CN101615754B - 高次谐波固有啁啾的动态补偿和脉冲压缩的方法和装置 - Google Patents

高次谐波固有啁啾的动态补偿和脉冲压缩的方法和装置 Download PDF

Info

Publication number
CN101615754B
CN101615754B CN2009100551821A CN200910055182A CN101615754B CN 101615754 B CN101615754 B CN 101615754B CN 2009100551821 A CN2009100551821 A CN 2009100551821A CN 200910055182 A CN200910055182 A CN 200910055182A CN 101615754 B CN101615754 B CN 101615754B
Authority
CN
China
Prior art keywords
high order
harmonic component
order harmonic
pulse
fundamental frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN2009100551821A
Other languages
English (en)
Other versions
CN101615754A (zh
Inventor
郑颖辉
曾志男
邹璞
李儒新
徐至展
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Institute of Optics and Fine Mechanics of CAS
Original Assignee
Shanghai Institute of Optics and Fine Mechanics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Institute of Optics and Fine Mechanics of CAS filed Critical Shanghai Institute of Optics and Fine Mechanics of CAS
Priority to CN2009100551821A priority Critical patent/CN101615754B/zh
Publication of CN101615754A publication Critical patent/CN101615754A/zh
Application granted granted Critical
Publication of CN101615754B publication Critical patent/CN101615754B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Lasers (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

高次谐波固有啁啾的动态补偿和脉冲压缩的方法和装置,该方法是利用双色激光场对电场的整形作用,当在基频光上叠加一个弱倍频场时,倍频场在谐波产生过程中引入一个sin函数形式的附加相位项,随着双色场之间相对延迟的变化,这个附加相位项可从负到正周期性地变化,从而使得对阿秒脉冲的啁啾补偿可从负到正的连续变化,获得变换极限的阿秒脉冲。本发明不仅可实现对阿秒脉冲负啁啾的补偿,而且可提高谐波的产生效率,并且对百阿秒以下的单个阿秒脉冲也同样适用。

Description

高次谐波固有啁啾的动态补偿和脉冲压缩的方法和装置
技术领域
本发明涉及阿秒脉冲,是一种高次谐波固有啁啾的动态补偿和脉冲压缩的方法和装置,能够对极紫外(XUV)和软X射线波段的阿秒脉冲进行啁啾补偿和脉冲压缩,从而获得变换极限的阿秒脉冲。
背景技术
高次谐波产生以及基于高次谐波产生的阿秒脉冲辐射近年来得到了广泛深入的研究。在众多重要的应用中,阿秒脉冲以前所未有的精度探测超快电子动力学以及极紫外波段频率梳的产生都吸引了人们巨大的关注。这些应用决定了目前最重要的目标之一就是获得尽可能短的阿秒脉冲。虽然迄今为止已有多种产生阿秒脉冲的方法,比如在高次谐波产生过程中成功地选择单条返回电子路径可获得支持极短阿秒脉冲产生的超宽带极紫外超连续谱,但是变换极限阿秒脉冲的进一步获得仍受谐波辐射固有啁啾的限制,这源于激光强度诱导的原子偶极位相。因此,对阿秒谐波脉冲进行位相控制和啁啾补偿从而产生变换极限阿秒脉冲就变得至关重要。
至今已有的可控制阿秒脉冲啁啾的方法有两种,分别为采用X射线波段啁啾镜(A.Morlens et al.,Opt.Lett.30,1554(2005))和透过负群速色散(GDD)介质,如金属薄膜(R.López-Martens et al.,Phys.Rev.Lett.94,033001(2005))和气体介质(K.T.Kim et al.,Phys.Rev.Lett.99,223904(2007))。前者由于X射线波段的啁啾镜制作工艺高难而在实验中难于操作,后者依赖于透过介质的色散特性,难以避免的是介质在提供了色散补偿的同时,也对谐波辐射存在一定的吸收损耗,这就需要在介质可提供的负群速色散和吸收损耗之间寻求一个平衡,因此这限制了实现啁啾补偿的光谱范围。除此以外,以上所述的方法均是基于材料的色散特性,在极紫外波段绝大多数材料都是负色散特性,因此至今,实验上实现的仅仅是对正啁啾的补偿。由于需要寻找具备正群速色散的合适材料,因而对XUV波段阿秒脉冲进行负啁啾的补偿是极其困难的。
发明内容
本发明的目的在于克服上述现有技术的不足,提供一种高次谐波固有啁啾的动态补偿和脉冲压缩的方法和装置,对极紫外和软X射线波段的阿秒脉冲进行啁啾补偿和脉冲压缩,使啁啾补偿可从负到正的连续调节,从而获得变换极限的阿秒脉冲。
本发明的技术解决方案如下:
一种高次谐波固有啁啾的动态补偿和脉冲压缩的方法,该方法是利用双色激光场对电场的整形作用,当在基频光上叠加一个弱倍频场时,倍频场在谐波产生过程中引入一个sin函数形式的附加相位项,随着双色场之间相对延迟的变化,这个附加相位项可从负到正周期性地变化,从而使得对阿秒脉冲的啁啾补偿可从负到正的连续变化,获得变换极限的阿秒脉冲。
一种高次谐波固有啁啾的动态补偿和脉冲压缩的装置,特征在于其构成是:包括沿所述的基频光的前进方向依次的会聚透镜、BBO倍频晶体、时间延迟片、双波段波片和高次谐波产生腔,该高次谐波产生腔具有输入窗口和输出口,所述的高次谐波产生腔的真空度达10-2Pa以上,在该高次谐波产生腔内设置气体盒,该气体盒充有第一惰性气体,在所述的高次谐波产生腔的输出口通过接口连接一个高次谐波脉冲测量腔,该高次谐波脉冲测量腔具有10-4Pa的真空度,在该高次谐波脉冲测量腔中沿光路依次设置矩形金属薄膜片、球面镜、柱面镜、中心开小孔的石英片、时间延迟系统和充第二惰性气体的喷嘴,直至该高次谐波脉冲测量腔后腔面的接口,一台时间飞行电子谱仪的轴向垂直于所述的光束传播方向和激光偏振方向所构成的平面,该时间飞行电子谱仪的输出端与示波器相连,所述的球面镜、柱面镜和时间延迟系统按掠入射方式设置,所述的时间延迟系统由两片镀金的方形平面镜组成,一个方形平面镜中间设方形小孔,该孔中是个微型方形平面镜,该微型平面镜装在压电陶瓷控制的步进电机上,该步进电机由计算机来控制。
所述的会聚透镜是前后表面都镀有基频光0°增透膜的会聚透镜。
所述的时间延迟片(time-plate)是由方解石晶体或α-BBO晶体制作而成,具体参看美国专利局的专利“Tunable time plate”,专利号5852620,目的是利用相互垂直偏振的基频和倍频光在晶体中具有不同折射率的特性来调节基频与倍频光之间的相对延迟并可补偿双色场透过光学元件时引入的群速色散差,从而实现双色场时间同步。
所述的双波段波片是基频光的真零阶半波片,厚度43μm,是基频光的半波片同时又是倍频光的全波片,用于调节双色场之间的偏振态。
本发明方法的基本原理是:
一种高次谐波固有啁啾的动态补偿和脉冲压缩的方法是利用双色激光场对电场的整形作用,当在基频光上叠加一个弱倍频场时,双色场的作用可用如下公式表示(参见N.Dudovich et al.,Nature physics 2,781(2006))
S 2 ( t , φ ) = S 1 ( t ) - σ ( t , φ ) = S 1 ( t ) - ∫ t ′ t ( t ) v → SFA ( τ , t ′ ) A → 2 ( τ , φ ) dτ
其中:S1是非微扰作用项;
σ是倍频场引入的附加位相;
VSFA是从电离时刻t’(t)以零速度开始,在t时刻返回的非微扰轨迹速度,只与基频光有关;
A2(τ,φ)=A2 sin(2ωτ+φ)是倍频场的向量势,其中φ表示双色场之间的相对延迟,因此,A2(τ,φ+π)=-A2(τ,φ),这意味着倍频场在谐波产生过程中引入一个sin函数形式的附加相位项,随着双色场之间相对延迟的变化,这个附加相位项可从负到正周期性地变化,从而使得对阿秒脉冲的啁啾补偿可从负到正的连续变化,获得变换极限的阿秒脉冲。
本发明的优点是:
1、通过时间延迟片调节双色场之间的相对延迟,可使啁啾补偿从负到正连续变化,可实现之前未有报道的对阿秒脉冲负啁啾的补偿。
2、可提高谐波的产生效率。
3、该技术对百阿秒以下的单个阿秒脉冲也同样适用。
附图说明
图1为本发明高次谐波固有啁啾的动态补偿和脉冲压缩的装置的结构示意图。
图2在不同的双色场相对延迟(延迟A、B、C、D)和单色场(S)时的19到29次谐波相邻级次的谱位相差,双色场相互平行偏振。
图3在不同的双色场相对延迟(延迟A、B、C、D)和单色场(S)时产生的阿秒脉冲时域图,双色场相互平行偏振。
图4超宽带XUV连续谱(上)和对应的阿秒啁啾(下)。
图5加倍频和不加倍频产生的阿秒脉冲脉冲宽度和相应的变换极限脉冲宽度随超连续谱中心光子能量的变化图。
具体实施方式
以下结合附图与实施例对本发明作进一步的说明。
请参阅图1,图1为本发明高次谐波固有啁啾的动态补偿和脉冲压缩的装置结构示意图。由图可见,本发明高次谐波固有啁啾的动态补偿和脉冲压缩的装置包括沿所述的基频光1的前进方向依次的会聚透镜3、BBO倍频晶体4、时间延迟片6、双波段波片7和高次谐波产生腔2-1,该高次谐波产生腔2-1具有输入窗口8和输出口11,所述的高次谐波产生腔2-1的真空度达10-2Pa以上,在该高次谐波产生腔2-1内设置气体盒10,该气体盒10充有第一惰性气体9,在所述的高次谐波产生腔2-1的输出口11通过接口13连接一个高次谐波脉冲测量腔2-2,该高次谐波脉冲测量腔2-2具有10-4Pa的真空度,在该高次谐波脉冲测量腔2-2中沿光路依次设置矩形金属薄膜片15、球面镜16、柱面镜17、中心开小孔的石英片18、时间延迟系统19和充第二惰性气体20的喷嘴21,直至该高次谐波脉冲测量腔2-2后腔面的接口27,一台时间飞行电子谱仪22的轴向垂直于所述的光束传播方向和激光偏振方向所构成的平面,该时间飞行电子谱仪22的输出端与示波器23相连,所述的球面镜16、柱面镜17和时间延迟系统19按掠入射方式设置,所述的时间延迟系统19由两片镀金的方形平面镜组成,一个方形平面镜24中间设方形小孔,该孔中是个微型方形平面镜25,该微型平面镜25装在压电陶瓷控制的步进电机上,该步进电机由计算机26来控制。
该飞秒激光束1经会聚透镜3、BBO倍频晶体4后产生倍频光5,形成的双色激光场经时间延迟片(time-plate)6、双波段波片7、高次谐波产生腔2-1的窗片8进入真空系统2,在充第一惰性气体9的气体盒子10中产生高次谐波14,剩余基频光和产生的高次谐波经矩形金属薄膜片15、球面镜16、柱面镜17、中心开小孔的石英玻璃片18,矩形金属薄膜片15和中心开小孔的石英玻璃片18组合使用获得一个中央为高次谐波14外环为激光光束1的组合光束,该组合光束同轴传输经时间延迟系统19至充第二惰性气体20的喷嘴21和与示波器23相连的时间飞行电子谱仪(TOF)22作阿秒脉冲的互相关测量。
所述的真空系统2具有差分泵浦功能,前端阿秒脉冲产生腔2-1可达10-2Pa以上的真空度,后端阿秒脉冲测量腔2-2可达约10-4Pa的真空度,两者通过真空接口11和13连接,测量腔可通过接口27与后续的应用腔相连,在输出接口27前放置金属滤片12滤去基频光可获得高次谐波14输出。
所述的会聚透镜3是透镜前后表面镀有基频光0°增透膜。
所述的时间延迟片(time-plate)6是由方解石晶体或α-BBO晶体制作而成,具体参看美国专利局的专利“Tunable time plate”,专利号5852620,目的是利用相互垂直偏振的基频和倍频光在晶体中具有不同折射率的特性来调节基频与倍频光之间的相对延迟并可补偿双色场透过光学元件时引入的群速色散差,从而实现双色场时间同步。
所述的双波段波片7是基频光的真零阶半波片,厚度43μm,是基频光的半波片同时又是倍频光的全波片,用于调节双色场之间的偏振态。
所述的矩形金属薄膜片15是宽度3mm以下,厚度小于500nm的金属薄膜,置于光斑正中心,用于滤去中央部分的基频光。
所述的球面镜16、柱面镜17的表面镀有金膜。球面镜16和柱面镜17也可以由一个轮胎镜代替。
所述的中心开小孔的石英玻璃片18是厚度为小于0.1mm、中心开孔直径3mm的石英玻璃片,用于滤去外环的高次谐波。
所述的时间延迟系统19由两片镀金的方形平面镜组成,一个大方形平面镜24中间设方形小孔,孔中是个微型方形平面镜25,该微型平面镜25装在压电陶瓷控制的步进电机上,该步进电机由计算机26来控制。矩形金属薄膜片15和中心开小孔的石英玻璃片18组合使用获得一个中央为高次谐波14外环为激光光束1的组合光束,该组合光束同轴传输至此时间延迟系统19时,中央的高次谐波14由微型方形平面镜25反射,外环的激光光束1作为测量过程的辅助激光场由大方形平面镜24反射,通过计算机26控制步进电机使微型方形平面镜25相对于大方形平面镜24前后移动,从而精确调节基频光1与高次谐波14之间的相对延迟,时间飞行电子谱仪(TOF)22探测激光辅助电离XUV光电子能谱随延迟时间的变化并传送到示波器23显示和存贮,从得到的XUV光电子能谱—延迟关系图可得到高次谐波阿秒脉冲的位相信息。
下面是本发明具体实施例的详细说明:
高强度飞秒激光束即基频光1,为相干公司出产的商品化钛宝石激光系统,中心波长800nm、脉冲宽度50fs、重复频率1kHz,经焦距为800mm的会聚透镜3进入长度为1.5mm的充第一惰性气体9的气体盒子10中产生高次谐波14。采用的第一惰性气体9为氩气,气体盒子10中的气压为40Torr。飞秒激光束1的焦点位于气体盒子的末端。用于产生相对延迟和偏振态可控制的双色激光场的光学元件包括:BBO倍频晶体4、时间延迟片(time-plate)6、双波段波片7依次放置于会聚透镜3和真空系统的窗片8之间。窗片8为厚度0.5mm的石英窗片。BBO倍频晶体4为厚度0.3mm的I类BBO晶体,用于产生中心波长为400nm的倍频光5,产生的倍频光偏振态与剩余基频光的相互垂直。时间延迟片(time-plate)6由0.5mm厚的石英片代替,通过转动石英片的角度利用基频和倍频光场在石英片中的折射率差可以调节双色场之间的相对延迟,但是与时间延迟片(time-plate)6的差别是无法将双色场在光学元件中引入的群速色散差补偿到零,即无法确定双色场之间零延迟的位置。该延迟可控制的双色激光场通过双波段波片7实现双色场之间偏振态的调节,双波段波片7厚度43μm,是基频光的半波片同时又是倍频光的全波片。在焦点处基频和倍频光场的有效光强分别约为2×1014W/cm2和3×1012W/cm2
产生的高次谐波和剩余基频光依次经金属薄膜片15、球面镜16、柱面镜17、中心开小孔的石英玻璃片18,金属薄膜片15是长度5mm、宽度~2.5mm、厚度500nm的矩形铝膜,放置于光斑中心可滤去中央的基频光,而中心开小孔的石英玻璃片18是厚度0.1mm、中心开孔直径3mm的石英片,它的作用是滤去小孔外环的高次谐波,从而最后获得一个中央为高次谐波外环为激光光束的组合光束,该组合光束共轴向前传播,由球面镜16、柱面镜17经时间延迟系统19聚焦至充第二惰性气体20氦气He的喷嘴21作互相关测量。He原子在激光辅助下吸收XUV光电子电离产生的光电子由时间飞行电子谱仪(TOF)22探测,探测结果传送到示波器23显示和存贮。时间飞行电子谱仪(TOF)22的轴向垂直于光束传播方向和激光偏振方向所构成的平面。时间延迟系统19由两片镀金的方形平面镜组成,一个反射面50×30mm的大平面镜24中间设方形小孔,孔中是个微型方形平面镜25,该微型平面镜装在压电陶瓷控制的步进电机上,该步进电机由真空系统2外部的计算机26来控制,该反射镜的压电陶瓷可控制最小的移动距离为0.4nm,可用于精确调节基频光与阿秒XUV脉冲之间的相对延迟。
高次谐波的谱位相采用基于双光子跃迁干涉的阿秒拍频反演(RABITT)(P.M.Paul et al.,Science 292,1689(2001))的方法来测量。根据时间飞行电子谱仪(TOF)22探测到的光电子谱上在相邻谐波之间出现的边带峰人们可以提取出相邻两个级次谐波的谱位相差,阿秒脉冲的时域结构可以根据所测得的谐波位相反演得到。并且谱位相的斜率即二阶谱位相对应的就是谐波的固有啁啾。测量结果如图2和图3所示,图2是双色场相互平行偏振时在不同的相对延迟(延迟A、B、C、D)和单色场(S)时的19到29次谐波相邻级次的谱位相差。图3是相同条件下产生的阿秒脉冲时域图。由于采用了0.5mm厚的石英片作为时间延迟片,因此无法确定双色场的绝对零延迟位置,因此A-D表示从A开始双色场之间的时间延迟逐渐增加,相对于延迟A,B、C、D的时间延迟分别为0.0535fs,0.2176fs,0.4691fs。19到29次谐波的二阶谱位相在延迟B时为5.0×10-3fs2,而在延迟A,C,D分别为1.5×10-2fs2,2.4×10-2fs2和2.6×10-2fs2,单色场时为1.3×10-2fs2。由此可见,叠加了一个弱倍频场后,在双色场的优化延迟B处谐波的固有啁啾得到了明显的补偿,并且图上谐波的谱位相的斜率为负,表明调节双色激光场之间的相对延迟可以补偿XUV阿秒脉冲的负啁啾。从图3的脉冲时域图上可以看出,在优化延迟B时产生的阿秒脉冲在双色场平行偏振时脉冲宽度为231as,而在同等条件下变换极限阿秒脉冲的脉冲宽度为220as,这就证实了用本发明所提供的方法可以补偿XUV阿秒脉冲的负啁啾,从而获得近变换极限的阿秒脉冲。
为了验证本发明对百阿秒以下的单个阿秒脉冲的有效性,我们对超宽带XUV连续谱的啁啾补偿作了数值模拟。在6fs,800nm基频光的基础上叠加了一个64fs,2400nm的弱激光场,两者的光强分别为3×1014W/cm2和3×1013W/cm2,可以产生从120eV至220eV的超宽带连续谱,如图4所示。图4为超宽带XUV连续谱(上)和对应的阿秒啁啾(下)。由图可见,连续谱上有明显的强度调制,这是长短路径干涉叠加造成的,并且产生的阿秒脉冲的GDD在相干相消的位置存在着阶跃,这些都说明此阿秒脉冲的啁啾不是简单的正啁啾或负啁啾,而具有复杂的啁啾特性。此时我们通过在这双色驱动激光场上再叠加光强为5×1012W/cm2的弱400nm倍频场来补偿啁啾,图5为加和不加弱倍频场时产生的阿秒脉冲的脉冲宽度和相应的变换极限脉冲宽度随超连续谱中心光子能量的变化图。从图5可见,当谐波谱中心光子能量在150-170eV范围,而带宽均选择60eV时,叠加倍频场后产生的阿秒脉冲的脉冲宽度为75as,这已经接近变换极限的脉冲宽度60as,而不叠加倍频场的脉冲宽度为120as。由此证实了本发明提出的方案对百阿秒以下的单个阿秒脉冲的啁啾补偿同样有效,并且可以补偿复杂的啁啾结构。

Claims (5)

1.一种高次谐波固有啁啾的动态补偿和脉冲压缩的方法,其特征在于该方法是利用双色激光场对电场的整形作用,当在基频光上叠加一个弱倍频场时,倍频场在谐波产生过程中引入一个sin函数形式的附加相位项,随着双色激光场之间相对延迟的变化,这个附加相位项可从负到正周期性地变化,从而使得对阿秒脉冲的啁啾补偿可从负到正的连续变化,获得变换极限的阿秒脉冲。
2.一种高次谐波固有啁啾的动态补偿和脉冲压缩的装置,特征在于其构成是:包括沿基频光(1)的前进方向依次的会聚透镜(3)、BBO倍频晶体(4)、时间延迟片(6)、双波段波片(7)和高次谐波产生腔(2-1),该高次谐波产生腔(2-1)具有输入窗口(8)和输出口(11),所述的高次谐波产生腔(2-1)的真空度达10-2Pa以上,在该高次谐波产生腔(2-1)内设置气体盒(10),该气体盒(10)充有第一惰性气体(9),在所述的高次谐波产生腔(2-1)的输出口(11)通过接口(13)连接一个高次谐波脉冲测量腔(2-2),该高次谐波脉冲测量腔(2-2)具有10-4Pa的真空度,在该高次谐波脉冲测量腔(2-2)中沿光路依次设置矩形金属薄膜片(15)、球面镜(16)、柱面镜(17)、中心开小孔的石英片(18)、时间延迟系统(19)和充第二惰性气体(20)的喷嘴(21),直至该高次谐波脉冲测量腔(2-2)后腔面的接口(27),一台时间飞行电子谱仪(22)的轴向垂直于光束传播方向和激光偏振方向所构成的平面,该时间飞行电子谱仪(22)的输出端与示波器(23)相连,所述的球面镜(16)、柱面镜(17)和时间延迟系统(19)按掠入射方式设置,所述的时间延迟系统(19)由两片镀金的方形平面镜组成,一个方形平面镜(24)中间设方形小孔,该孔中是个微型方形平面镜(25),该微型平面镜(25)装在压电陶瓷控制的步进电机上,该步进电机由计算机(26)来控制。
3.根据权利要求2所述的高次谐波固有啁啾的动态补偿和脉冲压缩的装置,其特征在于所述的会聚透镜(3)是前后表面都镀有基频光0°增透膜的会聚透镜。
4.根据权利要求2所述的高次谐波固有啁啾的动态补偿和脉冲压缩的装置,其特征在于所述的时间延迟片(6)是由方解石晶体或α-BBO晶体制作而成的。
5.根据权利要求2所述的高次谐波固有啁啾的动态补偿和脉冲压缩的装置,其特征在于所述的双波段波片(7)是基频光的真零阶半波片,厚度43μm,是基频光的半波片同时又是倍频光的全波片,用于调节双色场之间的偏振态。
CN2009100551821A 2009-07-22 2009-07-22 高次谐波固有啁啾的动态补偿和脉冲压缩的方法和装置 Expired - Fee Related CN101615754B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2009100551821A CN101615754B (zh) 2009-07-22 2009-07-22 高次谐波固有啁啾的动态补偿和脉冲压缩的方法和装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2009100551821A CN101615754B (zh) 2009-07-22 2009-07-22 高次谐波固有啁啾的动态补偿和脉冲压缩的方法和装置

Publications (2)

Publication Number Publication Date
CN101615754A CN101615754A (zh) 2009-12-30
CN101615754B true CN101615754B (zh) 2010-08-25

Family

ID=41495236

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2009100551821A Expired - Fee Related CN101615754B (zh) 2009-07-22 2009-07-22 高次谐波固有啁啾的动态补偿和脉冲压缩的方法和装置

Country Status (1)

Country Link
CN (1) CN101615754B (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102507021B (zh) * 2011-12-29 2013-04-10 北京大学 阿秒x-射线脉冲强度和啁啾时间分布的测量方法及应用
CN103138149A (zh) * 2013-02-04 2013-06-05 中国科学院上海光学精密机械研究所 产生宽带可调谐相干极紫外或软x射线的装置
CN104638505B (zh) * 2015-02-10 2017-07-18 华中科技大学 一种产生宽谱带可连续调谐相干极紫外光源的方法及装置
CN106908950B (zh) * 2017-03-16 2023-02-14 中国科学院西安光学精密机械研究所 一种电磁辐射产生装置及其使用方法
CN109659804A (zh) * 2019-01-08 2019-04-19 中国科学院福建物质结构研究所 用于产生波峰可调的宽带橙光激光器
CN110262054B (zh) * 2019-06-26 2021-09-07 中国空间技术研究院 一种宽带高分辨率大动态范围延时补偿系统及方法
CN111290011B (zh) * 2020-02-06 2021-09-10 中国工程物理研究院激光聚变研究中心 用于射线探测的标定方法、装置、设备及存储介质
CN112630203B (zh) * 2020-12-15 2022-11-22 雷振东 一种高次谐波共聚焦探测系统

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1870359A (zh) * 2006-04-12 2006-11-29 中国科学院上海光学精密机械研究所 激光脉冲展宽与压缩装置

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1870359A (zh) * 2006-04-12 2006-11-29 中国科学院上海光学精密机械研究所 激光脉冲展宽与压缩装置

Also Published As

Publication number Publication date
CN101615754A (zh) 2009-12-30

Similar Documents

Publication Publication Date Title
CN101615754B (zh) 高次谐波固有啁啾的动态补偿和脉冲压缩的方法和装置
Schultze et al. Powerful 170-attosecond XUV pulses generated with few-cycle laser pulses and broadband multilayer optics
Senfftleben et al. Highly non-linear ionization of atoms induced by intense high-harmonic pulses
Mironov et al. Thin plate compression of a sub-petawatt Ti: Sa laser pulses
CN106099624B (zh) 激光激发空气等离子体产生高强度太赫兹波的系统和方法
Ursescu et al. Laser beam delivery at ELI-NP
Gustafsson et al. Broadband attosecond pulse shaping
Ganeev Generation of high-order harmonics of high-power lasers in plasmas produced under irradiation of solid target surfaces by a prepulse
Mironov et al. 100 J-level pulse compression for peak power enhancement
CN102879971A (zh) 一种连续调节太赫兹波中心频率和频谱宽度的方法
CN104112975A (zh) 一种增强飞秒激光脉冲产生太赫兹波辐射的方法
He et al. Ionization-induced self-compression of tightly focused femtosecond laser pulses
Mironov et al. Spatio-temporal shaping of photocathode laser pulses for linear electron accelerators
Simpson et al. Spatiotemporal control of two-color terahertz generation
CN106483096A (zh) 激光激发空气等离子体产生高强度太赫兹波的系统和方法
CN107611755B (zh) 间距可调的双等离子体产生高强度太赫兹波的系统和方法
Veisz et al. Three-halves harmonic emission from femtosecond laser produced plasmas
CN100570464C (zh) 载波包络相位稳定的双波长输出光学参量放大激光系统
Tsarev et al. Characterization of non-relativistic attosecond electron pulses by transition radiation from tilted surfaces
CN100403607C (zh) 内腔产生高次谐波的方法
CN100576660C (zh) 一种基于表面光场增强的紫外光梳产生方法
Mikheytsev et al. Efficient Doppler-Effect-Induced Generation of Mid-IR Radiation upon Reflection of Intense Laser Pulses from a Near-Critical Density Plasma
CN111399244B (zh) 光栅压缩器内部时空畸变的补偿方法
Sundström et al. Stimulated-Raman-scattering amplification of attosecond XUV pulses with pulse-train pumps and application to local in-depth plasma-density measurement
KR102031795B1 (ko) 레이저 펄스의 절대위상 측정 장치 및 방법

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20100825

Termination date: 20140722

EXPY Termination of patent right or utility model