT 1022、P/S转换器1024、CP添加器1030和天线1032。这里将不描述和UL数据传输有关的部件和操作。Referring to Figure 10A, the transmitter includes a controller 1010, a pilot generator 1012, a control channel signal generator 1014, a data generator 1016, a MUX 1017, an S/P converter 1018, an FFT processor 1019, a mapper 1020, IFFT 1022, P/S converter 1024, CP adder 1030 and antenna 1032. Components and operations related to UL data transmission will not be described here.
控制器1010对发送器的操作提供总体控制,并产生MUX 1017、FFT处理器1019、映射器1020、导频生成器1012、控制信道信号生成器1014和数据生成器1016所需的控制信号。提供给导频生成器1012的控制信号指示用于导频生成的序列索引和时域循环移位值,该序列索引指示被分配的导频信号序列。与UL控制信息以及数据传输相关联的控制信号被提供给控制信道信号生成器1014和数据生成器1016。Controller 1010 provides overall control over the operation of the transmitter and generates the control signals required by MUX 1017, FFT processor 1019, mapper 1020, pilot generator 1012, control channel signal generator 1014 and data generator 1016. A control signal supplied to the pilot generator 1012 indicates a sequence index indicating an allocated pilot signal sequence and a time-domain cyclic shift value for pilot generation. Control signals associated with UL control information and data transmissions are provided to a control channel signal generator 1014 and a data generator 1016 .
MUX 1017根据从控制器1010接收到的控制信号所指示的定时信息复用从导频生成器1012、数据生成器1016和控制信道信号生成器1014接收到的导频信号、数据信号和控制信道信号,以便在LB或SB中传输。映射器1020根据从控制器1010接收到的LB/SB定时信息和频率分配信息把复用的信息映射到频率资源。MUX 1017 multiplexes the pilot signal, data signal and control channel signal received from pilot generator 1012, data generator 1016 and control channel signal generator 1014 according to the timing information indicated by the control signal received from controller 1010 , for transmission in LB or SB. The mapper 1020 maps the multiplexed information to frequency resources according to the LB/SB timing information and frequency allocation information received from the controller 1010 .
当只发送控制信息而无数据时,在前述方法中控制信道信号生成器1014通过把以LB为基础随机化的ZC序列施加于控制信息来产生控制信道信号。When only control information is transmitted without data, the control channel signal generator 1014 generates a control channel signal by applying a ZC sequence randomized on an LB basis to the control information in the foregoing method.
S/P转换器1018把来自MUX 1017的复用信号转换为并行信号,并将其提供给FFT处理器1019。FFT处理器1019的输入/输出大小根据从控制器1010接收到的控制信号变化。映射器1020把来自FFT处理器1019的FFT信号映射到频率资源。IFFT处理器1022把被映射的频率信号转换为时间信号,并且P/S转换器1024串行化所述时间信号。CP添加器1030把CP加到所述串行信号,并通过发射天线1032发射添加了CP的信号。The S/P converter 1018 converts the multiplexed signal from the MUX 1017 into a parallel signal, and supplies it to the FFT processor 1019. The input/output size of the FFT processor 1019 varies according to the control signal received from the controller 1010 . The mapper 1020 maps the FFT signal from the FFT processor 1019 to frequency resources. The IFFT processor 1022 converts the mapped frequency signal into a time signal, and the P/S converter 1024 serializes the time signal. The CP adder 1030 adds CP to the serial signal, and transmits the CP-added signal through the transmit antenna 1032 .
图10B是示出根据本发明的实施例的控制信道信号生成器1014的详细框图。FIG. 10B is a detailed block diagram illustrating the control channel signal generator 1014 according to an embodiment of the present invention.
参考图10B,控制信道信号生成器1014的序列生成器1042产生要被用于LB的码序列,例如ZC序列。随机化器1044为每一个LB产生随机相位值,并在每一个LB中把所述随机相位值和ZC序列相乘。为了这么做,序列生成器1042从控制器1010接收序列信息,例如序列长度和序列索引,并且随机化器1044从控制器1010接收关于用于每一个LB的随机相位值的随机序列信息。然后,随机化器1044在每一个LB中利用随机相位值旋转ZC序列的相位,从而将ZC序列的相位随机化。节点B和UE都已知序列信息和随机序列信息。Referring to FIG. 10B , the sequence generator 1042 of the control channel signal generator 1014 generates a code sequence, such as a ZC sequence, to be used for LB. The randomizer 1044 generates a random phase value for each LB, and multiplies the random phase value with the ZC sequence in each LB. To do so, the sequence generator 1042 receives sequence information, such as sequence length and sequence index, from the controller 1010, and the randomizer 1044 receives random sequence information from the controller 1010 on a random phase value for each LB. Then, the randomizer 1044 rotates the phase of the ZC sequence with a random phase value in each LB, thereby randomizing the phase of the ZC sequence. Both the Node B and the UE know the sequence information and the random sequence information.
控制信息生成器1040产生具有1比特控制信息的调制码元,并且重复器(repeater)1043重复该控制码元以产生与分配给控制信息的LB的数量一样多的控制码元。乘法器1046通过以LB为基础把控制码元和被随机化的ZC序列相乘来对控制码元进行CDM复用,从而产生控制信道信号。The control information generator 1040 generates modulation symbols having 1-bit control information, and a repeater (repeater) 1043 repeats the control symbols to generate as many control symbols as the number of LBs allocated to the control information. The multiplier 1046 CDM-multiplexes the control symbols by multiplying them with the randomized ZC sequence on an LB basis, thereby generating a control channel signal.
乘法器1046的作用是以码元为基础通过随机化ZC序列随机化从重复器1043输出的码元。通过用执行等同于将随机化ZC序列施加于控制码元或将随机化ZC序列和控制码元组合的功能的设备代替乘法器1046,可以设想本发明的经修改的实施例。例如,乘法器1046可以用相位旋转器来代替,所述相位旋转器根据随机化ZC序列的相位值φm或Δm改变控制码元的相位。The role of the multiplier 1046 is to randomize the symbols output from the repeater 1043 on a symbol basis by randomizing the ZC sequence. Modified embodiments of the invention can be envisaged by replacing the multiplier 1046 with a device performing a function equivalent to applying a randomized ZC sequence to a control symbol or combining a randomized ZC sequence and a control symbol. For example, multiplier 1046 can be replaced by a phase rotator that changes the phase of the control symbols according to the phase value φm or Δm of the randomized ZC sequence.
图11A和图11B是示出根据本发明的实施例的节点B中的接收器的框图。11A and 11B are block diagrams illustrating a receiver in a Node B according to an embodiment of the present invention.
参考图11A,接收器包括天线1110、CP去除器1112、S/P转换器1114、FFT处理器1116、解映射器1118、IFFT处理器1120、P/S转换器1122、DEMUX1124、控制器1126、控制信道信号接收器1128、信道估计器1130和数据解调器和解码器1132。这里将不描述和UL数据接收相关联的部件和操作。11A, the receiver includes an antenna 1110, a CP remover 1112, an S/P converter 1114, an FFT processor 1116, a demapper 1118, an IFFT processor 1120, a P/S converter 1122, a DEMUX 1124, a controller 1126, Control channel signal receiver 1128 , channel estimator 1130 and data demodulator and decoder 1132 . Components and operations associated with UL data reception will not be described here.
控制器1126对接收器的操作提供总体控制。它还产生DEMUX 1124、IFFT处理器1120、解映射器1118、控制信道信号接收器1128、信道估计器1130和数据解调器和解码器1132所需的控制信号。与UL控制信息和数据有关的控制信号被提供给控制信道信号接收器1128和数据解调器和解码器1132。指示序列索引和时域循环移位值的控制信号被提供给信道估计器1130,序列索引指示分配给UE的导频序列。序列索引和时域循环移位值被用于导频接收。Controller 1126 provides overall control over the operation of the receiver. It also generates the control signals required by DEMUX 1124, IFFT processor 1120, demapper 1118, control channel signal receiver 1128, channel estimator 1130, and data demodulator and decoder 1132. Control signals related to UL control information and data are provided to a control channel signal receiver 1128 and a data demodulator and decoder 1132 . A control signal indicating a sequence index indicating a pilot sequence allocated to a UE and a time-domain cyclic shift value is provided to the channel estimator 1130 . Sequence index and time domain cyclic shift value are used for pilot reception.
DEMUX 1124根据从控制器1126接收到的定时信息把从P/S转换器1122接收到的信号解复用为控制信道信号、数据信号和导频信号。解映射器1118根据从控制器1126接收到的LB/SB定时信息和频率分配信息,从频率资源中提取那些信号。The DEMUX 1124 demultiplexes the signal received from the P/S converter 1122 into a control channel signal, a data signal, and a pilot signal according to timing information received from the controller 1126. The demapper 1118 extracts those signals from the frequency resources based on the LB/SB timing information and frequency allocation information received from the controller 1126 .
在通过天线1110从UE接收到包括控制信息的信号时,CP去除器1112从接收到的信号去除CP。S/P转换器1114把无CP的信号转换为并行信号,并且FFT处理器1116通过FFT处理所述并行信号。在解映射器1118中处理后,FFT信号在IFFT处理器1120中被转换为时间信号。P/S转换器1122串行化所述IFFT信号,并且DEMUX 1124把串行信号解复用为控制信道信号、导频信号和数据信号。Upon receiving a signal including control information from the UE through the antenna 1110, the CP remover 1112 removes the CP from the received signal. The S/P converter 1114 converts the CP-free signal into a parallel signal, and the FFT processor 1116 processes the parallel signal through FFT. After processing in demapper 1118 , the FFT signal is converted into a time signal in IFFT processor 1120 . P/S converter 1122 serializes the IFFT signal, and DEMUX 1124 demultiplexes the serial signal into control channel signals, pilot signals, and data signals.
信道估计器1130由从DEMUX 1124接收到的导频信号中获取信道估计。控制信道信号接收器1128利用信道估计对从DEMUX 1124接收到的控制信道信号进行信道补偿,并获取UE所发送的控制信息。数据解调器和解码器1132利用信道估计对从DEMUX 1124接收到的数据信号进行信道补偿,然后基于控制信息获取UE所发送的数据。Channel estimator 1130 obtains channel estimates from pilot signals received from DEMUX 1124. The control channel signal receiver 1128 uses channel estimation to perform channel compensation on the control channel signal received from the DEMUX 1124, and obtains the control information sent by the UE. The data demodulator and decoder 1132 uses channel estimation to perform channel compensation on the data signal received from the DEMUX 1124, and then acquires the data transmitted by the UE based on the control information.
当在UL上只发送控制信息而无数据时,控制信道信号接收器1128以参考图8和图9描述的方式获取控制信息。When only control information without data is transmitted on the UL, the control channel signal receiver 1128 acquires the control information in the manner described with reference to FIGS. 8 and 9 .
图11B是示出根据本发明的实施例的控制信道信号接收器1128的详细框图。FIG. 11B is a detailed block diagram illustrating the control channel signal receiver 1128 according to an embodiment of the present invention.
参考图11B,控制信道信号接收器1128包括相关器1140和去随机化器1142。相关器1140的序列生成器1144产生码序列,例如ZC序列,用于供UE产生控制信息。为了这么做,序列生成器1144从控制器1126接收指示序列长度和序列索引的序列信息。节点B和UE都已知序列信息。Referring to FIG. 11B , the control channel signal receiver 1128 includes a correlator 1140 and a de-randomizer 1142 . The sequence generator 1144 of the correlator 1140 generates a code sequence, such as a ZC sequence, for the UE to generate control information. To do so, sequence generator 1144 receives sequence information from controller 1126 indicating sequence length and sequence index. The sequence information is known to both the Node B and the UE.
共轭器1146计算ZC序列的共轭结果(consequence)。乘法器1148通过以LB为基础把控制信道信号和共轭序列相乘来对从DEMUX 1124接收到的控制信道信号进行CDM解复用。累积器1150针对ZC序列的长度累积乘积信号。相关器1140的乘法器1148可以被相位旋转器代替,所述相位旋转器根据从序列生成器1144接收到的序列的相位值dk以LB为基础改变控制信道信号的相位。信道补偿器1152利用从信道估计器1130接收到的信道估计对累积信号进行信道补偿。The conjugator 1146 calculates the conjugation result (consequence) of the ZC sequence. The multiplier 1148 CDM-demultiplexes the control channel signal received from the DEMUX 1124 by multiplying the control channel signal and the conjugated sequence on an LB basis. The accumulator 1150 accumulates the product signal for the length of the ZC sequence. The multiplier 1148 of the correlator 1140 may be replaced by a phase rotator that changes the phase of the control channel signal on an LB basis according to the phase value d k of the sequence received from the sequence generator 1144 . Channel compensator 1152 performs channel compensation on the accumulated signal using the channel estimate received from channel estimator 1130 .
在去随机化器1142中,随机值生成器1156根据随机序列信息计算UE发送控制信息时使用的随机相位值的共轭相位值。乘法器1158以LB为基础把经过信道补偿的信号和所述共轭相位值相乘。像发送器的乘法器1046那样,去随机化器1142的乘法器1158可以被相位旋转器代替,所述相位旋转器根据从序列生成器1156接收到的随机序列的相位值φm或Δm以LB为基础改变控制信道信号的相位。In the de-randomizer 1142, the random value generator 1156 calculates the conjugate phase value of the random phase value used when the UE sends the control information according to the random sequence information. A multiplier 1158 multiplies the channel compensated signal by the conjugate phase value on an LB basis. Like the multiplier 1046 of the transmitter, the multiplier 1158 of the de-randomizer 1142 can be replaced by a phase rotator that takes the phase value φm or Δm of the random sequence received from the sequence generator 1156 by The phase of the control channel signal is changed based on the LB.
累积器1160针对1比特信息被重复地映射到的LB的数量累积从乘法器1158接收到的信号,从而获取1比特控制信息。随机序列信息被从节点B发信号通知给UE,以使节点B和UE都知晓随机序列信息。The accumulator 1160 accumulates the signal received from the multiplier 1158 for the number of LBs to which 1-bit information is repeatedly mapped, thereby acquiring 1-bit control information. The random sequence information is signaled from the Node B to the UE so that both the Node B and the UE are aware of the random sequence information.
在本发明的修改的实施例中,信道补偿器1152被置于乘法器1158和累积器1160之间。虽然在图11B中相关器1140和去随机化器1142被分开地配置,但是依赖于配置方法,相关器1140的序列生成器1144和去随机化器1142的随机值生成器1156可以被合并在单个设备中。例如,如果相关器1140被配置成使得序列生成器1144为每一个UE生成被施加了随机序列的ZC序列,则去随机化器1142的乘法器1158和随机值生成器1156不被使用。因此,实现了等同于图11B中所示的设备。在这种情况下,像发送器中的乘法器那样,相关器1140的乘法器1148可以被相位旋转器代替,所述相位旋转器根据从序列生成器1144接收到的序列的相位值(dk+φm)或者(dk+Δm)以码元为基础改变控制信道信号的相位。In a modified embodiment of the invention, the channel compensator 1152 is placed between the multiplier 1158 and the accumulator 1160 . Although the correlator 1140 and the derandomizer 1142 are configured separately in FIG. in the device. For example, if the correlator 1140 is configured such that the sequence generator 1144 generates a ZC sequence to which a random sequence is applied for each UE, the multiplier 1158 and the random value generator 1156 of the de-randomizer 1142 are not used. Thus, a device equivalent to that shown in FIG. 11B is realized. In this case, like the multiplier in the transmitter, the multiplier 1148 of the correlator 1140 can be replaced by a phase rotator, which is based on the phase value of the sequence received from the sequence generator 1144 (d k +φ m ) or (d k +Δ m ) changes the phase of the control channel signal on a symbol basis.
通过对每一个UE为每一个LB设置不同的相位值,可以进一步提高小区间干扰随机化。节点B向每一个UE发信号通知每一个LB的相位值。By setting different phase values for each LB for each UE, the randomization of inter-cell interference can be further improved. The Node B signals the phase value of each LB to each UE.
除了作为施加给携带1比特控制信息的12个LB的相位序列的随机序列以外,在本发明的第二示范性实施例中也可以使用诸如傅立叶序列的正交相位序列。长度为N的傅立叶序列被定义为:In addition to a random sequence as a phase sequence applied to 12 LBs carrying 1-bit control information, an orthogonal phase sequence such as a Fourier sequence may also be used in the second exemplary embodiment of the present invention. A Fourier sequence of length N is defined as:
在等式(5)中,为每一个小区设置不同的特定于小区的值k。当对于每一个小区使用不同的傅立叶序列以LB为基础执行相位旋转时,如果在小区间定时是同步的,则小区间不存在干扰。In equation (5), a different cell-specific value k is set for each cell. When phase rotation is performed on an LB basis using a different Fourier sequence for each cell, there is no interference between cells if the timing is synchronized between cells.
本发明的第一和第二示范性实施例可以组合实施。在图5的传输机制中,携带1比特控制信息的LB和正交码相乘,然后和随机相位序列相乘。因为随机相位序列是特定于小区的,所以可以降低小区间干扰。The first and second exemplary embodiments of the present invention can be implemented in combination. In the transmission mechanism of FIG. 5 , the LB carrying 1-bit control information is multiplied by an orthogonal code, and then multiplied by a random phase sequence. Because the random phase sequence is cell-specific, inter-cell interference can be reduced.
本发明的第三实施例实施等式(4)中描述的方法3。A third embodiment of the present invention implements method 3 described in equation (4).
ZC序列的时域循环移位值是特定于小区的,并且在每一个携带控制信息的LB中变化,从而使小区间干扰随机化。更具体的说,除了施加于小区内在相同的频率资源中CDM复用的控制信道的每一个的循环移位值dk以外,在时域中还施加被施加于每一个LB的特定于小区的循环移位值Δm。节点B向UE发信号通知该特定于小区的循环移位值。所述特定于小区的循环移位值被设置为大于无线电传输路径的最大延迟,以便保持ZC序列的正交性。The time-domain cyclic shift value of the ZC sequence is cell-specific and varies in each LB carrying control information, thereby randomizing the inter-cell interference. More specifically, in addition to the cyclic shift value dk applied to each of the control channels CDM-multiplexed in the same frequency resource within the cell, a cell-specific Cyclic shift value Δ m . The Node B signals the cell-specific cyclic shift value to the UE. The cell-specific cyclic shift value is set larger than the maximum delay of the radio transmission path in order to preserve the orthogonality of the ZC sequences.
为了降低小区间干扰,也可以把特定于小区的随机时域循环移位值施加于导频信号。节点B向UE发信号通知所述随机时域循环移位值,以使节点B和UE都知道该随机时域循环移位序列。To reduce inter-cell interference, a cell-specific random time-domain cyclic shift value may also be applied to the pilot signal. The Node B signals the random time domain cyclic shift value to the UE so that both the Node B and the UE know the random time domain cyclic shift sequence.
图12A是示出根据本发明的实施例的控制信息的传输机制的图。FIG. 12A is a diagram illustrating a transmission mechanism of control information according to an embodiment of the present invention.
参考图12A,一个时隙包括总共7个LB,并且在每一个时隙中第四个LB携带导频信号。因此,一个子帧总共具有14个LB,并且2个LB被用于导频传输,12个LB用于控制信息传输。虽然这里一个RU被用于发送控制信息,但是可以使用多个RU来支持多个用户。Referring to FIG. 12A, one slot includes a total of 7 LBs, and the fourth LB carries a pilot signal in each slot. Therefore, one subframe has 14 LBs in total, and 2 LBs are used for pilot transmission and 12 LBs are used for control information transmission. Although here one RU is used to transmit control information, multiple RUs may be used to support multiple users.
施加于ZC序列的12个LB的随机时域循环移位值是Δ1,Δ2,...Δ12 1202到1224。ZC序列通过随机时域循环移位值1202到1224以LB为基础被循环移位,以便随机化控制信息。The random time-domain cyclic shift values applied to the 12 LBs of the ZC sequence are Δ 1 , Δ 2 , . . . Δ 12 1202 to 1224. The ZC sequence is cyclically shifted on an LB basis by random time domain cyclic shift values 1202 to 1224 in order to randomize the control information.
图12B是图12A的详细视图。为了CDM复用小区内不同的控制信道,相同的时域循环移位值dk(k是控制信道索引)应用于每一个LB,并且为了随机化来自相邻小区的控制信息之间的干扰,特定于小区的不同的时域循环移位值1202到1224应用于LB。即,ZC序列被用于小区中的每一个UE的时域循环移位值另外循环移位。参考标号1230和1232分别表示一个子帧中的第一和第二时隙。为了方便起见,未示出跳频。Figure 12B is a detailed view of Figure 12A. For CDM multiplexing of different control channels within a cell, the same time-domain cyclic shift value dk (k is the control channel index) is applied to each LB, and in order to randomize the interference between control information from adjacent cells, Different cell-specific time-domain cyclic shift values 1202 to 1224 are applied to the LB. That is, the ZC sequence is additionally cyclically shifted by the time-domain cyclic shift value for each UE in the cell. Reference numerals 1230 and 1232 denote first and second slots in one subframe, respectively. Frequency hopping is not shown for convenience.
当为了另外的随机化而使用特定于UE的时域循环移位时,时域循环移位值1202到1204指示特定于UE的随机序列,并且dk和时域循环移位值1202到1224的组合在同一小区内的控制信道之间保持正交性。When a UE-specific time-domain cyclic shift is used for additional randomization, the time-domain cyclic shift values 1202 to 1204 indicate a UE-specific random sequence, and the dk and time-domain cyclic shift values 1202 to 1224 Combining maintains orthogonality between control channels within the same cell.
图13是示出根据本发明的实施例的控制信息的另一个传输机制的图。12个LB的ZC序列的时域循环移位值是Δ1,Δ2,...Δ12 1302到1324。在每一个LB中利用时域循环移位值将ZC序列循环移位,以便随机化控制信息。FIG. 13 is a diagram illustrating another transmission mechanism of control information according to an embodiment of the present invention. The time-domain cyclic shift values of the ZC sequence of 12 LBs are Δ 1 , Δ 2 , . . . Δ 12 1302 to 1324. The ZC sequence is cyclically shifted by a time-domain cyclic shift value in each LB to randomize the control information.
除了图10B中所示的随机化器1044利用随机时域循环移位以LB为基础随机化ZC序列,并且图11B中所示的随机值生成器1156计算每一个LB的随机时域循环移位值的共轭相位值并将其提供给乘法器1158之外,根据本发明的第三示例实施例的发送器和接收器在配置上和图10A和图10B以及图11A和图11B中示出的配置相同。Except that the randomizer 1044 shown in FIG. 10B randomizes the ZC sequence on an LB basis with a random time-domain cyclic shift, and the random value generator 1156 shown in FIG. 11B calculates a random time-domain cyclic shift for each LB value and provide it to the multiplier 1158, the transmitter and receiver according to the third example embodiment of the present invention are configured as shown in Fig. 10A and Fig. 10B and Fig. 11A and Fig. 11B The configuration is the same.
第一和第三实施例可以被组合实施。即,在图5的传输机制中,控制信息和正交码相乘,然后又以LB为基础和随机循环移位序列相乘,如图12或图13中所示。因为对于每一个小区随机循环移位序列是不同的,所以可以降低小区间干扰。The first and third embodiments can be implemented in combination. That is, in the transmission mechanism of FIG. 5 , the control information is multiplied by the orthogonal code, and then multiplied by the random cyclic shift sequence on the basis of LB, as shown in FIG. 12 or FIG. 13 . Since the random cyclic shift sequence is different for each cell, inter-cell interference can be reduced.
从上面的描述很清楚,当在下一代多小区移动通信系统中复用来自不同用户的UL控制信息时,本发明通过以小区为基础或以UE为基础把随机相位或者循环移位值施加于每一个块,有益地降低了小区间干扰。It is clear from the above description that when multiplexing UL control information from different users in the next generation multi-cell mobile communication system, the present invention applies random phase or cyclic shift value to Each block beneficially reduces inter-cell interference.
虽然已经参照本发明的某些优选实施例示出并描述了本发明,但是它们仅仅是优选应用。例如,本发明的实施例可应用于具有多个比特的控制信息,例如CQI,以及1比特控制信息。此外,用于控制信息的码序列的随机值可以以预先确定的资源块为基础以及以LB为基础来施加。因此,本领域技术人员将理解,在不偏离由所附权利要求限定的本发明的精神和范围的情况下,可以对本发明做出形式和细节上的各种变化。While the invention has been shown and described with reference to certain preferred embodiments thereof, these are only preferred applications. For example, embodiments of the present invention are applicable to control information having multiple bits, such as CQI, and 1-bit control information. Also, a random value of a code sequence for control information may be applied on a predetermined resource block basis as well as on an LB basis. Accordingly, it will be understood by those skilled in the art that various changes in form and details may be made therein without departing from the spirit and scope of the present invention as defined by the appended claims.
Claims (20)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410289417.4A CN104065443B (en) | 2007-01-05 | 2008-01-07 | Method and apparatus for transmitting and receiving control information to randomize inter-cell interference in a mobile communication system |
Applications Claiming Priority (10)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020070001329 | 2007-01-05 | ||
KR10-2007-0001329 | 2007-01-05 | ||
KR20070001329 | 2007-01-05 | ||
KR20070003039 | 2007-01-10 | ||
KR1020070003039 | 2007-01-10 | ||
KR10-2007-0003039 | 2007-01-10 | ||
KR20070045577 | 2007-05-10 | ||
KR1020070045577 | 2007-05-10 | ||
KR10-2007-0045577 | 2007-05-10 | ||
PCT/KR2008/000076 WO2008082279A1 (en) | 2007-01-05 | 2008-01-07 | Method and apparatus for transmitting and receiving control information to randomize inter-cell interference in a mobile communication system |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201410289417.4A Division CN104065443B (en) | 2007-01-05 | 2008-01-07 | Method and apparatus for transmitting and receiving control information to randomize inter-cell interference in a mobile communication system |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101627560A CN101627560A (en) | 2010-01-13 |
CN101627560B true CN101627560B (en) | 2014-07-23 |
Family
ID=41522368
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN200880007435.1A Active CN101627560B (en) | 2007-01-05 | 2008-01-07 | Method and apparatus for transmitting and receiving control information to randomize inter-cell interference in a mobile communication system |
CN200880007299.6A Active CN101627559B (en) | 2007-01-05 | 2008-01-07 | Method and apparatus for transmitting and receiving control information to randomize inter-cell interference in a mobile communication system |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN200880007299.6A Active CN101627559B (en) | 2007-01-05 | 2008-01-07 | Method and apparatus for transmitting and receiving control information to randomize inter-cell interference in a mobile communication system |
Country Status (1)
Country | Link |
---|---|
CN (2) | CN101627560B (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8478258B2 (en) * | 2010-03-05 | 2013-07-02 | Intel Corporation | Techniques to reduce false detection of control channel messages in a wireless network |
EP2547017B1 (en) * | 2010-03-11 | 2018-08-29 | LG Electronics Inc. | Control channel allocation method, and apparatus for same |
JP5893999B2 (en) * | 2012-04-27 | 2016-03-23 | 株式会社Nttドコモ | Wireless communication system, base station apparatus, user terminal, and wireless communication method |
US9312994B2 (en) * | 2013-09-30 | 2016-04-12 | Telefonaktiebolaget Lm Ericsson (Publ) | Downlink physical layer processing in wireless networks with symbol rate mapping |
CN105356986B (en) * | 2015-12-07 | 2018-11-06 | 合肥东芯通信股份有限公司 | A kind of reference signal generation method, base station, channel estimation methods and terminal |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1701535A (en) * | 2003-08-20 | 2005-11-23 | 三星电子株式会社 | Method and device for providing uplink packet data service in asynchronous WCDMA system |
-
2008
- 2008-01-07 CN CN200880007435.1A patent/CN101627560B/en active Active
- 2008-01-07 CN CN200880007299.6A patent/CN101627559B/en active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1701535A (en) * | 2003-08-20 | 2005-11-23 | 三星电子株式会社 | Method and device for providing uplink packet data service in asynchronous WCDMA system |
Non-Patent Citations (2)
Title |
---|
Ericsson.Uplink reference signals.《TSG-RAN WG1 #47 R1-063128》.2006,全文. * |
NTT DoCoMo.Multiplexing Method for Orthogonal Reference Signals for E-UTRA Uplink.《3GPP TSG-RAN WG1 Meeting #45 R1-061193》.2006,全文. * |
Also Published As
Publication number | Publication date |
---|---|
CN101627560A (en) | 2010-01-13 |
CN101627559B (en) | 2014-07-23 |
CN101627559A (en) | 2010-01-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104065443B (en) | Method and apparatus for transmitting and receiving control information to randomize inter-cell interference in a mobile communication system | |
JP5301323B2 (en) | Mobile terminal device and wireless communication method | |
JP5443317B2 (en) | Mobile terminal device and wireless communication method | |
WO2010125943A1 (en) | Mobile terminal device and radio communication method | |
WO2008100076A1 (en) | Method and apparatus for transmitting and receiving control information in a single carrier fdma system | |
WO2009022833A2 (en) | Apparatus and method for allocating code resources to uplink ack/nack channels in a cellular wireless communication system | |
CN101627560B (en) | Method and apparatus for transmitting and receiving control information to randomize inter-cell interference in a mobile communication system | |
WO2010079787A1 (en) | Radio base station apparatus and wireless communication method | |
JP2014078998A (en) | Mobile terminal device, radio communication method, and radio communication system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant |