附图说明
从下面结合附图的详细说明中对本发明进行更加全面的理解,附图中相同的附图标记表示相同的部件,附图中:
图1A和图1B是示出现有技术的电池单元的结构的截面图;
图2是示出现有技术的电池单元的结构的示意图;
图3A和图3B是示出现有技术的电池单元的结构的截面图;
图4是示出根据本发明第一实施例的电池组件的结构的示例的分解透视图;
图5是示出根据本发明第一实施例的电池组件一端的形状的示例的透视图;
图6A和图6B分别是示出根据本发明第一实施例的电池元件的结构的示例的透视图和截面图;
图7A、图7B和图7C是示出外壳部件的第一示例的平面图、较短边截面图和较长边截面图;
图8是示出构成外壳部件的柔性层压部件的结构的示例的截面图;
图9是示出外壳部件的第二示例的透视图;
图10是示出上部支架的形状的示例的透视图;
图11是示出包覆有外壳部件的电池元件的外观的示例的透视图;
图12是示出包覆电池元件的外壳部件的放大截面图;
图13是描述根据本发明第一实施例的电池组件的生产方法的透视图;
图14是描述根据本发明第一实施例的电池组件的生产方法的透视图;
图15是描述根据本发明第一实施例的电池组件的生产方法的透视图;
图16是描述根据本发明第一实施例的电池组件的生产方法的透视图;
图17是描述根据本发明第一实施例的电池组件的生产方法的透视图;
图18是示出根据本发明第一实施例的电池组件的外部形状的透视图;
图19是示出根据第一比较示例的电池组件的外部形状的透视图;
图20是示出根据第二比较示例的电池组件的外部形状的透视图;
图21是示出根据第三比较示例的电池组件的外部形状的透视图;
图22是示出根据本发明第二实施例的电池组件的结构的示意图;
图23是示出根据本发明第二实施例的电池组件中使用的顶盖结构的示意图;
图24是示出根据本发明第二实施例生产的顶盖安装到电池单元的状态的示意图;
图25是示出根据本发明第二实施例生产的顶盖安装到电池单元的状态的示意图;
图26是示出根据本发明第二实施例生产的顶盖安装到电池单元的状态的示意图;
图27A、图27B和图27C是示出根据本发明第二实施例生产的顶盖的透视图、前视图和透视图;
图28是示出现有技术中的电池组件的结构的示意图;
图29是示出用在现有技术中的电池组件中的顶盖和电池单元的结构的示意图;
图30是示出用在根据本发明第三实施例的电池组件中的顶盖的上部支架的结构的透视图;
图31是示出根据本发明第三实施例的电池组件的结构的示例的透视图;
图32是示出在根据本发明第三实施例的电池组件中使用的顶盖安装到电池单元的状态中,电池单元的电极端子导线部分的平面图;
图33是示出根据本发明第三实施例的电池组件中使用的构成顶盖的下部支架的结构的示意图;
图34A和图34B是示出根据本发明第三实施例的电池组件中的电极端子的布线的透视图;
图35是根据本发明第三实施例的上部支架、下部支架和电池单元的结构的透视图;
图36是示出根据本发明第三实施例生产的顶盖安装到电池单元的状态的透视图;
图37是示出根据本发明第三实施例生产的顶盖安装到电池单元的状态的透视图;
图38是示出根据本发明第三实施例生产的顶盖安装到电池单元的状态的透视图;
图39A、图39B、图39C和图39D是示出根据本发明第三实施例生产的顶盖安装到电池单元的状态的截面图;
图40是示出根据本发明第四实施例的上部支架安装到电池单元的状态的透视图;
图41是示出根据本发明第四实施例的下部支架的第一示例的透视图;
图42是示出根据发明第四实施例的上部支架和下部支架安装好的状态的透视图;
图43是示出根据本发明第四实施例的上部支架和下部支架安装部分的细节的透视图;
图44是示出根据本发明第四实施例的上部支架和下部支架插入到电池单元的端面的开口中的状态的透视图;
图45是示出根据本发明第四实施例的下部支架的第二示例的透视图;
图46是示出根据本发明第四实施例的下部支架的第三示例的透视图;
图47是示出根据本发明第四实施例的上部支架和下部支架安装好的状态下,下部支架的通孔附近的放大透视图;
图48是根据本发明第四实施例的下部支架的形状的示例的透视图;
图49是示出现有技术的电池组件中使用的下部支架的形状的示例的透视图;
图50是示出具有多个电路板支撑突起的下部支架的形状的示例的透视图。
具体实施方式
接下来,参照附图描述本发明的第一实施例。图4是示出根据本发明第一实施例的电池组件的结构的示例的分解透视图。图5是示出根据本发明第一实施例的电池组件一端的形状的示例的透视图。电池组件为盒形或板形锂离子聚合物电池的电池组件。如图4所示,电池组件具有外壳部件1(具有开口端)、容纳在外壳部件1中的电池元件和安装在外壳部件1的两开口端的顶盖2和底盖3。在下述说明中,顶盖2所安装到的开口端称作顶端,底盖3所安装到的开口端称作底端。
电池元件例如为盒形或板形卷绕型电池元件(box-shaped or plate-shapedroll type battery element)。外壳部件1为板形。当从主平面观察时,外壳部件1为矩形。外壳部件1具有至少暴露形成在顶盖2的较长边两端的凹形部分6a和6b的切口部分10a和10b。外壳部件1端部处的开口为矩形。每个开口的两个较短边以椭圆弧的形状突出。
此外,顶盖2和底盖3的形状形成为使得它们安装到外壳部件1两端处的开口。当从顶盖2和底盖3的前面观察时,它们为矩形并且它们的较短边以椭圆弧的形状突出。如图5中所示,凹形部分6a和6b形成在顶盖2的一个较长边的两端,从而防止电池组件与电子装置的电池组件插槽反极性连接。此外,在顶盖2的前表面上形成通孔26a和26b。
接下来,参照图6到10,对电池元件4、外壳部件1、顶盖2和底盖3进行描述。
<电池元件>
图6A和图6B是示出根据本发明第一实施例的电池元件4的外观的示例的透视图和截面图。图6B示出阴极8和阳极9卷绕的末端部的结构。电池元件4由形成为条带形状并沿其纵向方向卷绕的阴极8、隔板19a、与阴极8相对设置的阳极9以及隔板19b构成。阴极8和阳极9各自的两个表面涂覆有聚合物电解质20。如图6B中所示,聚合物电解质20完全施加到阴极8和阳极9各自的两个表面,使得聚合物电解质20完全覆盖阴极8和阳极9的末端部。连接到阴极8的阴极端子5a和连接到阳极9的阳极端子5b从电池元件4伸出(除非明确指出电极端子,否则将阴极端子5a和阳极端子5b仅称为电极端子5)。阴极端子5a和阳极端子5b各自的两个表面涂覆有树脂片7a和7b,以提高层压膜(下面将描述为外壳部件1)的粘合性能(下面,树脂片7a和7b称作密封剂(sealant))。
阴极8由条带形状的阴极集电器(cathode current collector)、形成在阴极集电器上的阴极活性物质层和形成在阴极活性物质层上的聚合物电解质层构成。阴极集电器由金属箔如铝(Al)箔、镍(Ni)箔或不锈钢箔制成。阳极9由条带形状的阳极集电器、形成在阳极集电器上的阳极活性物质和形成在阳极活性物质上的聚合物电解质构成。阳极集电器由金属箔如铜(Cu)箔、镍(Ni)箔或不锈钢箔制成。阴极8和阳极9的电极端子5a和5b分别连接到阴极集电器和阳极集电器。对于阴极活性物质、阳极活性物质和聚合物电解质,可以使用已经提出的物质。
根据电池的类型,阴极8的阴极活性物质可以是金属氧化物、金属硫化物或预定的聚合物。当电池组件为锂离子电池时,阴极活性物质可以是例如锂复合氧化物LiXMO2(其中M代表一种或多种过渡金属;X代表从0.05到1.10范围内的值,该值取决于电池的充电/放电状态)。组成锂复合氧化物的过渡金属优选为钴(Co)、镍(Ni)、锰(Mn)等。
阴极活性物质层由例如阴极活性物质、导电剂和粘结剂构成。均等(equally)地混合这些物质并形成阴极混合物。将该阴极混合物分散在溶剂中。从而得到阴极混合物的浆料。通过例如刮刀法将阴极混合物浆料均等地涂覆到阴极集电器上。在高温下对阴极集电器进行加热以使溶剂挥发。从而得到阴极活性物质。在这种情况下,不对阴极活性物质、导电剂、粘结剂和溶剂的混合比进行限制,只要它们均等地分散在溶剂中即可。
锂离子复合氧化物(lithium ion multi-oxide)的具体示例为LiCoO2、LiNiO2、LiNiyCo1-yO2(其中0<y<1)和LiMnO4。可替换地,一部分过渡金属由另一金属取代的固溶体可以用作锂离子复合氧化物。这种固溶体的示例为LiNi0.5Co0.5O2和LiNi0.8Co0.2O2。这些锂复合氧化物能够产生高电压并且具有高能量密度。可替换的,阴极活性物质可以是不含锂的金属硫化物或金属氧化物,例如TiS2、MoS2、NbSe2或V2O5。阴极可以由多种类型的这些阴极活性物质制成。当阴极由这些阴极活性物质制成时,可以添加导电剂和/或粘结剂。
使用诸如碳黑或石墨的碳材料作为导电剂。使用例如聚(偏二氟乙烯)(poly(vinylidene fuoride))、聚四氟乙烯(poly(tetrafluoroethylene))或聚偏氟乙烯(PVDF)作为粘结剂。使用例如N-甲基吡咯烷酮(methylpyrrolidone)作为溶剂。
阴极8具有点焊或超声焊接到集电器的一部分上的阴极端子5a。阴极端子5a优选为网格型金属箔。然而,阴极端子5a可以由导电的非金属物质制成,只要该物质是电化学或化学稳定的且导电即可。阴极端子5a的材料例如为铝(Al)。
阳极活性物质层由例如阳极活性物质构成,如果需要还包括导电剂和粘结剂。均等地混合这些物质并形成阳极混合物。将该阳极混合物分散在溶剂中。从而得到阳极混合物的浆料。通过例如刮刀法将阳极混合物的浆料均等地涂覆到阳极集电器。在高温下对阳极集电器进行加热以使溶剂挥发。从而得到阳极活性物质。在这种情况下,不对阳极活性物质、导电剂、粘结剂和溶剂的混合比进行限制,只要它们均等地分散在溶剂中即可。
作为阳极9的物质,例如可以使用能够嵌入(dope)或脱嵌(dedope)锂的物质。这种物质的示例为非石墨化碳的碳物质和石墨型物质。更具体地,可以使用热解碳类、焦炭类(沥青焦炭、针状焦炭、石油焦炭等)、石墨类、玻璃型碳类、有机聚合物烧结体(在适当温度下烧结酚醛树脂或呋喃树脂的碳化体)、碳纤维、活性炭等。作为嵌入或脱嵌锂的物质,例如可以使用聚合物如聚乙炔、聚吡咯和氧化物(例如,SnO2)。当阳极9由这些物质制成时,可以添加粘结剂等。
能够与锂形成合金的物质的示例为各种类型的金属如锡(Sn)、钴(Co)、铟(In)、铝(Al)、硅(Si)及其合金。当使用金属锂时,不必总用粘结剂涂覆其粉末。可替换的,可以使用滚压的(rolled)锂金属板。
粘结剂的示例为聚偏二氟乙烯和丁苯橡胶(SBR)。溶剂的示例为N-甲基吡咯烷酮和丁酮(methyl ethyl ketone)。
与阴极8一样,阳极9具有点焊或超声焊接到集电器的一部分上的阳极端子5b。阳极端子5b优选为网格型金属箔。然而,阳极端子5b可以由导电的非金属物质制成,只要该物质是电化学或化学稳定的且导电即可。阳极端子5b的材料为例如铜(Cu)或镍(Ni)。
优选阴极端子5a和阳极端子5b从电池元件4的同一个开口延伸出来。可替换的,阴极端子5a和阳极端子5b可以从电池元件4的任何开口延伸出来,只要不发生短路并且不降低电池性能即可。此外,可以用任何方法在任何位置上连接阴极端子5a和阳极端子5b,只要阴极端子5a和阳极端子5b分别与阴极8和阳极9电接触即可。
聚合物电解质由聚合物物质、电解质和电解质盐组成。将它们混合并将凝胶的电解质进行聚合。用电解质溶解聚合物物质。聚合物物质的示例为硅凝胶、丙烯酸凝胶、丙烯腈凝胶、多聚磷酸酯(polyphosphazen)改性聚合物、聚环氧乙烷和聚环氧丙烷。作为这些共轭聚合物、这些交联聚合物、改性聚合物和氟化聚合物的示例,使用聚合物物质如聚(偏二氟乙烯)、聚(偏二氟乙烯共六氟丙烯)、聚偏二氟乙烯共三氟乙烯)及其混合物。
电解质成分的示例为例如能够分散上述聚合物物质的非质子溶剂(aprotic solvent)。非质子溶剂的例子为碳酸乙二酯(EC)、碳酸丙二酯(PC)和碳酸丁二酯(BC)。电解质盐溶解在溶剂中并且由阳离子和阴离子组成。作为阳离子的示例,使用碱金属和碱土金属。作为阴离子的示例,使用Cl-、Br-、I-、SCN-、ClO4 -、BF4 -、PF6 -和CF3SO3。电解质盐的具体示例为可溶于电解质溶液中具有一定浓度的六氟磷酸锂(LiPF6)和六氟硼酸锂(LiBF4)。
作为上述电解质和电解质盐的混合物的电解质溶液用基质聚合物(matrix polymer)形成凝胶。从而得到凝胶电解质。对基质聚合物不进行限制,只要它溶解在电解质盐溶解在非水溶剂中形成的非电解质溶液中并且形成凝胶即可。基质聚合物的示例为在预定的单元中(in predetermined units)重复含有聚(偏二氟乙烯)、聚环氧乙烷、聚环氧丙烷、聚丙烯腈和/或聚异丁烯腈(poly(methacrylonitrile))的聚合物。该聚合物可以是这些组分之一或其混合物。
<外壳部件>
图7A、图7B和图7C示出外壳部件1的第一示例。如图7A到图7C所示,外壳部件1由具有容纳电池元件4的凹形部分15的柔性层压部件(softlaminate member)1a、和硬性层压部件(hard laminate member)1b组成,硬性层压部件1b在硬性层压部件1b上覆盖凹形部分15。凹形部分15旋压模制成电池元件4的形状。在凹形部分15的底部外表面上设置热粘结片15a。
柔性层压部件1a形成为矩形。柔性层压部件1a具有顶部较长边11a、底部较长边12a、左侧较短边13a和右侧较短边14a。顶部较长边11a的长度与底部较长边12a的长度相同。左侧较短边13a的长度与右侧较短边14a的长度相同。类似地,硬性层压部件1b形成为矩形。硬性层压部件1b具有顶部较长边11b、底部较长边12b、左侧较短边13b和右侧较短端14b。顶部较长边11b的长度与底部较长边12b的长度相同。左侧较短边13b的长度与右侧较短边14b的长度相同。柔性层压部件1a和硬性层压部件1b的左侧和右侧都是以从图13A的顶部观察时的位置为基础的。
硬性层压部件1b的较长边11b和12b的长度使得当容纳电池元件4的凹形部分15由硬性层压部件1b覆盖时,较短边13b和14b彼此接触或间隔较小的距离。柔性层压部件1a的较长边11a和12a的长度小于硬性层压部件1b的较长边11b和12b的长度。柔性层压部件1a的较长边11a和12a的长度使得当容纳电池元件4的凹形部分15由柔性层压部件1a覆盖时,较短边13a和14a彼此接触或间隔较小的距离。柔性层压部件1a的较短边13a和14a的间距不局限于较小的距离,而是可以有一定的距离。
柔性层压部件1a的较短边13a和14a的长度小于硬性层压部件1b的较短边13b和14b的长度。因而,柔性层压部件1a和硬性层压部件1b可以层叠为仅硬性层压部件1b出现在外壳部件1的顶部。在该情况下,设置在外壳部件1的顶部开口处的顶盖2的周边可以通过硬性层压部件1b的聚丙烯层而进行热粘结。类似地,硬性层压部件1b的粘结层可以暴露在外壳部件1的底部,从而使设置在外壳部件1的底部开口处的底盖3的周边可通过硬性层压部件1b的聚丙烯层而进行热粘结。
硬性层压部件1b的一个较长边具有切口部分10a和10b。切口部分10a和10b至少形成在这样的位置,即当电池元件4由外壳部件1包覆并且顶盖2安装到外壳部件1的顶部开口时,使顶盖2的凹形部分6a和6b露出。切口部分10a和10b形成的形状使得当顶盖2安装到外壳部件1的顶部开口时,至少顶盖2的凹形部分6a和6b露出。
柔性层压部件1a适于通过旋压模制形成容纳电池元件4的凹形部分15。柔性层压部件1a比硬性层压部件1b柔软。
图8为示出构成外壳部件1的柔性层压部件1a的结构的示例的截面图。柔性层压部件1a具有层叠结构,其中按顺序依次层叠有作为粘结层的聚丙烯(PP)层16a、作为金属层的柔性铝层17a、作为表面保护层的尼龙层或聚对苯二甲酸乙二醇酯(PET)层18a。聚丙烯层16a为最内层(与硬性层压部件1b接触)。
柔性铝层17a的一个作用是防止聚合物电解质变性。使用例如浇铸聚丙烯(CPP)作为聚丙烯层16a。聚丙烯(PP)层16a的厚度为例如30μm。
柔性铝层17a的一个作用是避免湿气进入到内部。柔性铝层17a的材料的示例为退火铝(JIS A8021P-O)或(JIS A8079P-O)。柔性铝层17a的厚度在30μm到130μm的范围内。尼龙层或PET层18a的作用是保护表面。尼龙层或PET层18a的厚度在10μm到30μm的范围内。
硬性层压部件1b可以保持抵抗外部变形弯曲的形状。硬性层压部件1b具有层叠结构,其中按顺序依次层叠有作为粘结层的聚丙烯层、作为金属层的硬性铝层以及作为表面保护层的尼龙层或PET层。
硬性层压部件1b的聚丙烯层以及尼龙层或PET层与柔性层压部件1a的相同。硬性铝层由非退火铝(JIS A3003P-H18)或(JIS A3004P-H18)制成。硬性铝金属的厚度在30μm到130μm的范围内。通过考虑电池组件的总厚度来选择柔性层压部件1a和硬性层压部件1b的各层的厚度。
图9示出外壳部件1的第二示例。图9中,层压电池元件50由外壳部件1包覆。顶盖2和底盖3设置在层压电池元件50的两个端面上。
外壳部件1为硬性层压部件,该硬性层压部件具有按顺序依次层叠的粘结层、金属层和表面保护层。外壳部件1的第二示例的各层的材料与硬性层压部件1b的第一示例的各层的材料相同。
电极端子5a和5b从层压电池元件50中延伸出来。电池元件4由柔性层压部件包覆。对柔性层压部件的周边进行热粘结并密封。优选地,柔性层压部件优选具有容纳电池元件4的容纳部分。该容纳部分通过将柔性层压部件旋压模制成预定形状而形成。该柔性层压部件具有依次层叠的粘结层、金属层和表面保护层。第二示例的柔性层压部件的各层的材料与第一示例的柔性层压部件1a的各层的材料相同。
外壳部件1形成为矩形。外壳部件1具有顶部较长边31a、底部较长边31b、较短边32a和较短边32b。顶部较长边31a的长度与底部较长边31b的长度相同。较短边32a的长度与较短边32b的长度相同。外壳部件1的顶部较长边31具有切口部分10a和10b。切口部分10a和10b至少形成在这样的位置,即当电池元件4由外壳部件1包覆并且顶盖2安装到外壳部件1的顶部开口时使顶盖2的凹形部分6a和6b露出。切口部分10a和10b形成的形状使得当顶盖2安装到外壳部件1的顶部开口时至少顶盖2的凹形部分6a和6b露出。
外壳部件1例如以下述方式包覆层压电池元件50。首先,将从层压电池元件50的顶部延伸出来的电极端子5a和5b连接到容纳在顶盖2中的电路板。将层压电池元件50放置在外壳部件1的中心部分,使得顶盖2的上表面几乎与外壳部件1的顶部较长边31a相匹配。此后,将底盖3放置在层压电池元件50底部的端面上。
随后,在层压电池元件50的方向上折叠外壳部件1的较短边32a和较短边32b。层压电池元件50的表面保护层和外壳部件1的粘结层进行例如热粘结。此后,利用预定夹具保持层压电池元件50、顶盖2和底盖3并对它们进行热粘结。换而言之,将由诸如铜的金属制成的加热器部件放置在外壳部件1顶端的上方和下方。加热器部件对外壳部件1的顶端进行加压,使得顶盖2的周边与硬性层压部件1b的内表面的粘结层进行热粘结。类似地,将加热器部件放置在外壳部件1底端的上方和下方。加热器部件对外壳部件1的底端进行加压,使得底盖3的周边与硬性层压部件1b的内表面的粘结层进行热粘结。
随后,通过顶盖2的通孔26a和26b,将熔融树脂注入到电池元件4与顶盖2之间形成的空间中。此后,使熔融树脂固化。然后,通过底盖3的通孔,将熔融树脂注入到电池元件4与底盖3之间形成的空间中。此后,使熔融树脂固化。
在用外壳部件1包覆层压电池元件50并且在外壳部件1的两个端面处形成顶部开口和底部开口之后,可以将顶盖2和底盖3分别安装到顶部开口和底部开口。
<顶盖>
顶盖2由上部支架2a和下部支架2b构成。图10是示出上部支架2a的形状的示例的透视图。顶盖2封闭外壳部件1的顶端开口。当从前面观察顶盖2时,上部支架2a为矩形并且两个较短边以椭圆弧形突出。上部支架2a在一个较长边与两个较短边的拐角处具有凹形部分6a和6b。凹形部分6a和6b用于防止电池组件与电子装置反极性连接。外壳部件1具有与上部支架2a的凹形部分6a和6b相对应的切口部分10a和10b。因而,能够防止电池组件与电子装置反极性连接,同时可以提高电池组件的容积效率。
虽然形成在上部支架2a的一个较长边的两端上的凹形部分6a和6b的形状不受限制,但优选地,考虑电子装置侧设计的灵活性而形成它们。例如,凹形部分6a和6b凹陷成朝向上部支架2a的较短边的阶梯形状。
上部支架2a具有通孔26a和26b。通孔26a和26b从邻近电池元件4的表面穿透上部支架2a到达与其相对的表面。虽然通孔的数量不受限制,但是需要至少一个通孔。优选地,需要两个或更多的通孔。在有两个或更多的通孔的情况下,在注入树脂时,至少一个通孔可以用于将空气从形成在电池元件4与顶盖2之间的空间中排出。因此,能够提高树脂的注入性能。
此外,顶盖2具有电路板。从电池元件4延伸出的电极端子5a和5b连接到电路板。
电路板具有保护电路,该保护电路包括温度保护器件(例如,保险丝)、正温度系数(PTC)电路、热敏电阻以及识别电池组件的ID电阻。此外,该电路板具有多个(例如三个)接触部分。保护电路包含监视电池元件4并控制场效应晶体管(FET)的IC以及充电/放电控制FET。
PTC电路与电池元件4串联连接。当电池元件4的温度变得高于设定温度时,PTC电路的电阻急剧增大,并基本阻止电流在电池元件4中流动。保险丝和热敏电阻也与电池元件4串联连接。当电池元件4的温度变得比保险丝和热敏电阻的设定温度高时,它们切断在电池元件4中流动的电流。包含监视电池元件4并控制FET的IC以及充电/放电控制FET的保护电路监视电池元件4的电压。当电池元件4的电压超过4.3V到4.4V时,由于电池元件4中可能发生危险情况如产热,因此保护电路关断充电/放电控制FET,以禁止给电池元件4充电。当电池元件4过放电(over-discharge)时,电池元件4的端电压降至放电禁止电压,电池元件4的电压变为0V,电池元件4可变成电池元件4不可再充电的内部短路状态。因而,保护电路监视电池元件4的电压。当电池元件4的电压变得比放电禁止电压低时,保护电路关断放电控制FET以禁止电池元件4放电。
<底盖>
底盖3封闭外壳部件1的底部开口。当从底盖3的前面观察时,它为矩形并且两个较短边以椭圆弧形突出。底盖3在其邻近电池元件4的表面上具有侧壁。侧壁适合于外壳部件1的底部开口。侧壁沿着底盖3的部分或整个外周边而形成。侧壁形成在与底盖3的外周边隔开外壳部件1的长度的位置处。
底盖3具有通孔。通孔从邻近电池元件4的表面穿过底盖3到达与其相对的表面。虽然通孔的数量不受限制,但是需要至少一个通孔。优选地,需要两个或更多的通孔。在存在两个或更多的通孔的情况下,当注入树脂时,至少一个通孔可以用于将空气从形成在电池元件4与底盖3之间的空间中排出。因此,能够提高树脂的注入性能。
底盖3可以通过将热熔树脂(例如,聚酰胺型树脂)直接注入到外壳部件1的底部开口中而形成。
接下来,将描述根据本发明第一实施例的电池元件的制造方法。
<电池元件制造步骤>
按顺序依次层叠阳极、隔板、阴极和隔板。从而形成层压件。阳极和阴极在其两个表面上具有凝胶电解质层。将层压件围绕平板芯在芯的横向上卷绕多次。从而制得卷绕型电池元件4。
<外壳部件包覆步骤>
通过深度地旋压模制柔性层压部件1a而形成容纳电池元件4的凹形部分15。在这一点上,如图7A所示,容纳电池元件4的凹形部分15形成在从柔性层压部件1a的中心位置稍微偏右的位置。电池元件4放置在形成于柔性层压部件1a中的凹形部分15中。
此后,如图7A所示,层叠硬性层压部件1b和柔性层压部件1a,使得硬性层压部件1b从柔性层压部件1a稍微偏右。因而,当柔性层压部件1a和硬性层压部件1b如图7A所示的那样进行层叠时,出现柔性层压部件1a的左侧非层叠区域,以及硬性层压部件1b的右侧非层叠区域。如稍后所述,在将柔性层压部件1a和硬性层压部件1b的端部折叠在柔性层压部件1a的凹形部分15的底面外侧之后,这些区域使柔性层压部件1a的聚丙烯层与硬性层压部件1b的聚丙烯层以预定的宽度粘结。
在图7A所示的布置图中,凹形部分15的开口的四个边在减小的大气压下进行热粘结。在这种情况下,聚丙烯层的重叠部分可以热粘结。当凹形部分15的周边热粘结时,电池元件4被密封。
此后,如图7A所示,预定形状的热粘结片15a放置在凹形部分15的底面的外侧。热粘结片15a是热粘结柔性层压部件1a的尼龙层或PET层的辅助部件。考虑到电池组件的整体厚度,优选热粘结片15a的厚度在10μm到60μm的范围内并且其熔点为约100℃。优选热粘结片15a的熔点对电池元件4没有热影响。
此后,如图11所示,将柔性层压部件1a和硬性层压部件1b的端部折叠在柔性层压部件1a的凹形部分15的底面的外侧。也就是,柔性层压部件1a的较短边13a、14a以及硬性层压部件1b的较短边13b、14b向内折叠。随后,将柔性层压部件1a和硬性层压部件1b的端部进行热粘结。此外,将柔性层压部件1a热粘结到凹形部分15的底面的外侧。因而,柔性层压部件1a和硬性层压部件1b使容纳电池元件4的凹形部分15密封。从而形成顶部开口和底部开口。
如图12中所示,当硬性层压部件1b包覆电池元件4时,硬性层压部件1b的较短边13b和14b接触或出现接合处L1,在该接合处L1较短边13b和14b的端面以较短的间隙相对。在硬性层压部件1b内,柔性层压部件1a的较短边13a和14a接触或者出现接合处L2,在该接合处L2较短边13a和14a的端面以较短的间隙相对。在图12中,附图标记16b表示硬性层压部件1b的聚丙烯层。附图标记17b表示硬性铝层。附图标记18b表示尼龙层或PET层。在这个示例中,较短边13a和14a接触或者它们的端面以较小的间隙相对。或者,较短边13a和14a的端面可以以预定宽度的间隙相对。
如图12中所示,柔性层压部件1a的尼龙层或PET层18a放置在热粘结片15a的上方。因而,热粘结片15a夹在尼龙层或PET层18a中间。因而,当从外部对尼龙层或PET层18a进行加热时,它们可以粘结起来。此外,由于柔性层压部件1a和硬性层压部件1b的聚丙烯层16a和16b接触,所以当从外部对它们进行加热时,聚丙烯层16a和6b可以粘结起来。
因此,可以制造由用作外壳部件的层压部件包覆的电池组件,而不需要盒形树脂壳体和左右树脂框架。
<顶盖安装步骤>
此后,如图13中所示,通过例如电阻焊或超声焊而使电极端子5a和5b连接到电路板22。此后,如图14所示,将电路板22插入到上部支架2a的开放空间中,使得上部支架2a覆盖电路板22。上部支架2a是用例如不同的注入成型步骤制成的树脂模制部件。
水平地保持电路板22的保持部件(hold member)设置在上部支架2a中。在上部支架2a的上表面上、在对应于电路板22的接触部分23的位置形成三个开口21。接触部分23通过开口21延伸到外部。上部支架2a的宽度略小于外壳部件1中顶部开口的内部尺寸。
此后,如图15所示,将下部支架2b安装到上部支架2a。下部支架2b是用例如不同的注入成型步骤制成的树脂模制部件。在下部支架2b的一个较长边的两端和中央位置设置肋25a、25b和25c。肋25a、25b和25c面对上部支架2a。肋25a、25b和25c的端面接收上部支架2a的电路板22。因而,肋25a、25b和25c可以可靠地支撑电路板22。
此后,如图16中示出的箭头R所示,用手或夹具将已经安装的上部支架2a和下部支架2b沿逆时针方向旋转90度。从而电路板22的方位(orientation)改变90度。电路板22由上部支架2a和下部支架2b保持,没有暴露在外部。因而,当转动电路板22时,可以防止电路板22被手或夹具沾污或损坏。
此后,如图17中所示,在折叠电极端子5a和5b的同时,将上部支架2a和下部支架2b推入外壳部件1的顶部开口中(沿着箭头S1的方向)。从而将顶盖2安装到外壳部件1的顶部开口。如上所述,由于顶盖2的宽度略小于外壳部件1的顶部开口的内部尺寸,因此可以使保持电路板22的上部支架2a和下部支架2b在外壳部件1的端面附近容纳在由硬性层压部件1b形成的顶部开口中。
<底盖安装步骤>
此后,如图17中所示,将底盖3的侧壁推入外壳部件1的底部开口中(沿着箭头S2所示的方向)。从而将底盖3的侧壁安装到外壳部件1的底部开口。此外,底盖3覆盖外壳部件1的底部开口。底盖3是用不同的注入成型步骤制成的树脂模制部件。
<热粘结步骤>
此后,用预定的夹具,保持外壳部件1、顶盖2和底盖3并对它们进行热粘结。换言之,将由诸如铜的金属制成的加热器部件放置在外壳部件1顶端的上方和下方。用加热器部件对外壳部件1的顶端进行加压,以使顶盖2的周边与硬性层压部件1b的内表面的粘结层进行热粘结。类似地,将加热器部件放置在外壳部件1底端的上方和下方。用加热器部件对外壳部件1的底端进行加压,使得底盖3的周边与硬性层压部件1b的内表面的聚丙烯层进行热粘结。
<树脂注入步骤>
此后,通过通孔26a和26b将熔融树脂注入到电池元件4与顶盖2之间形成的空间中。随后使树脂固化。从而使顶盖2粘结到电池元件4的端面。
此后,通过底盖3的通孔将熔融树脂注入到电池元件4与底盖3之间形成的空间中。随后使树脂固化。从而使底盖3粘结到电池元件4的端面。所注入的树脂不局限于特定的类型,只要该树脂在注入到外壳部件1的顶部和底部开口中时具有低粘度即可。树脂的示例为聚酰胺型热熔树脂、聚烯烃型热熔树脂、尼龙、聚丙烯(PP)树脂、聚碳酸酯(PC)树脂和丙烯腈-丁二烯-苯乙烯树脂(ABS)。
在这些步骤中,可以制造根据本发明第一实施例的电池组件。
根据本发明的第一实施例,可以获得下述效果。
电池组件具有包括开口端的方形或矩形外壳部件1、容纳在其中的电池元件4、安装到外壳部件1的开口端的顶盖2和底盖3。顶盖2在一个较长边的两侧具有凹形部分6a和6b。外壳部件1具有至少使顶盖2的凹形部分6a和6b露出的切口部分10a和10b。因而,可以在不以降低容积效率为代价的条件下防止电池组件反极性连接。
外壳部件1由柔性层压部件1a和硬性层压部件1b构成,柔性层压部件1a的较短边13a和14a略小于硬性层压部件1b的较短边13b和14b。层叠柔性层压部件1a和硬性层压部件1b,使得仅硬性层压部件1b存在于外壳部件1的顶部。从而,顶盖2对准并安装在柔性层压部件1a和硬性层压部件1b的较短边上。用硬性层压部件1b的聚丙烯层将顶盖2的周边热粘结在柔性层压部件1a和硬性层压部件1b的较长边上。
接下来,对本发明的第一实施例进行具体描述。本发明并不局限于下述示例。接下来,参考附图,对第一实施例和比较示例进行描述。
第一实施例
图18为示出根据本发明第一实施例的电池组件外形的透视图。顶盖2的一个较长边的两端处形成凹形部分6a和6b。外壳部件1具有使顶盖2的凹形部分6a和6b露出的切口部分10a和10b。
第一比较示例
图19为示出根据第一比较示例的电池组件外形的透视图。根据第一比较示例的电池组件的结构与根据第一实施例的电池组件的结构相同,只是根据第一比较示例的电池组件省去了外壳部件1的切口部分10a和10b。
第二比较示例
图20为示出根据第二比较示例的电池组件外形的透视图。根据第二比较示例的电池组件的结构与根据第一实施例的电池组件的结构相同,只是根据第二比较示例的电池组件在电池组件的顶部端面上具有区分阴极和阳极的突起部分51a和51b,而不是顶盖2的凹形部分6a和6b以及外壳部件1的切口部分10a和10b。
第三比较示例
图21为示出根据第三比较示例的电池组件外形的透视图。根据第三比较示例的电池组件的结构与根据第一实施例的电池组件的结构相同,只是顶盖2的端面从外壳部件1的顶部开口突出,而不是外壳部件1的切口部分10a和10b,从而使得顶盖2的凹形部分6a和6b没有被外壳部件1包覆。
根据第一实施例和比较示例,得出下述结果。
在根据第一比较示例的电池组件中,由于顶盖2的整个周边由外壳部件1包覆,因此电子装置侧不具有设计适合于凹形部分6a和6b的突起部分的灵活性。当覆盖凹形部分6a和6b的外壳部件1因外部冲击例如在电池组件掉落在地板的情况下而在凹形部分6a和6b处凹进时,可以防止电池组件接到电子装置。
在根据第二比较示例的电池组件中,虽然设置在顶盖端面上的突起部分51a和51b可以区分阴极和阳极,但是电池组件的外部尺寸变大。此外,突起部分51a和51b的形状需要与电池装置侧的形状匹配。这样,电池组件失去了通用性。此外,当突起部分51a和51b因外部冲击例如在电池组件掉落到地板的情况下而损坏时,阴极和阳极就不能被区分了。
在根据第三比较示例的电池组件中,由于用于顶盖2和外壳部件1热粘结的空间较大,所以需要增大顶盖2的高度。从而不能使电池组件的容积效率得到提高。
相反,在根据本发明第一实施例的电池组件中,由于顶盖2在一个较长边的两侧上具有凹形部分6a和6b,并且外壳部件1具有至少使顶盖2的凹形部分6a和6b露出的切口部分10a和10b,所以不会出现第一比较示例到第三比较示例中的问题。换言之,在根据第一实施例的电池组件中,容积效率没有降低。此外,根据第一实施例的电池组件提供了如下优点:外壳部件1不会因外部冲击例如电池组件掉落到地板的情况下而发生变形、优异的通用性和优异的容积效率。
接下来,对本发明第二实施例进行描述。根据第二实施例,模制外壳部件,使其具有曲率半径不同的椭圆形截面。在下述描述中,与第一实施例相同的部分由相同的附图标记表示并省略对它们的描述。
根据第二实施例,当用外壳部件包覆电池元件时,使柔性层压部件1a和硬性层压部件1b沿着电池元件的形状弯曲。由于柔性层压部件1a是旋压模制的,因此硬性层压部件1b的顶部和底部开口的端部可以容易地弯曲。当模制柔性层压部件1a时,从电池组件的底面部分到其各个侧面部分的曲率半径变小。另一方面,因为层压膜的金属层的刚性,从电池组件的各个侧面部分到其上表面的曲率半径大于从底面部分到各个侧面部分的曲率半径。将柔性层压部件1a和硬性层压部件1b模制成使得它们的椭圆形截面具有不同的曲率半径,如图22中示出的电池单元29。此后,使硬性层压部件1b和柔性层压部件1a的CPP层热粘结。从而得到硬性层压部件1b作为最外层保护电池元件4的电池组件。
在这种情况下,优选在柔性层压部件1a中形成的凹形部分15的底面外侧放置粘结片15a。粘结片15a是使柔性层压部件1a的尼龙层或PET层热粘结的辅助部件。
此后,对从模制成预定形状的电池单元29的顶部延伸的阴极端子5a和阳极端子5b以及已安装在电路板上的保护电路进行电阻焊或超声焊。如图23所示,将连接到电池元件4的电路板插入到顶盖27的空间中,其中上部支架27a和下部支架27b已经模制并安装好。
接下来,参照图24、图25和图26描述加工步骤,所述步骤以电路板容纳在顶盖中为起始步骤,以将顶盖连接到作为外壳部件的硬性层压部件1b为结束步骤。图24、图25和图26是示出将顶盖安装到外壳部件的步骤的透视图。
如图24所示,将上部支架27a放置在连接到电池单元29的电路板22的上方,使得上部支架27a覆盖电路板22。此后,如图25所示,使下部支架27b和上部支架27a对准并安装成,使得电路板22容纳在其间。如图26中所示,改变顶盖27的方位,使下部支架27b面向电池单元29。此后,将顶盖27安装到电池单元29的一个开口部分。当顶盖27安装到电池单元29的开口部分时,折叠电极端子5并使其容纳在电池单元29中。
顶盖27连同安装到电池单元29底部的底盖28一起热粘结到作为外壳部件的硬性层压部件1b。如图27A所示,顶盖27的上部支架27a由安装到电池单元29内侧的端面R部分33、作为电池组件的外壳的一部分的上表面部分34、以及热粘结部分34a构成,其中热粘结部分34a设置在上表面部分34的较长边上的侧面部分,并且热粘结到硬性层压部件1b。
当顶盖27安装到电池单元29时,可能使上部支架27a和硬性层压部件1b的接触性下降。为了避免这个问题,模制端面R部分33,使其具有拐角部分,所述拐角部分具有不同的曲率半径R和r。此外,模制上表面部分34,使其具有曲率半径与端面R部分33相同的拐角部分。因而,如图27C所示,顶盖27的形状和电池单元29的形状变得相同。从而,电池单元29与顶盖27的接触性得到改善并防止顶盖27因冲击而脱落。
上表面部分34在左侧和右侧表面上具有平面部分(flat surface portion)F。该平面部分F使电池组件容易与电子装置的电池组件插槽对准。此外,平面部分F使电池组件免于与电子装置的电池组件插槽错开。
为了容易理解本发明的这个实施例,图28示出了现有技术中使用的具有椭圆形截面的顶盖35安装到电池单元的状态。在这种情况下,由于顶盖35的曲率半径比电池单元29底表面部分两端的曲率半径大,所以在电池单元29底表面部分的两端存在间隙,如虚线30所示。因而,顶盖35与电池单元29的接触性变得不足。从而,接触性不足会导致电池组件发生故障。
如图22所示,将由已注入成型的树脂模制部件制成的底盖28安装到电池单元29的底部开口部分。热粘结电池单元29的底盖28和外壳部件。底盖28可具有近似椭圆形的截面。可替换地是,与顶盖27一样,底盖28可具有拐角部分,所述拐角部分具有不同的曲率半径r和R。在这种情况下,底盖28的接触性得到改善。此外,可以防止底盖28脱落。当底盖28在作为外壳部件一部分的部分的左侧和右侧具有平面部分F时,电池组件可以容易地与电子装置的电池组件插槽对准,并防止发生错位。
从而,可以得到具有优异的容积效率、较强的外部冲击抵抗力以及电池组件插槽的容易对准性的电池组件。
接下来,对根据本发明第二实施例的电池组件进行跌落试验(drop test)的试验结果进行说明。
使具有如图22所示结构的测试电池组件从1.5m的高度坠落到混凝土地板上,然后检查顶盖与电池组件分离的状态。安装到构成顶盖的上部支架的端面R部分具有拐角部分,使得电池组件的底表面部分两端的曲率半径不同于电池组件的上表面两端的曲率半径。上部支架的上表面部分在曲率半径较大的拐角部分具有区分阴极和阳极的凹形部分,并且在曲率半径较大的拐角部分与曲率半径较小的拐角部分之间形成的侧面上具有平面部分。在下述条件下进行跌落试验。
(1)电池组件在顶盖朝下的状态坠落。
(2)电池组件在一个侧面朝下的状态坠落。
作为用于进行跌落试验的电池组件,制作50个测试电池组件A和50个测试电池组件B,其中电池组件A具有这样的顶盖,安装部分的两个侧面的曲率半径为电池组件厚度的1/2,电池组件B具有这样的顶盖,从容纳电池元件的凹形部分的开口部分到侧面的曲率半径小于从凹形部分的底表面的外侧的表面到侧面的曲率半径。每个电池组件测试30次。在跌落试验(2)中,对每个电池组件的每侧测试15次。
将测试30次后的电池组件的状态划分为三种类型。计算划分为各类型的电池组件的数量。
状态A:顶盖从外壳部件上的脱落不到顶盖外周边的1/4区域。
状态B:顶盖从外壳部件上的脱落为顶盖外周边的1/4到3/4区域。
状态C:顶盖从外壳部件上的脱落超过顶盖外周边的3/4区域(包括盖从外壳部件上除去的状态)。
表1示出跌落试验(1)的测试结果。
表1
表2示出了跌落试验(2)的测试结果。
表2
跌落试验(1)的测试结果表明,在使用现有技术中使用的顶盖A的测试电池组件A中,在组装电池组件时,外壳部件和顶盖的安装出错率较高,并且顶盖和外壳部件的脱落频率相对较高。相反,在具有根据本发明实施例的顶盖B的测试电池组件B中,在组装电池组件时,外壳部件和顶盖的安装出错率非常低,并且顶盖和外壳部件的脱落频率较低。因而,可以清楚看出具有顶盖B的电池组件B的外部冲击抵抗力高于具有顶盖A的电池组件A。
跌落试验(2)的测试结果表明,在使用现有技术中使用的顶盖A的测试电池组件A中,顶盖和外壳部件的脱落频率较高。在具有根据本发明实施例的顶盖B的测试电池组件B中,脱落频率较低。在具有顶盖A的测试电池组件A中,外壳部件和顶盖A的外部尺寸差别较大。在具有顶盖B的测试电池组件B中,侧面部分的形状的均等性(equality)较高。这将导致减震性能的不同。
接下来,描述本发明第三实施例。在现有技术中使用的电池组件中,电路板103容纳在由上部支架102a和下部支架102b构成的顶盖102中。顶盖102安装到外壳部件1的一个开口部分。这样,如图3A和图3B所示,将连接到电路板103的电极端子105折叠并容纳在电池组件中。
为了容易理解本发明的第三实施例,图29示出了现有技术中使用的电池组件的电极端子导线部分(lead portion)和上部支架102a的布置。在由图29中示出的虚线表示的电极端子导线部分中,电极端子从作为外壳部件的硬性层压部件的端部附近延伸出来。因而,当顶盖安装到硬性层压部件时,上部支架102a的由图29中示出的实线表示的相对部分挤压电极端子导线部分的电极端子5。
为了防止相对部分妨碍折叠起来的电极端子105,需要在顶盖102与电池元件之间提供空间或者减少热粘结到外壳部件的安装部分。然而,在前一结构中,容积效率降低。在后一结构中,顶盖和硬性层压部件的热粘结强度不足。
因而,如图30所示,根据本发明的第三实施例,在上部支架36a的一部分处形成切口部分37a。切口部分防止上部支架36a妨碍电极端子5。图31示出了根据本发明第三实施例的电池组件的结构的示例。在该电池组件中,由上部支架36a和下部支架36b构成的顶盖(稍后描述)安装到硬性层压部件的开口部分。从而,可以避免挤压电极端子和避免电池组件厚度的增加。在下述描述中,与第一和第二实施例相同的部分由相同的附图标记表示并且省略对它们的描述。
图32示出了电极端子导线部分在图30所示的上部支架36a安装到柔性层压部件1a的情况下的状态。如图32所示,上部支架36a的安装部分插入到柔性层压部件1a的端部中。然而,由于上部支架36a具有切口部分37a,所以上部支架36a不妨碍电极端子5。因而,由于上部支架36a具有与电极端子5相对的切口部分,所以可以减少顶盖36与电池元件4之间形成的空间。从而,可以以足够的热粘结强度制造电极端子5不妨碍顶盖36的电池组件。
当电池组件的厚度较小时,电极端子5妨碍下部支架并且电极端子5在电池组件的厚度方向上突出。为了避免这样,如图33所示,在顶盖36的底表面上形成切口部分37b和37c,使得切口部分37b和37c与电极端子的布线相对应。从而,将电极端子5折叠并容纳在切口部分37b和37c中。
在这种情况下,由于切口部分37b和37c形成在下部支架36b的底表面的侧面部分上,因此底表面的具有切口部分的区域变小。从而,下部支架36b的强度降低。此外,当下部支架36b由树脂模制而成时,下部支架36b易于扭曲。为了避免这个问题,如图33所示,优选在厚度等于或大于底部厚度的下部支架36b的底表面部分的纵向上形成突起壁,从而保持下部支架36b的强度和成型性。
图34A和图34B示出了下部支架36b和电极端子5在顶盖安装到硬性层压部件的状态下的布置。图34A示出了下部支架36b和电池元件4在电池单元的电极端子导线部分面朝下的状态下的布置。图34B示出了下部支架36b和电池元件4在电池单元的电极端子导线部分面朝下的状态下的布置。当顶盖安装到硬性层压部件时,下部支架36b的位置接近电池元件4。在图34A和图34B中,为了清楚,下部支架36b和电池元件4分开。
图34A和图34B示出,形成在下部支架36b的预定位置的切口部分37b和37c为电极端子5提供空间,并避免了上部支架36a挤压电极端子5以及防止电池组件厚度增加。
图35示出了根据本发明第三实施例的上部支架36a、下部支架36b和电池单元29的结构。当电池组件的厚度较小时,如图35所示,凭借具有切口部分37a的顶盖36和具有切口部分37b和37c的下部支架36b,这些切口部分可以更有效地防止顶盖36和下部支架36b挤压电极端子。
当电池组件的厚度相对较大时,凭借厚度小于上部支架36a的具有底表面部分的下部支架36b,可以获得与下部支架36b的切口部分37b和37c相同的效果。因而,可以省去下部支架36b的切口部分37b和37c。当电池组件的厚度较大时,由于上部支架36a的厚度较大,所以即使上部支架36a和下部支架36b设计成使得下部支架36b的厚度小于上部支架36a的厚度,也不会对电池组件的强度造成不利影响。即使电池组件的厚度增大,电极端子导线部分的位置也不会改变,只要采用根据该实施例的电池元件的结构即可。因而,上部支架36a需要具有切口部分37a。
接下来,参照图36、图37、图38、图39A、图39B、图39C和图39D,描述加工步骤,所述步骤以电路板容纳在顶盖中为起始步骤,并以顶盖安装到硬性层压部件1b为结束步骤。图36到图38为示出将顶盖36安装到硬性层压部件1b的步骤的透视图。图39A到39D为示出顶盖36和折叠起来的电极端子5的截面图。
首先,如图36所示,上部支架36a放置在连接到电池单元29的电路板22的上方。此后,如图37和39A所示,将下部支架36b和上部支架36a对准并安装成,使得电路板22容纳在其间。此后,如图38和图39B所示,改变顶盖36的方位,使得下部支架36b接近电池单元29。在顶盖36安装到电池单元29的一个开口部分之后(参见图39C和图39D),热粘结电池单元29的顶盖36和外壳部件。当顶盖36安装到开口部分时,电极端子5折叠并容纳在切口部分37b和37c中。
图39D示出,上部支架36a和下部支架36b的切口部分37a、37b和37c防止上部支架36a和下部支架36b挤压电池单元29的电极端子导线部分。从而,可以有效地防止电池组件的厚度增大。此外,由于下部支架36b的切口部分37b容纳折叠起来的电极端子5,所以下部支架36b的切口部分37b需要具有用于涂覆有密封剂7的折叠电极端子5的空间。相反,由于切口部分37c与电极端子5的布线相对应,所以切口部分37c需要具有用于涂覆有密封剂7的电极端子5的空间。
如图31所示,作为以不同注入成型步骤制造的树脂模制部件的底盖39安装到与安装到顶盖36的开口相对的开口部分。底盖39和硬性层压部件1b作为电池单元29的外壳部件进行热粘结。可替代的,可以通过将热树脂材料(热熔剂)注入到开口中而使底盖39和外壳部件连接。注入热树脂时,需要防止电路板热变形和/或损坏。
以这种方式,在不增加电池组件厚度的情况下,可以实现具有高质量、高产量、高容积效率、电极端子的抗压性的电池组件。
接下来,说明对根据第三实施例的电池组件进行测试的测试结果。
制造结构如图31所示且厚度为3.97mm的测试电池组件。在顶盖和外壳部件热粘结之后,测量电池组件的热粘结部分的厚度。在每个下述条件下制造10个测试电池组件。
(1)上部支架和下部支架每个都具有切口部分。
(2)上部支架具有切口部分,而下部支架没有切口部分。
(3)上部支架没有切口部分,而下部支架具有切口部分。
(4)上部支架和下部支架都没有切口部分。
每个电池组件设计的最大厚度为4.00mm。在顶盖和外壳部件热粘结之后,确定各测试组件是好的还是不好的。表3示出了顶盖和外壳部件热粘结的各测试电池组件的厚度的测量结果。
表3
测试结果表示,类型(4)(即,上部支架和下部支架都没有切口部分)的一些电池组件的厚度超过了设计的最大厚度。然而,类型(1)、(2)和(3)的电池组件的厚度没有超过所设计的最大厚度。特别地,类型(1)的电池组件在其厚度上没有偏离。
接下来,参照附图,对本发明第四实施例进行描述。根据本发明的第四实施例,在下部支架的安装肋的中央部分形成切口部分。此外,平行于或垂直于下部支架的纵向设置梯形的电路板支撑突起。从而,树脂可以充分地且均等地注入到顶盖中。在该实施例中,与第一实施例、第二实施例和第三实施例的部分相同的部分由相同的附图标记表示并省略对它们的描述。
此外,如稍后描述的,下部支架41可以表示为下部支架41a、下部支架41b、下部支架41c、下部支架41d或下部支架41e。在下述描述中,当不需要识别下部支架41a、41b、41c、41d和41e时,将它们简单地表示为下部支架41。
如图40所示,电路板22插入到上部支架40a的自由面(free surface)中。上部支架40a安装在电路板22上,使得上部支架40a覆盖电路板22。上部支架40a具有水平地保持电路板22的保持部分。在上部支架40a上与电路板22的接触部分23相对应的位置形成多个(例如,三个)开口21。接触部分23通过开口21延伸到外侧。上部支架40a的宽度略小于电池单元29的顶部端面上的开口的宽度。
在上部支架40a的两端附近形成通孔26a和26b,使得通孔26a和26b不妨碍电路板22。通孔26a和26b的直径在Φ0.8mm到Φ1.5mm的范围内。
下部支架41a是以例如不同注入成型步骤制造的树脂模制部件。在图41中,附图标记41a表示下部支架的第一实施例。在下部支架41a的两端形成肋42a和42b。肋42a和42b安装到上部支架40a。在肋42a和42b的中心部分形成切口部分。
此外,在接近下部支架41a的中心处形成电路板支撑突起43a。基板支撑突起43a具有平行于下部支架41a的纵向的表面。在安装上部支架40a和下部支架41a时,电路板支撑突起43a保持设置在其间的电路板22。
图42示出了安装上部支架40a和下部支架41a的状态。下部支架41a安装到上部支架40a,使得电路板22置于其间。根据第四实施例,上部支架40a和下部支架41a通过机械连接装置安装。换言之,如图43所示,上部支架40a具有固定孔44a和44b。形成在下部支架41a的肋42a边缘的钩45a插入到孔44a中。形成在下部支架41a的肋42a边缘的钩45b插入到孔44b中。从而安装上部支架40a和下部支架41a。
用手或夹具将已经安装的上部支架40a和下部支架41a沿逆时针方向旋转90度,如图44中示出的箭头R所示。从而,电路板22的方位改变90度。电路板22由上部支架40a和下部支架41a保持,没有露在外部。因而,当转动电路板22时,可以防止手或夹具沾污和损坏电路板22。
此后,将已经安装的上部支架40a和下部支架41a插入到电池单元29中。此后,通过通孔26a和26b将热熔树脂注入到电池单元29中。注入的热熔树脂使电路板22得到保持,并提高电池组件的机械强度。
在图45中,附图标记41b表示下部支架的第二示例。下部支架41b具有整体形成在其上的电路板支撑突起43b。电路板支撑突起43b具有垂直于下部支架41b的纵向的表面。电路板支撑突起43b形成为梯形,其中电路板支撑突起43b的边缘逐渐变细。因而,由于电路板支撑突起减小了热熔树脂的阻力,所以可以提高树脂的注入性。
接下来,对下部支架的第三示例进行描述。作为第三示例,如图46所示,突起部分46a和46b在下部支架41c的纵向从下部支架两端的肋突出。下部支架41c使热熔树脂的注入性比前述示例中得到更大的提高。
换言之,当安装上部支架40a和下部支架41c时,突起部分46a和46b分别面对上部支架40a的通孔26a和26b。图47为示出在上部支架40a和下部支架41c安装好的状态下通孔26a附近的底部透视图。如图47所示,由于下部支架41c和上部支架40a安装成使得下部支架41c的突起部分46a覆盖上部支架40a的通孔26a,所以可以均等地注入热熔树脂。从而,可以提高树脂的注入性。
当金属销通过通孔26a和26b中的一个插入到电池组件中时,突起部分46a和46b可以防止金属销与电池元件4接触。从而,可以防止突起部分46a和46b发生短路。
接下来,对根据第四实施例的电池组件进行跌落测试的测试结果进行说明。通过在顶盖40面朝下的状态下使电池组件从1.5m的高度坠落到混凝土地板而进行跌落测试,然后检查顶盖40和外壳部件的异常和脱落。
制造50个电池组件并对它们进行测试,其中所述电池组件每个均具有下部支架41a、下部支架41b、下部支架41c、图48所示的下部支架41d以及图49所示的下部支架41e。下部支架41d在纵向上的两端处具有肋42a和42b。肋42a和42b安装到顶盖40a。在肋42a和42b的中心部分形成切口部分。在肋42a和42b的中心部分形成切口部分。电路板支撑突起43c整体形成在下部支架41d上。电路板支撑突起43c具有矩形表面。该矩形表面形成在下部支架41d的中心附近。该矩形表面形成为垂直于下部支架41d的纵向。
下部支架41e用在现有技术的电池组件中。在下部支架41e的两端形成安装到顶盖40a的肋42a′和42b′。电路板支撑突起43c整体形成在下部支架41e上。电路板支撑突起43c具有矩形表面。该矩形表面形成在下部支架41e的中心附近。该矩形表面形成为垂直于下部支架41e的纵向。表4示出了跌落测试的测试结果。
表4
“发生电路异常的电池组件的数量”表示检测到电路板22异常的电池组件的数量。“状态”表示顶盖40变形的电池组件的数量。根据顶盖40与外壳部件的脱落程度,“状态”细分为“状态A”到“状态C”。“状态A”表示顶盖40的脱落程度为外周边的3/4或更多(包括除去顶盖40)的电池组件的数量。“状态B”表示顶盖40的脱落程度为外周边的1/2到3/4的电池组件的数量。“状态C”表示顶盖40的脱落程度小于外周边的1/2的电池组件的数量。在表4中,“*/50”表示在用下部支架41a到41e制造的50个电池组件的跌落测试中,发生电路板异常或出现“状态A”到“状态C”之一的电池组件的数量。在使用下部支架41a到下部支架41d的电池组件中,没有发生电路基板异常。在使用下部支架41e的50个电池组件中有7个发生电路基板异常。在使用下部支架41a的电池组件的跌落测试中,没有出现“状态A”的顶盖40与外壳部件的脱落程度。在使用下部支架41a的50个电池组件中有6个出现了“状态B”。在使用下部支架41a的50个电池组件中有44个出现了“状态C”。
如跌落测试的测试结果,在使用下部支架41a的电池组件中,电路板22没有出现异常。此外,没有出现“状态A”。在使用下部支架41b和41c的电池组件中,电路板22没有出现异常。在50个电池组件中有1个或几个出现了“状态A”。其它电池组件的脱落程度相对较小。
在使用下部支架41d的电池组件中,电路板22没有出现异常。使用下部支架41d的电池组件中顶盖40的脱落程度比使用下部支架41a到41c的电池组件中的大。在使用下部支架41e的一些电池组件中,电路板22出现了异常。在使用下部支架41e的电池组件中顶盖40的脱落程度在使用其它下部支架41a到41d的电池组件中是最大的。
拆卸采用五种类型的下部支架41的电池组件,然后检测电池组件的内部。在使用下部支架41e的电池组件中,树脂没有充分注入到电池组件中,并且它们中许多具有较大的空穴。
描述了本发明的第一实施例、第二实施例、第三实施例和第四实施例。然而,本发明并不局限于这些实施例。而是,根据本发明的精神可以进行各种修改。
例如,在前述第一实施例、第二实施例、第三实施例和第四实施例中使用的数值仅仅是示例。必要时,可以采用其它数值。
用于硬性层压部件和柔性层压部件的铝(Al)箔不对前述示例构成限制。可替代地,可以使用各种材料。特别地,对于硬性层压部件,除了JIS 1100H组之外,还可以使用其它的硬性铝材,例如2000组、5000组和6000组。
此外,必要时,可以形成多个基板支撑突起43a和43b。如图50所示,当形成多个基板支撑突起43a和43b时,它们可以可靠地支撑电路板22。
本领域技术人员应当理解,在所附权利要求或其等效物的范围内,根据设计需要和其它因素可以进行各种改动、组合、亚组合和替换。
本发明包括2005年1月21日提交的日本专利申请No.2005-013862、2005年1月21日提交的日本专利申请No.2005-013863、2005年1月21日提交的日本专利申请No.2005-014616以及2005年1月21日提交的日本专利申请No.2005-014758所涉及的主题,在此结合其全部内容作为参考。