CN101615352A - 航海模拟器用KaMeWa型喷水推进水翼船运动数学模型 - Google Patents

航海模拟器用KaMeWa型喷水推进水翼船运动数学模型 Download PDF

Info

Publication number
CN101615352A
CN101615352A CN200910012148A CN200910012148A CN101615352A CN 101615352 A CN101615352 A CN 101615352A CN 200910012148 A CN200910012148 A CN 200910012148A CN 200910012148 A CN200910012148 A CN 200910012148A CN 101615352 A CN101615352 A CN 101615352A
Authority
CN
China
Prior art keywords
hydrofoil
kamewa
centerdot
hull
jet propulsion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN200910012148A
Other languages
English (en)
Inventor
任俊生
金一丞
尹勇
任鸿翔
张秀凤
刘秀文
李志华
张百安
张显库
张新宇
孙霄峰
马烈
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dalian Maritime University
Original Assignee
Dalian Maritime University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dalian Maritime University filed Critical Dalian Maritime University
Priority to CN200910012148A priority Critical patent/CN101615352A/zh
Publication of CN101615352A publication Critical patent/CN101615352A/zh
Pending legal-status Critical Current

Links

Images

Abstract

本发明涉及航海模拟器用船舶运动数学模型的构建,尤其是涉及一种航海模拟器用KaMeWa型喷水推进水翼船运动数学模型的构建。首先根据水翼的水动力特性,建立了考虑水翼浅浸效应的水翼升力、水翼攻角、水翼惯性力的计算方法,然后考虑船舶外界风浪干扰的影响,建立了水翼处波面的计算方法,并拟合船体的横剖面图,在变吃水情形下实时计算船体参数浮心位置、浮力、水线面面积和水线长度,该模型也包括了倒航戽斗的KaMeWa型喷水推进单元的水动力的计算方法。采用本发明的数学模型,能够满足航海模拟器在培训和科学研究中对多种操纵工况和外界风浪干扰条件下对KaMeWa型喷水推进水翼船操纵的需要。

Description

航海模拟器用KaMeWa型喷水推进水翼船运动数学模型
技术领域
本发明涉及航海模拟器中船舶运动数学模型构建的领域,尤其是涉及一种KaMeWa型喷水推进水翼船的运动水动力数学模型的构建。
背景技术
航海模拟器本质上是一种人-机实时交互系统,通过仿真模型在线模拟船舶对在操纵设备上所进行的各种操作的响应(即船舶运动状态的变化),达到航海教育或科学研究的目的。船舶运动状态的变化由模型解算程序根据每条船的运动数学模型、航行环境以及操船指令实时获得。每一种类的船舶由于设计目的不同而具有较大的结构差异,导致不同种类的船舶具有各自的操纵特性和对环境的响应特性,所以在研制航海模拟器时需要对不同种类的船舶分别建立相应的船舶运动数学模型。
KaMeWa型喷水推进水翼船是一种性能优良的新型高速船,而且也是在水路运输应用较多的一种船型[1]。国外学者Shimizu[2]开发的HYPAT软件包能够对水翼和襟翼的空泡状态进行研究。大坪英臣[3]开发的TSLAM-FHF软件包对水翼船的垂向运动进行了研究。国内羊少刚[4]基于理想流体的势流理论,对船舶双体部分的兴波阻力性能和变吃水阻力性能进行计算。对于喷水推进单元,金平仲[5]介绍了一种内藏式喷水推进器的建造设计原理,MouJunmin[6]在对喷水推进单元进行建模的时候,采用了简化的方法,即用传统的螺旋桨类比喷水推进器的方法(本质上仍为传统的螺旋桨推力的建模方法),对喷水推进单元建立水动力数学模型。
需要指出的是这些研究均是对喷水推进水翼船某一方面的性能进行研究,并且是以船舶建造为目的而进行的,这也使其很难应用于航海模拟器中。KaMeWa型喷水推进水翼船作为一种具有特殊结构和性能特点的船舶,普通商船的建模方法和经验公式已经不能够继续适用[7-9]。鉴于水翼船在不同的航速时船体姿态和吃水不同,将引起船体参数较大的变化,并且船舶在航行过程中时刻受到外界风浪的干扰,[7-14]提出了通过拟合船舶横剖面图实时计算船型参数,在数学模型水翼升力计算中考虑水翼处次波面的影响;并且[15]针对航海模拟器的应用需要建立了KaMeWa型喷水推进单元的数学模型,实现了KaMeWa型喷水推进水翼船各种不同操纵工况(如旋回、倒车、横移等)下的操纵运动仿真。
参考文献:
1.任俊生,杨盐生,高速水翼双体船的结构和运动特点,中国航海学会,高速船及特殊用途特殊结构船舶航行安全论文集,2000
2.Shimizu K,Masuyama K,Fukushima M,Takashina J,Ishii N,A study on the hydrodynamics aspects ofhybrid hydrofoil catamaran,Proc.2nd Inter.Conf.on Fast Sea Transportation(FAST’93),1993
3.大坪英臣,久保田晃弘,水中翼付き大型高速船の縦運動と縦強度(第1報:水中翼の非定常特性と正面規則波中計算結果),日本造船学会論文集,1990,第168号
4.羊少刚,李干洛,李洁雅,余灵,新型内河高速双体水翼船设计研究,造船技术,1994,第2期
5.金平仲,船舶喷水推进,国防工业出版社,1986
6.Mou Junmin,Zou Zaojian,Zhang Xiaotu,Maneuvering simulation of a catamaran with waterjets using asimplified model,Proceedings MARSIM,2003
7.任俊生,杨盐生,高速水翼双体船运动数学模型初探,中国航海学会,高速船及特殊用途特殊结构船舶航行安全论文集,2000
8.任俊生,杨盐生,对高速水翼双体船静水中运动的再研究,北京:中国航海学会航海实用新技术研讨会论文集,2002
9.任俊生,杨盐生,静水中高速水翼双体船运动建模和仿真研究,大连海事大学学报,2002,28(2)
10.任俊生,杨盐生,杜嘉立,高速水翼双体船波浪中运动建模与仿真,大连海事大学学报,2004,30(2)
11.Ren Junsheng,Yang Yansheng,Simulation of heaving and pitching motion of fast boat with hydrofoils,Journal of Dalian Maritime University,2002,28(Suppl.)
12.任俊生,杨盐生,刘秀文,高速水翼船模拟器中数学模型的研究,第四届全国虚拟现实与可视化学术会议,2004,大连海事大学出版社
13.任俊生,杨盐生,刘秀文,高速水翼船操纵模拟器中运动数学模型的研究,系统仿真学报,2005,17(2)
14.任俊生,金一丞,随机波浪作用下高速水翼船运动建模与仿真,中国交通研究与探索——第六届全国交通运输领域青年学术会议论文集(下册),2005,大连海事大学出版社
15.Ren Junsheng,Yin Yong,Zhang Xiufeng,Maneuvering and motion simulation of waterjet-propelled ship,Proceedings MARSIM2006(Intemational Conference on Marine Simulation and Ship Maneuverability),TheNetherlands,2006
发明内容
本发明要解决的技术问题是航海模拟器用不同操纵工况和外界环境干扰下KaMeWa型喷水推进水翼船的运动数学模型。
为解决上述技术问题,本发明的数学模型建模思路为:从航海模拟器培训和科学研究的实际需要出发,利用分离型船舶运动数学模型的建模思想,将KaMeWa型喷水推进水翼船分为水翼、襟翼、船体、外界干扰、喷水推进等模块,分别考察每个模块的水动力作用,然后考虑各模块之间干扰的影响,从而建立如下的航海模拟器用KaMeWa型喷水推进水翼船的运动数学模型
( m + m x ) u · - ( m + m y ) vr = X H ( β , r ) + X J + X B ( m + m y ) v · + ( m + m x ) ur = Y H ( β , r ) + Y J + Y B ( I zz + J zz ) r · = N H ( β , r ) + N J + N B m ( ξ · · + u θ · ) = Σ i = 1 2 ( F fi + F fpi ) + ▿ cos θ + 2 F H + mg cos θ I yy θ · · = - Σ i = 1 2 ( x fi - x G ) ( F fi + F fpi ) - ( x b - x G ) ▿ cos θ - 2 ( x H - x G ) F H .
本发明对KaMeWa型喷水推进水翼船运动数学模型中水翼升力的计算方法为
C Li = 2 K 2 i π λ i α i λ i + 2 K 2 i + 1 + 8 3 ( 1 - λ i 10 ) sin 2 α i cos α i .
本发明对KaMeWa型喷水推进水翼船运动数学模型中水翼攻角的计算方法为
α i = α si + θ + ξ · - ( x fi - x G ) θ · - ζ · i u - α 0 i .
本发明对KaMeWa型喷水推进水翼船运动数学模型中水翼惯性力的计算方法为
F ai = - m fi ( ξ · · + u θ · - ( x fi - x G ) θ · · - ζ · · i ) .
本发明对KaMeWa型喷水推进水翼船运动数学模型中水翼处波面的计算方法为
ζ i ( t ) = ζ a e - kd i cos ( k ( x fi - x G ) cos χ - ω e t ) .
本发明对KaMeWa型喷水推进水翼船运动数学模型中襟翼液压伺服机构的延迟特性的计算方法为
α · fpi * = T ei α fpi * + α fpi .
本发明KaMeWa型喷水推进水翼船运动数学模型中,通过拟合船体的横剖面图,随着船舶航速不同而引起的变吃水姿态变化,实时计算船体参数浮心位置、浮力、水线面面积和水线长度。
本发明对KaMeWa型喷水推进水翼船运动数学模型中的喷水推进单元的计算方法为
X J = T Jp cos δ Jp + T Js cos δ Js Y J = - T Jp sin δ Jp - T Js sin δ Js N J = ( T Jp sin δ Jp + T Js sin δ Js ) x J + ( T Jp cos δ Jp - T Js cos δ Js ) b .
本发明对KaMeWa型水翼船运动数学模型中喷水推进单元倒航戽斗推力的计算方法为
XB=ρQ(Vjcosαr-cblu)。
本发明的有益效果在于:该数学模型考虑了浅浸效应影响下的水翼水动力,外界环境风浪对水翼水动力的影响,变吃水条件下船体姿态的变化,以及KaMeWa型喷水推进器(包括倒航戽斗)的水动力,从而该数学模型具有足够的精度,能够满足航海模拟器在教学和科学研究中多种操纵工况(如:低速、常速、倒车、转向、横移)下和不同外界环境(不同风浪级)下操纵KaMeWa型喷水推进水翼船的需要。
附图说明
图1是本发明建立KaMeWa型喷水推进水翼船垂荡和纵摇运动数学模型时所使用的附体坐标系GXYZ。
图2是本发明建立KaMeWa型喷水推进水翼船的水平面运动数学模型时所使用的空间固定坐标系OX0Y0Z0和附体坐标系GXYZ。
图3是本发明建立KaMeWa型喷水推进水翼船水翼处次波面方程时所使用的空间固定坐标系Oξηζ和附体坐标系GXYZ。
图4是本发明拟合KaMeWa型喷水推进水翼船的横剖面曲线时所采用的坐标系以及符号表示。
图5是本发明KaMeWa型喷水推进水翼船的运动数学模型在航海模拟器中模型解算的数据流程图。
具体实施方式
下面结合附图对本发明作进一步详细的说明:
1、KaMeWa型喷水推进水翼船垂荡和纵摇运动数学模型
以船体的重心作为坐标系原点,建立如图1所示的附体坐标系。将船体视作刚体,考虑船舶纵倾和波浪对船舶运动的影响,可得垂荡和纵摇运动的数学模型如下
m ( ξ · · + u θ · ) = Σ i = 1 2 ( F fi + F fpi ) + ▿ cos θ + 2 F H + mg cos θ I yy θ · · = - Σ i = 1 2 ( x fi - x G ) ( F fi + F fpi ) - ( x b - x G ) ▿ cos θ - 2 ( x H - x G ) F H ,
其中:m为船舶的质量,
Figure A20091001214800082
为船舶垂荡运动加速度,ξ为船舶在垂直于水平面方向的上浮量,u为沿X轴方向的船舶运动速度,
Figure A20091001214800083
为船体纵摇角速度,Ffi为由水翼产生的力,Ffpi为由襟翼产生的力,
Figure A20091001214800084
为船体的浮力,θ为船体的纵倾角,FH为船体引起的升力,g是重力加速度(9.8米/秒2);Iyy为船体相对于通过船体重心的y轴的转动惯量,
Figure A20091001214800091
为船体纵摇角加速度。|xfi|、|xG|、|xb|、|xH|分别是水翼升力、船体的重力、浮力作用点和船体升力作用点到船中的距离。xfi、xG、xb和xH符号的确定:相对应力的作用点在船中之前,取“+”号;在船中之后,取“-”号。约定:具有右下标i=1的量与前翼有关,下标i=2与后翼有关。
2、KaMeWa型喷水推进水翼船水平面运动数学模型
基于如图4所示的坐标系,KaMeWa型喷水推进水翼船的水平面运动运动数学模型如下
( m + m x ) u · - ( m + m y ) vr = X H ( β , r ) + X J + X B ( m + m y ) v · + ( m + m x ) ur = Y H ( β , r ) + Y J + Y B ( I zz + J zz ) r · = N H ( β , r ) + N J + N B ,
其中:m为船舶的质量,mx为沿X轴方向的附加质量,
Figure A20091001214800093
为沿X轴方向的船舶运动加速度,my为沿Y轴方向附加质量,v为沿Y向的船舶速度,r为转首角速度,XH(β,r)为船体上在X轴方向受到的水动力,β为漂角,XJ为KaMeWa型喷水推进器在X轴方向的作用力,XB为倒车戽斗在X轴方向的作用力;为沿Y轴方向的船舶运动加速度,u为沿X轴方向向的船舶速度,YH(β,r)为船体上在Y轴方向受到的水动力,YJ为KaMeWa型喷水推进器在Y轴方向的作用力,YB为倒车戽斗在Y轴方向的作用力;Izz和Jzz分别为船舶绕Z轴的转动惯量和附加质量,
Figure A20091001214800095
为转首角加速度,NH(β,r)为船体上绕Z轴方向受到的水动力矩,NJ为KaMeWa型喷水推进器绕Z轴方向的作用力矩,NB为倒车戽斗绕Z轴方向的作用力矩。
3、水翼升力的数学模型
可以把水翼视作机翼处理,当水流绕过水翼的时候,在水翼上的作用力有两个分力:一个与来流方向垂直,称为升力(Lf);另一个与来流方向平行阻止物体运动,称为阻力(Df)。水翼所产生的阻力及其力矩可以忽略,而仅考虑水翼所产生的升力Lfi,故而水翼的升力可表示为
L fi = - 1 2 ρ U 2 S i C Li ,
其中:ρ为水的密度,Si为水翼的投影面积,Si=li·bi,li为水翼的翼展,bi为水翼的翼弦。
水翼的升力系数CLi受到水翼浸没深度的影响,这就是“浅浸效应”。考虑浅浸效应的水翼升力系数的数学模型如下
C Li = 2 K 2 i π λ i α i λ i + 2 K 2 i + 1 + 8 3 ( 1 - λ i 10 ) sin 2 α i cos α i ,
其中:λi为展弦比,K2i是升力面的二维深度修正因子,αi为水翼的流体动力攻角。考虑水翼攻角对深度的修正因子K2i的影响,按下式计算
K 2 i = ( 4 f i ) 2 + 8 f i sin α i + 1 ( 4 f i ) 2 + 8 f i sin α i + 2 ,
其中:fi是水翼1/4翼弦处的浸没深度(以翼弦长为单位),考虑到水翼接近自由液面时的临界条件,fi按下式计算
f i = d i b i + d i 4 sin α i 0.05 + d i b i ,
其中:di是水翼导边至自由液面的距离,使用下式计算
di=d0i+ξ-(xfi-xG)sinθ。
其中:|xfi|、|xG|分别是水翼、船体的重心的升力作用点到船中的距离,xfi、xG符号的确定:相对应力的作用点在船中之前,取“+”号;在船中之后,取“-”号。攻角αi的计算考虑船体和水质点在水翼处的垂向运动。在水翼处水流的合速度为
ω r ′ = ( ξ · + Uθ ) cos θ - ( x f - x G ) θ · cos θ - ζ · = · ( ξ · + uθ ) - ( x f - x G ) θ · - ζ · .
考虑到水流在水翼处的垂向速度ω′ri,则攻角αi按下式计算
α i = α si + θ + ξ · - ( x fi - x G ) θ · - ζ · i u - α 0 i ,
其中:αsi为水翼的安装角,α0i为水翼的零升力攻角,
Figure A20091001214800105
为船舶垂荡的速度,
Figure A20091001214800106
为波浪的水质点在水翼处垂直于水面方向的运动速度。
4、水翼的惯性力
来自流体、大小与船体的运动加速度成正比而方向相反作用于水翼的惯性力数学模型为
F ai = - m fi ( ξ · · + u θ · - ( x fi - x G ) θ · · - ξ · · i ) ,
其中:Fai为水翼惯性力,mfi为水翼的附加质量,它是水翼的惯性阻力与对应的水翼垂向运动加速度的比例系数,
Figure A20091001214800108
为船舶垂荡运动加速度,u为船舶在X轴方向的速度,|xfi|、|xG|分别是水翼升力作用点、船舶的重心到船中的距离,
Figure A20091001214800109
为船体的纵摇角速度,
Figure A200910012148001010
为波浪的水质点在水翼处垂直于水面方向的运动加速度。由于水的密度较大,所以水翼的附加质量不可忽略,按下式计算
m fi = π 2 · b i 2 4 · l i · ρ .
5、襟翼的伺服装置的数学模型
襟翼的伺服装置一般都是由电液驱动系统构成。一般来说,实际襟翼角度和命令襟翼角度存在时间延迟,襟翼液压伺服机构的延迟特性使用如下的数学模型表示
α · fpi * = T ei α fpi * + α fpi ,
其中:
Figure A20091001214800112
为襟翼伺服机构的实际输出的角速度,Tei为执行机构的时间常数,αfpi *为襟翼伺服机构的实际输出角度,αfpi为命令输入襟翼角度。
6、水翼处波面方程
(1)附体坐标系GXYZ下的波形方程
该坐标系的原点取在船舶的重心G,与船舶一起移动和作摇荡运动。假设船舶以匀速U前进。在附体坐标系中描述波浪的波面方程为
ζ(x,y,t)=ζacos(kxcosχ-kysinχ-ωet),
其中:ζ(x,y,t)表示在水平面GXY中点(x,y)处在时刻t的坐标值,k为波数,ζa为波幅,χ为波向角,又称为遭遇角,以船尾线为基准,来计波浪的角度,以逆时针为正,变动范围为0-360°,ωe为遭遇频率,按下式计算
ωe=ω-kucosχ,
其中:ω为波浪频率,k为波数,u为船舶沿X轴的前进速度,χ为波向角。
(2)水翼处次波面在附体坐标系GXYZ下波形方程
在图3的附体坐标系中,水翼的位置坐标为(xfi-xG,0,di),其中|xfi|、|xG|分别是水翼升力、船体的重力的作用点到船中的距离,di是水翼导边至自由液面的距离。x′fi、xG符号的确定:相对应力的作用点在船中之前,取“+”号;在船中之后,取“-”号。
在附体坐标系中,水翼处次波面的波形方程为
ζ fi ( t ) = ζ a e - kd i cos ( k ( x fi - x G ) cos χ - ω e t ) .
ζfi(t)刻画了在水翼处水质点偏离静止位置随时间的变化,从而有水翼处波浪水质点在Z轴方向的运动速度
ζ · fi ( t ) = ω e ζ a e - kd i sin ( k ( x fi - x G ) cos χ - ω e t ) ,
以及在水翼处波浪水质点在Z轴方向的运动加速度
ζ · · fi ( t ) = - ω e 2 ζ a e - kd i cos ( k ( x fi - x G ) cos χ - ω e t ) .
7、船体参数的确定
在水翼船从体航状态过渡到翼航状态的整个航行过程中,随着船舶航行速度的变化,船体的吃水发生了巨大的变化,从而使得有些船体参数也发生了较大的变化,这种变化不能做近似处理,必须能够在线即时获得。所以对水翼船数学模型中的有些船型参数,如浮心位置xb、浮力水线面面积Aw和水线长度lw等,必须在仿真过程中能够在线准确得到。
另外,由于水翼船是一种具有特种结构的船舶,所以如果使用常规普通商船的经验公式对一些船型参数进行估算,根据对水翼船建模的经验可知,这样得到的估算值误差将较大。所以对水翼船运动数学模型中出现的一些船型参数,如船体转动惯量Iyy,船体重心位置xG等,也使用详算法进行处理。
在静水中假定船速恒定,船体垂荡速度和纵摇角速度均为0,加速度项也均为0,则得到没有波浪影响的条件下水翼船的运动模型如下
Σ i = 1 2 F fi + 2 F H + ▿ cos θ + mg cos θ = 0 Σ i = 1 2 ( x fi - x G ) F fi + 2 ( x H - x G ) F H + ( x b - x G ) ▿ cos θ = 0 .
由该方程组可解算得到首、尾吃水随船速的变化关系。
处理船体姿态发生较大变化的传统办法是利用邦戎曲线图,其中每一条横剖面面积曲线反映了该处横剖面在不同吃水时的横剖面面积。然而邦戎曲线中的横剖面面积曲线并非是明确的解析函数形式,不便于计算机仿真编程计算。
为了能够以在线方式即时得到水翼船的船体参数,通过拟合每条横剖面曲线,在得到以横剖面线处吃水为变量的曲线函数后,就可以得到每个横剖面处在任意吃水时水线面的宽度数据,进而其他船型参数可以使用计算机编程方便地在线得到。为得到横剖面曲线方程,首先建立图3所示的坐标系。
在进行船体计算时为减少计算量,进行了二次曲线拟合,精度已经足够。设横剖面的曲线方程为B=a1d2+a2d+a3,其中B为水线面上某点到横剖面内侧的距离,d为水线面处的吃水,a1、a2和a3为拟合后所得到的二次曲线系数。
8、KaMeWa型喷水推进单元数学模型
喷水推进单元稳定运行需要满足三个平衡关系:喷泵吸收功率、扭矩和主机发出功率、扭矩平衡;喷泵产生的扬程与系统所需要的扬程相平衡;喷水推进装置产生的推力与船体阻力以及系统的附加阻力相平衡。以上三方面的平衡关系可由如下的等式表示。
喷泵吸收功率与主机发出功率的平衡公式如下:
Np=ρgQH=1000Neηmηrηp
其中:ρ为水的密度,g为重力加速度,Q为喷泵流量,H为喷泵扬程,Ne为柴油机发出的功率,ηm为轴系机械传动效率,ηr为相对旋转效率,ηp为喷泵效率,ηp可由喷水推进航行特性曲线得到。
假定Vi为进流速度,VJ为喷口水流的喷射速度,则动量的增量为ρQ(VJ-Vi),根据动量定理,考虑到边界层对进流速度的影响系数,它表征船体对喷水推进系统的影响,则推进系统产生的推力TJ与船体阻力R的平衡公式为:
R=TJ=ρQ(Vj-cblu),
其中:ρ为水的密度,Q为喷泵流量,VJ为喷口喷射速度,cbl为边界层对进流速度的影响系数,它表征船体对喷水推进系统的影响,u为船舶在X轴方向的速度。喷泵产生的总扬程与产生射流和克服管道系统损失所需的扬程以及来流的扬程的平衡关系式如下:
H = ( 1 + k j ) V j 2 / ( 2 g ) + ( k 1 - β ) V 0 2 / ( 2 g ) + Δh ,
其中:kj为喷口损失系数,k1为管道损失系数,β为进流动能损失系数,Δh为喷泵内水位升高值。另外,根据管道中水流的连续性,可得到一个辅助计算式:
Q=VJ·AJ
其中:AJ为喷口面积。喷水推进单元水动力的计算方法为
X J = T Jp cos δ Jp + T Js cos δ Js Y J = - T Jp sin δ Jp - T Js sin δ Js N J = ( T Jp sin δ Jp + T Js sin δ Js ) x J + ( T Jp cos δ Jp - T Js cos δ Js ) b ,
其中:XJ为KaMeWa型喷水推进器在X轴方向的作用力,YJ为KaMeWa型喷水推进器在Y轴方向的作用力,NJ为KaMeWa型喷水推进器在Z轴方向的作用力矩,*p和*s分别表示与左侧和右侧喷水推进器有关的TJ和偏折角δJ,xJ为喷水推进装置在X轴上的坐标;b为两个喷水推进装置之间的距离。
喷水推进系统的倒航戽斗装置可在船舶航行时提供较大的制动力,用于控制船的前进和后退。倒航戽斗产生的制动力可由下面的计算式确定
XB=ρQ(VJcosαr-cblu),
其中:αr为倒航戽斗将水流逆转的角度,与倒航戽斗收放位置成对应关系,cbl为喷水推进器入水口处由于边界层效应而引入的修正系数,u为船舶在X轴方向的速度。
9、航海模拟器用KaMeWa型喷水推进水翼船数学模型的数据流程
在航海模拟器中,KaMeWa型喷水推进水翼船把航海模拟器操作人员的操纵指令和预先设置作为输入数据,通过模型解算实时得到船舶当前时刻的动态数据,并把船舶当前的动态数据输出给视景系统,最后由视景系统实时绘制当前船舶位置的外界环境。该数学模型中数据的流程如图5所示,其中箭头表示数据的流向。
具体地说,该数学模型接收的船舶操纵人员的指令有车钟、倒航戽斗开合度、水流折射角和襟翼角,需要预先设置的数据有风级、初始时刻的船位。通过模型解算程序该数学模型输出的数据有船舶的空间位置和船舶的姿态角。

Claims (9)

1、航海模拟器用KaMeWa型喷水推进水翼船运动数学模型,其特征在于:首先根据水翼的水动力特性,建立考虑水翼浅浸效应的水翼升力、水翼攻角、水翼惯性力的计算方法;然后根据外界风浪对船体干扰的影响因素,建立水翼处次波面的计算方法,并拟合船体的横剖面图,在变吃水情形下实时计算船体参数浮心位置、浮力、水线面面积和水线长度,该模型还包括倒航戽斗的KaMeWa型喷水推进单元的水动力的计算方法;该KaMeWa型喷水推进水翼船运动数学模型如下:
( m + m x ) u · - ( m + m y ) vr = X H ( β , r ) + X J + X B ( m + m y ) v · + ( m + m x ) ur = Y H ( β , r ) + Y J + Y B ( I zz + J zz ) r · = N H ( β , r ) + N J + N B m ( ξ · · + u θ · ) = Σ i = 1 2 ( F fi + F fpi ) + ▿ cos θ + 2 F H + mg cos θ I yy θ · · = - Σ i = 1 2 ( x fi - x G ) ( F fi + F fpi ) - ( x b - x G ) ▿ cos θ - 2 ( x H - x G ) F H
其中:m为船舶的质量,mx为沿X向的附加质量,
Figure A2009100121480002C2
为沿X轴方向的船舶运动加速度,my为沿Y向的附加质量,v为沿Y向的船舶速度,r为转首角速度,XH(β,r)为船体上在X轴方向受到的水动力,β为漂角,XJ为KaMeWa型喷水推进器在X轴方向的作用力,XB为倒车戽斗在X轴方向的作用力;为沿Y轴方向的船舶运动加速度,u为沿X轴方向的船舶运动速度,YH(β,r)为船体上在Y轴方向受到的水动力,YJ为KaMeWa型喷水推进器在Y轴方向的作用力,YB为倒车戽斗在Y轴方向的作用力;Izz和Jzz分别为绕Z轴的转动惯量和附加转动惯量,
Figure A2009100121480002C4
为转首角加速度,NH(β,r)为绕Z轴方向船体受到的水动力矩,NJ为KaMeWa型喷水推进器绕Z轴方向的作用力矩,NB为倒车戽斗绕Z轴方向的作用力矩;
Figure A2009100121480002C5
为船舶垂荡运动加速度,ξ为船舶在垂直于水平面方向的上浮量,为船体纵摇角速度,Ffi为由水翼产生的力,Ffpi为由襟翼产生的力,
Figure A2009100121480002C7
为船体的浮力,θ为船体的纵倾角,FH为船体引起的升力,g是重力加速度(9.8米/秒2);Iyy为船体相对于通过船体重心的Y轴的转动惯量,
Figure A2009100121480002C8
为船体纵摇角加速度;|xfi|、|xG|、|xb|、|xH|分别是水翼升力、船体的重力、浮力作用点和船体的升力作用点到船中的距离;xfi、xG、xb和xH符号的确定:相对应的作用力作用点如在船中之前,取“+”号;在船中之后,取“-”号;约定具有右下标i=1的量与前翼相关,下标i=2与后翼相关。
2、如权利要求1所述的航海模拟器用KaMeWa型喷水推进水翼船运动数学模型,其特征在于:所述水翼升力的计算方法为
C Li = 2 K 2 i π λ i α i λ i + 2 K 2 i + 1 + 8 3 ( 1 - λ i 10 ) sin 2 α i cos α i ,
其中:CLi为水翼的升力系数,K2i是升力面的二维深度修正因子,λi为展弦比,αi为水翼的流体动力攻角。
3、如权利要求1所述的航海模拟器用KaMeWa型喷水推进水翼船运动数学模型,其特征在于:所述水翼攻角的计算方法为
α i = α si + θ + ξ · - ( x fi - x G ) θ · - ζ · fi u - α 0 i ,
其中:αi为水翼的流体动力攻角,αsi为水翼的安装角,θ为船舶的纵倾角,
Figure A2009100121480003C3
为船舶的垂荡速度,|xfi|、|xG|分别是水翼升力作用点、船舶的重心到船中的距离,
Figure A2009100121480003C4
为船体的纵摇角速度,
Figure A2009100121480003C5
为水翼处次波面的水质点垂直于水面方向的运动速度,u为船舶沿X轴的前进速度,α0i为水翼的零升力攻角;xfi、xG符号的确定:相对应力的作用点如在船中之前,取“+”号,在船中之后,取“-”号。
4、如权利要求1所述的航海模拟器用KaMeWa型喷水推进水翼船运动数学模型,其特征在于:所述水翼惯性力的计算方法为
F ai = - m fi ( ξ · · + u θ · - ( x fi - x G ) θ · · - ξ · · fi ) ,
其中:Fai为水翼惯性力,mfi为水翼的附加质量,
Figure A2009100121480003C7
为船舶垂荡运动加速度,u为船舶在X轴方向的速度,|xfi|、|xG|分别是水翼升力作用点、船舶的重心到船中的距离,
Figure A2009100121480003C8
为船体的纵摇角速度,
Figure A2009100121480003C9
为波浪的水质点在水翼处垂直于水面方向的运动加速度;xfi、xG符号的确定:相对应力的作用点在船中之前,取“+”号,在船中之后,取“-”号。
5、如权利要求1所述的航海模拟器用KaMeWa型喷水推进水翼船运动数学模型,其特征在于:所述水翼处波面的计算方法为
ζ fi ( t ) = ζ a e - kd i cos ( k ( x fi - x G ) cos χ - ω e t ) ,
其中:ζfi为次波面在水翼处的坐标,t为时间,ζfi(t)表示次波面水质点在水翼处坐标随时间t而变化,ζa为波幅,k为波数,di是水翼导边至自由液面的距离,x为波向角,ωe为遭遇频率,|xfi|、|xG|分别是水翼升力作用点、船舶的重心到船中的距离;xfi、xG符号的确定:相对应力的作用点在船中之前,取“+”号;在船中之后,取“-”号。
6、如权利要求1所述的航海模拟器用KaMeWa型喷水推进水翼船运动数学模型,其特征在于:所述船舶的襟翼液压伺服机构延迟特性的计算方法为
α · fpi * = T ei α fpi * + α fpi ,
其中:
Figure A2009100121480004C2
为襟翼伺服机构实际输出的角速度,Tei为执行机构的时间常数,αfpi *为襟翼伺服机构的实际输出角度,αfpi为命令输入襟翼角度。
7、如权利要求1所述的航海模拟器用KaMeWa型喷水推进水翼船运动数学模型,其特征在于:通过拟合船体的横剖面图,随着船舶航速变化而引起的变吃水和姿态变化,实时计算船体参数浮心位置、浮力、水线面面积和水线长度,计算方法为通过求解如下的方程组得到
Σ i = 1 2 F fi + 2 F H + ▿ cos θ + mg cos θ = 0 Σ i = 1 2 ( x fi - x G ) F fi + 2 ( x H - x G ) F H + ( x b - x G ) ▿ cos θ = 0 ,
其中:各物理量的含义与权利要求1中相同物理量的含义相同。
8、如权利要求1所述的航海模拟器用KaMeWa型喷水推进水翼船运动数学模型,其特征在于:所述喷水推进单元水动力的计算方法为
X J = T Jp cos δ Jp + T Js cos δ Js Y J = - T Jp sin δ Jp - T Js sin δ Js N J = ( T Jp sin δ Jp + T Js sin δ Js ) x G + ( T Jp cos δ Jp - T Js cos δ Js ) b ,
其中:XJ为KaMeWa型喷水推进器在X轴方向的作用力,YJ为KaMeWa型喷水推进器在Y轴方向的作用力,NJ为KaMeWa型喷水推进器在Z轴方向的作用力矩,*p和*s分别表示与左侧和右侧喷水推进器有关的推力TJ和偏折角δJ,xJ为喷水推进装置在X轴上的坐标;b为两个喷水推进装置之间的距离。
9、如权利要求1所述的航海模拟器用KaMeWa型喷水推进水翼船运动数学模型,其特征在于:所述水翼船喷水推进单元的倒航戽斗水动力的计算方法为
XB=ρQ(Vjcosαr-cblu),
其中:ρ为水的密度,Q为喷泵流量,Vj为喷口水流的喷射速度,αr为倒航戽斗将水流逆转的角度,与倒航戽斗收放位置成对应关系,cbl为边界层对进流速度的影响系数,u为船舶在X轴方向的速度。
CN200910012148A 2009-06-19 2009-06-19 航海模拟器用KaMeWa型喷水推进水翼船运动数学模型 Pending CN101615352A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN200910012148A CN101615352A (zh) 2009-06-19 2009-06-19 航海模拟器用KaMeWa型喷水推进水翼船运动数学模型

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN200910012148A CN101615352A (zh) 2009-06-19 2009-06-19 航海模拟器用KaMeWa型喷水推进水翼船运动数学模型

Publications (1)

Publication Number Publication Date
CN101615352A true CN101615352A (zh) 2009-12-30

Family

ID=41494972

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200910012148A Pending CN101615352A (zh) 2009-06-19 2009-06-19 航海模拟器用KaMeWa型喷水推进水翼船运动数学模型

Country Status (1)

Country Link
CN (1) CN101615352A (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104658369A (zh) * 2015-01-09 2015-05-27 张祖浩 一种浩航船舶稳性演示模型及其使用方法
CN109398594A (zh) * 2018-07-11 2019-03-01 哈尔滨工程大学 一种水翼船爬浪控制方法
CN109594603A (zh) * 2018-12-10 2019-04-09 哈尔滨工程大学 一种用于快速清理海管上方淤泥的射流型rov型挖沟机
CN110115840A (zh) * 2019-05-16 2019-08-13 腾讯科技(深圳)有限公司 虚拟场景中的物体移动控制方法、装置、终端及存储介质
CN114187805A (zh) * 2021-12-23 2022-03-15 中国人民解放军海军航空大学 一种基于气动力的专项飞行训练模拟系统及控制方法
CN114545823A (zh) * 2022-02-22 2022-05-27 武汉理工大学 一种用于喷水推进船模航行试验的单手柄矢量控制系统

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104658369A (zh) * 2015-01-09 2015-05-27 张祖浩 一种浩航船舶稳性演示模型及其使用方法
CN109398594A (zh) * 2018-07-11 2019-03-01 哈尔滨工程大学 一种水翼船爬浪控制方法
CN109398594B (zh) * 2018-07-11 2021-03-19 哈尔滨工程大学 一种水翼船爬浪控制方法
CN109594603A (zh) * 2018-12-10 2019-04-09 哈尔滨工程大学 一种用于快速清理海管上方淤泥的射流型rov型挖沟机
CN109594603B (zh) * 2018-12-10 2021-05-28 哈尔滨工程大学 一种用于快速清理海管上方淤泥的射流型rov型挖沟机
CN110115840A (zh) * 2019-05-16 2019-08-13 腾讯科技(深圳)有限公司 虚拟场景中的物体移动控制方法、装置、终端及存储介质
CN110115840B (zh) * 2019-05-16 2021-10-29 腾讯科技(深圳)有限公司 虚拟场景中的物体移动控制方法、装置、终端及存储介质
CN114187805A (zh) * 2021-12-23 2022-03-15 中国人民解放军海军航空大学 一种基于气动力的专项飞行训练模拟系统及控制方法
CN114187805B (zh) * 2021-12-23 2024-03-22 中国人民解放军海军航空大学 一种基于气动力的专项飞行训练模拟系统及控制方法
CN114545823A (zh) * 2022-02-22 2022-05-27 武汉理工大学 一种用于喷水推进船模航行试验的单手柄矢量控制系统
CN114545823B (zh) * 2022-02-22 2023-08-29 武汉理工大学 一种用于喷水推进船模航行试验的单手柄矢量控制系统

Similar Documents

Publication Publication Date Title
Bøckmann et al. Model test and simulation of a ship with wavefoils
Molland et al. Marine rudders and control surfaces: principles, data, design and applications
Belibassakis et al. Hydrodynamic performance of flapping wings for augmenting ship propulsion in waves
CN101615352A (zh) 航海模拟器用KaMeWa型喷水推进水翼船运动数学模型
CN107067871A (zh) 拖轮傍拖大型油轮工况的仿真系统
Yasukawa et al. Validation of 6-DOF motion simulations for ship turning in regular waves
Wille et al. Modeling and course control of sailboats
Bøckmann et al. The effect of a fixed foil on ship propulsion and motions
Liang et al. Research and simulation of ship roll control in turning motion
Lopes et al. An analytical model study of a flapping hydrofoil for wave propulsion
Nagarajan et al. Comparison of the mariner Schilling rudder and the mariner rudder for VLCCs in strong winds
Ueno et al. A prototype of submersible surface ship and its hydrodynamic characteristics
Htay et al. A CFD based comparison study of conventional rudder and rudder with bulb-fins system of KVLCC2 in waves
Suzuki et al. Motion simulation of an underwater vehicle with mechanical pectoral fins using a CFD-based motion simulator
Park et al. Effect of waterjet intake plane shape on course-keeping stability of a planing boat
Lv et al. Hydrodynamic investigations of a cross-domain vehicle with the capability of high-speed cruising on water surface
Desai et al. Augmenting maneuverability of UUVs with cycloidal propellers
Hess et al. Naval maneuvering research and the need for shear stress measurements
Abramowicz-Gerigk et al. Parametric study on the flow field generated by river barge bow steering systems
You et al. Study on the MMG three-degree-of-freedom motion model of a sailing vessel
Hirdaris Elements of Ship Dynamics and Marine Hydromechanics-Lecture Notes
Honaryar et al. Simulation of turning circle maneuver of a catamaran planing boat with a combined experimental and numerical method
Sen et al. Developing mathematical model for calculating forces affecting to Ship motions
Zhang et al. Numerical Investigation on Hydrodynamic Performance of a Harbor Tug
Altosole et al. Simulation of a marine dynamic positioning system equipped with cycloidal propellers

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C12 Rejection of a patent application after its publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20091230