CN101604010B - Calibration and correction system for satellite position location systems - Google Patents

Calibration and correction system for satellite position location systems Download PDF


Publication number
CN101604010B CN 200910141395 CN200910141395A CN101604010B CN 101604010 B CN101604010 B CN 101604010B CN 200910141395 CN200910141395 CN 200910141395 CN 200910141395 A CN200910141395 A CN 200910141395A CN 101604010 B CN101604010 B CN 101604010B
Prior art keywords
local oscillator
Prior art date
Application number
CN 200910141395
Other languages
Chinese (zh)
Other versions
CN101604010A (en
Original Assignee
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US43313802P priority Critical
Priority to US60/433,138 priority
Priority to US10/336,125 priority
Priority to US10/336,125 priority patent/US6816111B2/en
Application filed by 高通股份有限公司 filed Critical 高通股份有限公司
Priority to CN200380105804.8 priority
Priority to CN200380105804.82003.12.10 priority
Publication of CN101604010A publication Critical patent/CN101604010A/en
Application granted granted Critical
Publication of CN101604010B publication Critical patent/CN101604010B/en



To provide accurate and quick position measurements in a practical mobile position location system, the GPS receiver is calibrated, a frequency error in the next time period is predicted using a first frequency locked to an externally transmitted signal, and a second frequency is generated by a GPS oscillator. To predict the error in the next time period, several measurements are made over time, error estimations are made, an error function is approximated responsive to the set of error estimations. This predicted error is then used to correct the GPS receiver in the next time period. In one implementation, a multiple function portable device is disclosed for providing cellular communication using a network of cellular stations that operate at predefined ideal cellular frequencies, and also for providing position location using GPS satellites that transmit GPS signals at a predefined GPS frequency.


用于卫星定位系统的校准和校正系统 A satellite positioning system calibration and correction system

[0001] 本专利申请是申请日为2003年12月10日,最早优先权为2002年12月13日的第200380105804. 8 号专利申请(PCT/US2003/039495)的分案申请。 [0001] This patent application is filed on December 10, 2003, the first priority of a divisional application for the first 8 patent application No. 200380105804. December 13, 2002 of (PCT / US2003 / 039495) of.

[0002] 相关申请 [0002] RELATED APPLICATIONS

[0003] 本申请要求2002年12月13日提交的美国临时专利申请No. 60/433, 138的优先权。 [0003] This application claims priority to US provisional patent December 13, 2002 filed Application No. 60/433, 138.

发明领域 Field of the Invention

[0004] 本发明涉及一种通过使用无线信号来计算移动设备的位置的装置和方法,如GPS系统。 [0004] The position relates to one kind of mobile computing device to a radio signal by using apparatus and method of the present invention, such as GPS systems.

技术背景 technical background

[0005] 基于GPS的现有定位技术使用多个卫星的网络,这些卫星在已知时间在预定的GPS频率上发射信号。 [0005] Location-based network prior art using a plurality of GPS satellites, the satellites transmit GPS signals at a predetermined frequency known at the time. 地面上的GPS接收机测量来自可被“看到”的天空中的每个卫星的信号的到达时间。 GPS receivers on the ground from the measured arrival time signal can be "seen" by each satellite in the sky. 信号的到达时间以及卫星的确切位置和从各卫星发射信号的确切时间被用于对该GPS接收机的位置进行三角测量。 The exact position of the satellite and the arrival time of the signal and the exact amount of time from the satellite is used to transmit signals to triangulate the position of the GPS receiver. 标准的GPS接收机包括本地振荡器,其用于接收来自卫星的GPS信号。 Standard GPS receiver includes a local oscillator for receiving signals from GPS satellites.

[0006] 对来自GPS卫星的信号的获取对GPS接收机的本地振荡器中的频率变化非常敏感。 [0006] Gets very sensitive to signals from the GPS satellites change the frequency of the local oscillator in the GPS receiver. 很多因素会造成使GPS信号的获取变得困难。 Many factors can cause the GPS signal acquisition becomes difficult. 以相对低的功率发射GPS信号,并且GPS卫星处于地球轨道中。 Transmitting at relatively low power GPS signals and the GPS satellites in Earth orbit. 在GPS信号到达地面之前,其起始的低功率已经被大大降低了,这使得信号非常弱。 Before the GPS signal reaching the ground, has its original low power is greatly reduced, which makes the signal is very weak. 结果是,如果GPS接收机的本振频率即使稍微偏离GPS频率,那么有效地接收GPS信号也将变得困难且耗时。 As a result, if the local oscillation frequency of the GPS receiver even if slightly deviated from the GPS frequency, the GPS signal received effectively it will become difficult and time consuming.

[0007] 在很多包括GPS接收系统的通信系统中,存在有一个主本地振荡器,被称为“参考本地振荡器”。 [0007] In many communication systems include a GPS receiver system, there is a local master oscillator is called "local oscillator reference." 该参考本地振荡器的输出信号被依次馈送到一个或多个频率合成电路中,所述频率合成电路依次产生处于其他频率上的另外的信号,该另外的信号被提供给该系统中的各电路。 This reference local oscillator output signal is in turn fed to one or more of a frequency synthesizer circuit, the frequency synthesizer circuit in turn generates a further signal on another frequency, the further signal is supplied to each circuit in the system . 作为一个示例,对GPS接收系统而言,使用其额定输出频率为16. 368MHz的参考本地振荡器是常见的。 As an example, for a GPS receiver system, using the rated output frequency of the local oscillator 16. 368MHz reference it is common. 该振荡器的输出通常被馈送给频率合成电路,该频率合成电路使用该参考频率来产生处于1575. 42MHz附近的本振频率,随后在用于将输入GPS信号转换为接近基带的下变频电路中使用该本振频率。 The oscillator output is usually fed to the frequency synthesizer circuit, the frequency synthesizer circuit uses the reference frequency to generate a local oscillation frequency in the vicinity of 1575. 42MHz, then for an input GPS signal into a baseband down-conversion circuitry proximity of using the local oscillator frequency. 同样,该参考振荡器的输出可用于合成一个采样时钟,其频率通常为I. 023MHz的倍数,其中,该采样时钟用作对接近基带的转换后的GPS信号进行采样的数字化电路的一部分。 Similarly, the output of the reference oscillator can be used to synthesize a sampling clock, which is usually a multiple of I. 023MHz frequency, wherein the sampling clock signal as close to the GPS baseband conversion circuit is part of the digital sampled. 同样,在蜂窝电话接收机中,参考振荡器的振荡频率经常在IOMHz至20MHz范围内(取决于设计),该振荡频率用于产生另外的频率,以对信号进行下变频和采样。 Also, in the cellular telephone receiver, the reference frequency of the oscillator is often in the range of 20MHz to IOMHz (depending on the design), the oscillating frequency is further frequency for generating, following the signal frequency and sampling.

[0008] 在一些情况下,对GPS系统而言,采用如美国专利No. 5,841, 396、6,421,002等中披露的频率校准方法是有利的。 [0008] In some cases, for a GPS system, using the calibration method such as frequency disclosed in U.S. Patent No. 5,841, 396,6,421,002 and the like it is advantageous. 在一种方法中,测量蜂窝电话的本地振荡器(VCTCXO)的平均频率,然后,使用该平均频率来校准GPS接收机的振荡器的频率误差。 In one method, the measurement of the cellular phone a local oscillator (the VCTCXO) average frequency, then used to calibrate the average frequency of the GPS receiver frequency error of the oscillator. 该VCTCXO通常被频率锁定到非常稳定的所接收的蜂窝信号。 The VCTCXO normally locked to the frequency of the cellular signal received very stable. 另一种方法是将该GPS振荡器频率锁定到蜂窝、电话的本地振荡器。 Another method is to lock the oscillator frequency to the local GPS oscillator cellular, telephone. 如果该蜂窝电话振荡器的短期稳定性差,那么后一种方法的性能会受到影响。 If the short-term stability of the oscillator difference cellular telephone, then the performance of the latter method will be affected. 此种蜂窝电话振荡器的稳定性取决于许多因素,如蜂窝电话设计和平台移动。 Such cellular telephone oscillator stability depends on many factors, such as the internet and the mobile phone designs.

[0009] 所述校准方法有时会存在性能问题,包括: [0009] The calibration method sometimes have performance problems, including:

[0010] (A)由于与蜂窝电话发射机开/关相关的加热/致冷而引起的频率“竞争(racing) ” 问题; [0010] (A) Since the cellular telephone transmitter on / off associated heating / refrigeration caused by frequency "competition (Racing)" problem;

[0011] (B)还是由于与蜂窝电话发射机开/关相关的电压波动而引起的频率变化;以及 [0011] (B) or a frequency variation due to the cellular telephone transmitter ON / OFF-related voltage fluctuation caused; and

[0012] (C)由于环境影响引起的其他加热/致冷情况。 [0012] (C) due to other environmental effects caused by heating / refrigeration cases. [0013] 虽然在静止或以相对低的速度(如步行速度)移动的平台中,上述校准测量方法可以充分地工作,但是,在车用中所观察到的蜂窝振荡器的快速频率波动会导致校准性能的恶化。 [0013] While still at a relatively low speed, or (e.g., walking speed) of a mobile platform in the calibration measurement can be sufficiently work, however, with the vehicle in rapid frequency fluctuations observed in the cellular oscillator may lead to calibrated performance deterioration. 也就是说,由于蜂窝振荡器被频率锁定到网络,所以所接收的蜂窝信号的频率中的快速波动会导致很大的校准误差。 That is, since the oscillator is frequency locked to the cellular network, the frequency of the received cellular signal in a large rapid fluctuations cause calibration errors. 例如,当车辆接近服务小区基站然后经过该基站时,这样的快速波动就会发生。 For example, when the vehicle approaches and then passes through the base station serving cell base station, such a rapid fluctuation occurs. 在这个短时间内,所观察的来自该小区基站的直接导频信号的频率会在大约一秒或几秒内从大的正多普勒频率(如+100Hz)快速地变化到大的负多普勒频率(如-100Hz)。 In this short time, the frequency of direct conduction from the cell base station the pilot signal will be observed in about one second or a few seconds from a large positive Doppler frequency (e.g., + 100Hz) changes rapidly to large multi-negative Doppler frequencies (e.g. -100Hz). 所接收的蜂窝载波频率中的快速变化,结合蜂窝电话发射机的开或关,会导致频率锁定校准方法的效率恶化。 Cellular rapid change in the carrier frequency of the received, combined with a cellular telephone transmitter is on or off, will lead to a calibration method of frequency locking efficiency deteriorates.


[0014] 为了在实际的移动定位设备中提供准确和快速的位置测量,这里描述的一种系统通过响应于锁定到外部发射信号的第一频率和GPS振荡器产生的第二频率预测下一个时间周期(period)中的频率误差,来校准GPS接收机。 Second frequency [0014] In order to provide accurate and rapid measurement of the actual position of a mobile positioning device, a system described herein is locked to the external signal transmitting a first response to the GPS oscillator frequency and a next time prediction frequency error period (period) is to calibrate the GPS receiver. 具体地讲,该校准系统进行数次相对时间的测量,估计每次测量中的误差,近似出一个误差函数,并预测下一个时间周期的误差。 Specifically, several calibration system to measure the relative time of each measurement estimation error, an error function approximation, prediction error and the next time period. 然后,在下一个时间周期中,使用该预测误差来校正GPS接收机。 Then, in the next cycle time, the prediction error is corrected using a GPS receiver.

[0015] 公开了一种使用外部发射信号(不是GPS信号)来校准和校正移动设备中的GPS接收机的方法和装置,其中该外部发射信号具有预定的精确载波频率。 [0015] discloses a method and apparatus for transmitting a signal using an external (other than the GPS signal) to calibrate and correct the GPS receiver in the mobile device, wherein the external transmitter signal having a predetermined precision carrier frequency. 为了接收在预定GPS频率上发射的GPS信号,所述方法包括:响应于该精确载波频率,产生第一频率信号;以及在GPS接收机中产生被应用来处理GPS信号的第二频率信号。 In order to receive the GPS signal transmitted at a predetermined frequency GPS, the method comprising: in response to the precision carrier frequency, generating a first frequency signal; and generating a second frequency signal is applied to process GPS signals in the GPS receiver. 例如,第一频率可以是蜂窝接收机所接收的频率的分谐波,而第二频率可以由GPS接收机中的参考GPS振荡器直接产生,或者,可以由参考GPS振荡器得到。 For example, the first frequency may be a subharmonic frequency of the received cellular receiver, the second frequency may be generated directly by the GPS receiver in the GPS reference oscillator, or can be obtained from the GPS reference oscillator. 所述校准方法包括:估计第一时间周期中的第一和第二频率之间的误差;对于至少一个另外的时间周期,重复该误差估计步骤,以提供一个误差估计集合;响应于该误差估计集合,近似出第二频率的误差函数;以及使用该近似出的函数,预测下一个时间周期中的误差。 Said calibration method comprising: estimating an error between a first time period a first and a second frequency; for at least one further time period, the error estimation step is repeated to provide a set of error estimates; in response to the estimation error collection, the approximation error function of a second frequency; and using the approximated function, the prediction error in a time period. 产生一个校正信号,并且响应于该预测误差,在下一个时间周期中对该GPS接收机中的振荡器进行校正,以处理GPS信号。 Generating a correction signal in response to the prediction error, the next time period is corrected in the GPS receiver oscillator, to process GPS signals.

[0016] 通常,所述校准方法包括:在多个时间周期内,重复测量第二和第一频率的比值,并且,对于每个时间周期,将该比值与一个预定数进行比较,以分别对每个时间周期估计误差。 [0016] Generally, the calibration method comprising: a plurality of time periods, a ratio of a first frequency and a second measurement is repeated, and, for each time period, this ratio is compared with a predetermined number, respectively of each period estimation error. 所述误差预测步骤通常包括:通过响应于所述误差估计集合,拟合一个数学函数,如对该误差估计集合求均值、使用该误差估计集合执行数学回归方法以产生该误差估计集合的最小均方拟合,从而确定第二频率的频率误差与时间的关系。 The prediction error typically includes the step of: estimating a set of response to the error by fitting a mathematical function, such as averaging the set of error estimates, using the set of error estimates to perform a mathematical regression method to generate the set of minimum average error estimate squares fit to determine the relationship between the time error and the frequency of the second frequency.

[0017] 在公开的一些方法中,所述校正步骤包括:校正GPS本地振荡器,该GPS本地振荡器提供第二频率以将在该GPS频率上的GPS信号转换为预定的中频。 [0017] In some methods disclosed in said correcting step comprises: correction GPS local oscillator, the GPS local oscillator providing a second frequency converted GPS signal to the GPS frequency to a predetermined intermediate frequency. 而在公开的其他方法中,该GPS接收机包括数字处理系统,该数字处理系统包括数字本地振荡器,并且所述校正步骤包括校正该数字本地振荡器。 In another method disclosed, the digital processing system comprising a GPS receiver, the digital processing system includes a digital local oscillator, and the correction step includes correcting the digital local oscillator.

[0018] 在一种实现中,公开了一种多功能便携设备,其使用工作在预定理想蜂窝频率上的多个蜂窝基站来提供蜂窝通信,并且,还使用在预定GPS频率上发射GPS信号的GPS卫星来提供定位。 [0018] In one implementation, there is disclosed a multifunctional portable apparatus, which uses a plurality of cellular base stations work on a predetermined frequency to provide a desired honeycomb cellular communication, and is also used to transmit on a predetermined frequency of the GPS signal GPS GPS satellites to provide positioning. 该多功能便携设备包括:蜂窝通信系统,其包括第一本地振荡器,该第一本地振荡器产生用于对与多个蜂窝基站之间的通信进行解调的第一频率;GPS系统,其包括第二本地振荡器,该第二本地振荡器产生第二频率以处理所述GPS信号;误差预测与校正系统,用于响应于在多个先前时间周期内的第一和第二频率的测量值,预测下一个时间周期中的误差,该系统还响应于该预测误差,产生下一个时间周期的校正信号;以及该GPS系统中的一个本地振荡器,用于接收校正信号,并与此响应,在下一个时间周期内处理所述GPS信号。 The multi-function portable device comprising: a cellular communication system including a first local oscillator, the first local oscillator for generating a plurality of communication between the cellular base stations demodulating a first frequency; the GPS system, which It comprises a second local oscillator, the second oscillator generating a second local frequency to process the GPS signal; prediction and error correction system, in response to the first and second measurement frequencies in a plurality of previous time periods value, the next predicted error of a time period, the system further responsive to the prediction error, a correction signal is generated the next time period; GPS system and a local oscillator for receiving a correction signal, and in response to this , the next time said GPS signal processing cycle.

[0019] 附图简述 [0019] BRIEF DESCRIPTION

[0020] 为了更充分地理解本发明,下面参考附图,对实施例进行详细描述,其中: [0020] For a fuller understanding of the invention, with reference to the following drawings, detailed description of the embodiments, wherein:

[0021] 图I是多个蜂窝基站、GPS卫星和一个手持诸如蜂窝电话之类的移动设备的用户的透视图; [0021] Figure I is a plurality of cellular base stations, GPS satellites, and a handheld mobile devices such as cellular telephones perspective view of a user;

[0022] 图2是一个包含有通信和定位系统的实施例中的移动设备的方框图; [0022] FIG. 2 is a block diagram of a mobile communication device and embodiments have positioning system comprising;

[0023]图3是通信系统、定位系统以及误差预测与校准系统的一个实施例的方框图; [0023] FIG. 3 is a communication system, a block diagram of an embodiment of the positioning system and the error prediction and calibration system;

[0024]图4是通信系统、定位系统以及误差预测与校准系统的另一个实施例的方框图; [0024] FIG. 4 is a communication system, a block diagram of another embodiment of the positioning system and the error prediction and calibration system of the embodiment;

[0025] 图5是示出在一个实施例中被执行来预测误差并产生校正信号的一系列步骤的流程图; [0025] FIG. 5 is a flowchart showing a series of steps in one embodiment of the embodiment is performed to generate prediction errors and the correction signal;

[0026] 图6A是一个示例中蜂窝振荡器频率和GPS振荡器频率的典型频率变化的图示; [0026] FIG 6A is an example of the cellular oscillator frequency and oscillator frequency GPS illustrating a typical frequency variation;

[0027] 图6B是使用图6A的频率观察结果的GPS振荡器频率与蜂窝振荡器频率的比值的图示; [0027] FIG 6B is a ratio of the cellular oscillator frequency of the GPS oscillator frequency illustrated in FIG. 6A observation frequency;

[0028] 图6C是使用图6B的比值的误差估计的图示; [0028] FIG 6C is a graphical representation of the ratio error estimated in FIG. 6B;

[0029] 图6D是示出根据图6C中的误差估计而近似出的频率校正的图示; [0029] FIG 6D is a diagram illustrating a frequency correction based on the approximated error estimate FIG. 6C;

[0030] 图7是由接近即时的+IOOHz到-IOOHz频率跳变得到的线性斜率估计的图示; [0030] FIG. 7 is made by the near-instant to + IOOHz -IOOHz frequency hopping illustrating the linear slope estimation;

[0031] 图8是示出一个其中小区基站塔距公路大约为15米、高度大约为15米的示例的线性斜率估计的图示;和 [0031] FIG. 8 is a diagram illustrating a base station cell tower from which the road is about 15 meters, a height of approximately 15 meters in an example of the estimated linear slope shown; and

[0032] 图9是正态分布的随机频率数据的线性斜率估计的示意图。 [0032] FIG. 9 is a schematic view of a linear slope normal random frequency data estimation.

[0033] 发明详述 [0033] DETAILED DESCRIPTION

[0034] 下面结合附图对本发明进行描述,在附图中,相同的数字表示相同或相似的部件。 DRAWINGS The invention will be described [0034] below with reference to the accompanying drawings in which like numerals represent the same or like parts.

[0035] 术语和字母缩写表 [0035] The terms and abbreviations letter

[0036] 在详细描述中,使用以下术语和字母缩写: [0036] In the detailed description, the following terms and Acronym:

[0037] 基站:发射精确载波频率的站,比如蜂窝电话网络中的基站; [0037] the base station: transmitting a precision carrier frequency of the station, such as a cellular telephone network base station;

[0038] 校准:关于测量当前时间的误差和预测未来时间的误差的处理过程; [0038] Calibration: measuring a current time on the prediction errors and processing errors of future time;

[0039] 校正:关于对在校准处理过程中预测的误差进行补偿的方法; [0039] Correction: relates to a method of prediction errors in the calibration process to compensate;

[0040] CDMA :码分多址; [0040] CDMA: Code Division Multiple Access;

[0041] FSK:频移键控; [0041] FSK: Frequency Shift Keying;

[0042] GPS :全球定位系统,虽然术语GPS经常被采用来表示美国全球定位系统,该术语在这里的含义和这里描述的所有装置的方法同样很好地适用于其他全球定位系统,如俄罗斯的Glonass系统和规划的欧洲Galileo系统。 [0042] GPS: Global Positioning System, GPS, although the term often used to represent all devices US Global Positioning System, the meaning of the term herein and methods described herein apply equally well to other global positioning systems, such as the Russian the European Galileo system Glonass system and planning. 在一些系统中,用术语卫星定位系统(SPS)替换术语GPS ; In some systems, alternative terms, term GPS satellite positioning system (the SPS);

[0043] GSM :全球移动通信系统; [0043] GSM: Global System for Mobile communication system;

[0044] 移动设备:通常由其位置待确定的用户携带的如蜂窝电话之类的便携设备; [0044] The mobile device: generally be determined by the position of a user carrying a portable device such as a cellular phone or the like;

[0045] 多功能设备:具有两种或更多操作功能(如GPS系统和蜂窝通信系统)的设备; [0045] The multifunction device: having two or more operational functions (e.g., GPS system and a cellular communication system) device;

[0046] 导频信号:一种信号,通常利用伪随机序列对其进行调制,该信号由蜂窝基站发射,用于与远程设备建立通信。 [0046] The pilot signal: A signal, typically using a pseudo-random sequence it is modulated, the signal is transmitted by cellular base station, for establishing communication with a remote device. 虽然术语“导频”经常用于CDMA蜂窝系统的环境中,但该术语在这里同样可广泛地适用于所有其他蜂窝通信系统; Although the term "pilot" is often used in the environment of the CDMA cellular system, but the term is herein also be broadly applicable to all other cellular communication systems;

[0047] 精确载波频率:一种从外部信源发射的可高度预测、高度精确的频率,精确载波频率可以直接由外部信源发射,或者从外部信源发射的信号中获取,如美国专利No. 6,421,002中所披露的那样。 [0047] precision carrier frequency: highly predictive for transmitting from an external source, highly accurate frequency, precision carrier frequency may be transmitted directly from an external source, or transmit a signal from an external source acquired, as described in US Patent No in. 6,421,002 disclosed above.

[0048] 变量表 [0048] Variable Table

[0049] 下表列出了这里讨论的一些变量: [0049] The following table lists some of the variables discussed here:

[0050] 变量描述 [0050] Variable Description

[0051 ] Sf :(蜂窝或GPS频率的)理想频率和实际频率之间的差值; [0051] Sf) the difference between the desired frequency and the actual frequency :( cellular or GPS frequency;

[0052] fc :实际的蜂窝振荡器频率(例如第一振荡器频率); [0052] fc: Cellular actual oscillator frequency (e.g., a first oscillator frequency);

[0053] fc0 :理想的蜂窝振荡器频率(例如精确载波频率); [0053] fc0: over the cellular oscillator frequency (e.g. precision carrier frequency);

[0054] fg :GPS振荡器频率(例如第二振荡器频率); [0054] fg: GPS oscillator frequency (e.g., a second oscillator frequency);

[0055] f;: 一个实施例中由频率合成器提供的GPS混合频率; [0055] f ;: a GPS embodiment provided by the frequency synthesizer embodiment mixed frequency;

[0056] fg0 :理想GPS振荡器频率 [0056] fg0: GPS oscillator frequency over

[0057] f::时间t = 0时的初始GPS振荡器频率(例如16. 368MHz); [0057] f :: initial time t = 0 when the GPS oscillator frequency (e.g. 16. 368MHz);

[0058] f2 :时间t = 0时的初始蜂窝振荡器频率(例如19. 2MHz); [0058] f2: an initial time t = cellular oscillator frequency (e.g. 19. 2MHz) at 0;

[0059] R :第一和第二振荡器频率之间的测量比值; [0059] R: measuring the ratio between the first and second oscillator frequency;

[0060] R0 :蜂窝振荡器频率和GPS振荡器频率之间的理想比值; [0060] R0: the ideal ratio between the cellular oscillator frequency and oscillator frequency GPS;

[0061] S :—个实施例中用作校正信号的缩放(scale)因子。 [0061] S: - in the embodiment as scaling (Scale) a correction factor signal.

[0062] 如同背景部分所述,来自参考本地振荡器的参考频率可用于合成(或更通常地,“获取”)在该系统中使用的其他频率。 [0062] As part of the background, from the reference local oscillator reference frequency can be used to synthesize (or more generally, "get") of the other frequencies used in the system. 为便于描述这里的一些实施例,使用术语“本地振荡器”或“振荡器”,在一个实施例中,该术语与参考本地振荡器是同义的。 In order to facilitate some embodiments described herein, the term "local oscillator" or "oscillators", in one embodiment, the local oscillator with a reference term is synonymous. 但是,其他实施例可以将术语“本地振荡器”或“振荡器”关联到例如经由频率合成过程从此种参考本地振荡器获取的任何振荡信号。 However, other embodiments may be the term "local oscillator" or "Oscillator" related to, for example, via a frequency synthesis process with reference to any such oscillating signal from a local oscillator obtained. 由于此种所获取的信号的平均频率相对于参考振荡器的频率具有一种已知的关系,所以,将本发明的方法和装置应用于这些振荡器输出的任何一个中是可以理解的。 Since the average frequency of this signal is obtained with respect to the frequency of the reference oscillator having a known relationship, therefore, the method and apparatus of the present invention is applicable to any one of these oscillator output is understandable. 因此,在本发明描述中,术语“本地振荡器”或“振荡器”被广泛地定义成包括参考振荡器或其频率是从参考振荡器获取的任何振荡器。 Therefore, in describing the present invention, the term "local oscillator" or "oscillator" is broadly defined to include any reference oscillator, or the oscillator frequency is obtained from the reference oscillator. 同样,当使用术语“振荡器频率”时,所指的是参考振荡器的频率或其频率是从参考振荡器获取的任何振荡器的频率。 Likewise, when the term "oscillator frequency" refers to any frequency oscillator or the frequency of the reference oscillator frequency is obtained from the reference oscillator. 在一种诸如蜂窝电话收发器和GPS接收机的组合设备之类的多功能通信设备中,可能存在有两个或多个参考振荡器,例如,一个用于蜂窝电话电路,一个用于GPS电路。 In one multi-functional communication device, such as a combination of devices such a cellular telephone transceiver and a GPS receiver, there may be two or more reference oscillator, for example, for a cellular telephone circuit, a circuit for GPS . 使用术语GPS本地振荡器和蜂窝电话本地振荡器来在不同的振荡器链之间进行区分。 The term GPS local oscillator and a cellular phone local oscillator to distinguish between different oscillator chain.

[0063] 还应当注意的是,参考振荡器的频率可以稍微变化,其中,为了补偿相对于理想频率的各种误差,可以按照一些方式对该频率进行控制。 [0063] It should also be noted that the frequency of the reference oscillator may vary somewhat, which, in order to compensate for the various errors with the ideal frequency, the frequency can be controlled in some fashion. 例如,在蜂窝电话中,将压控温度补偿晶体振荡器(VCTCXO)用作频率参考是很常见的。 For example, in a cellular phone, a voltage controlled temperature compensated crystal oscillator (the VCTCXO) is used as a common frequency reference. 在这里,使用补偿过程,在补偿过程中,所接收的非常稳定的蜂窝信号用于测量和校正VCTCXO频率中的误差。 Here, a compensation procedure, in the compensation process, the received signal is very stable cellular VCTCXO for measuring and correcting the error in frequency. 此外,温度测量电路被用于补偿由于环境稳定波动而导致的频率误差。 Furthermore, the temperature measuring circuit is used to compensate for a frequency error caused by environmental fluctuations stable.

[0064] 概述 [0064] Overview

[0065] 如同背景技术中所述,所接收的蜂窝振荡器频率中的快速变化会导致校准方法的效率恶化,其中所接收的蜂窝振荡器频率中的快速变化与蜂窝电话发射机的开或关相一致,在所述校准方法中,使用由蜂窝系统的本地振荡器观察的外部精确载波频率来校准GPS本地振荡器。 [0065] As described in the background art, rapid changes in the oscillator frequency of the received cell will lead to a deterioration in the efficiency of the calibration method, rapid changes in the cellular oscillator frequency wherein the received and the cellular telephone transmitter is on or off coincides, in the calibration process, the use of external precision carrier frequency is observed by the local oscillator to calibrate the cellular system GPS local oscillator. 使用这里描述的系统,通过在足够长时间周期内观察蜂窝电话和/或GPS系统中的本振频率的频率变化,可以改善对GPS振荡器的校准。 Using the system described herein, by observing the change in the frequency of a cellular telephone and / or the local oscillation frequency of the GPS system is a sufficient time period, can improve the calibration of the GPS oscillator. 如同这里所述,可以定期地执行频率比较过程,其间隔可能是0. 5至I. 0秒,从而产生一个观察结果集合。 As described herein, may be performed periodically frequency comparison process, it may be spaced I. 0 to 0.5 seconds to produce a set of observations. 然后,使用如线性(或更高阶)回归等曲线拟合技术,将这些观察结果(例如10至20个最新的观察结果)用来确定频率的变化率与时间的关系。 Then, using the linear (or higher order) regression curve fitting techniques, these observations (e.g., 10 to 20 most recent observation) used to determine the relationship between the rate of change of frequency versus time. 该过程可以产生一个误差预测,然后将该误差预测用于校准GPS系统中的本地振荡器,这将消除由快速频率跳变而导致的误差,比如,当车辆中的移动设备经过小区基站时会发生的+100至-IOOHz的频率跳变。 The process may produce a prediction error, the prediction error is then used to calibrate the local oscillator in the GPS system, which will eliminate the error caused by the fast frequency hopping result of, for example, when the vehicle will be in a mobile device through a cell base station +100 to -IOOHz occurrence frequency hopping.

[0066] 这里披露的方法和装置可用于GPS振荡器频率相对于时间漂移的情形。 The method and apparatus [0066] disclosed herein may be used in the case of GPS time with respect to the oscillator frequency drift. 因此,这里讨论的各种误差和校正是时间的函数,例如,作为环境温度快速改变的结果。 Thus, various error correction and discussed herein is a function of time, e.g., as a result of ambient temperature changes rapidly. 如同这里所述,随后将多个此种测量值(至少两个)用于预测未来的GPS振荡器频率与时间的关系,因此可以用于对该振荡器的漂移进行校正。 As described herein, then such a plurality of measured values ​​(at least two) relationship for predicting future GPS oscillator frequency and time may therefore be used to correct the drift of the oscillator. 通常,在相对短的时间周期(如30秒)内,将这些漂移适当地模型化为时间的线性函数,而在更长的时间周期内,二阶曲线拟合(或更高阶的拟合)可能更合适。 Typically, in a relatively short period of time (e.g., 30 seconds), these drifts appropriately modeled as a linear function of time, but over a longer period of time, a second order curve fit (or higher order fit ) might be more appropriate. 这里描述的对测量误差的曲线拟合可以用于对这种GPS振荡器漂移进行补偿。 Described herein for the measurement error curve fitting may be used to compensate for such a GPS oscillator drift.

[0067] 描述 [0067] Description

[0068] 图I示出了一种可实现本发明的环境。 [0068] Figure I illustrates an environment of the present invention may be implemented. 在所示出的环境中,GPS接收机和蜂窝电话在一个移动单元中一起实现,但是,显而易见的是,本发明也可用于其他系统中,在所述其他系统中,被锁定到一个精确载波频率的第一振荡器的频率可用于校准第二振荡器。 In the illustrated environment, GPS receiver and a cellular telephone in the mobile unit implemented together, it will be apparent that the present invention may also be used in other systems, the other system, is locked to a precision carrier frequency of the first oscillator frequency can be used to calibrate the second oscillator.

[0069] 图I是所示统称为10的多个蜂窝基站、统称为11的GPS卫星和一个手持移动设备14的用户12的透视图。 [0069] Figure I is a plurality of cellular base stations collectively referred to as FIG. 10, referred to as GPS satellites and a perspective view of a handheld mobile device user 14 12 11. 如结合图2进行的更详细的描述,移动设备14可以包括诸如蜂窝电话之类的通信系统和诸如GPS系统之类的定位系统。 As described in more detail in conjunction with FIG. 2, the mobile device 14 may include a communication system such as a cellular phone and a positioning system such as GPS system or the like. 用户12例如可以如图所示的步行,或者也可以在汽车中或公共交通系统中移动。 User 12 may, for example, as shown in FIG walking, or may be moved in a car or public transport system.

[0070] 蜂窝基站10包括任意数量的蜂窝基站,该蜂窝基站用作与该移动设备进行连接的通信网络的一部分。 [0070] The base station 10 includes any number of cellular base stations, cellular base station as part of the communication network connected with the mobile device. 所述蜂窝基站连接到蜂窝基础结构网络(infrastructurenetwork) 15,蜂窝基础网络15提供与多个其他通信网络之间的通信服务,所述其他通信网络比如是公共电话系统16、如因特网之类的计算机网络17以及如18所示的其他通信系统。 The cellular base station connected to a cellular infrastructure network (infrastructurenetwork) 15, a communication service between a cellular infrastructure network 15 provided with a plurality of other communication networks, such as the other communication network 16, the Internet computer public telephone system network 17 and other communication system 18 as shown. 蜂窝基础结构网络通常提供通信服务,该通信服务使蜂窝电话用户通过使用电话系统16与另一电话连接,但是,也可以使用这些蜂窝基站与其他设备进行通信和/或用于其他通信目的,如与手持个人数字助理(PDA)进行因特网连接。 Cellular infrastructure network typically provides communication services that enable a cellular telephone communication service to users connected to another telephone by using the telephone system 16, however, can also use these cellular base stations to communicate with other devices and / or for other communication purposes, such as the Internet connection with a handheld personal digital assistant (PDA).

[0071] 在一个实施例中,蜂窝基站10是CDMA通信网络的一部分,但在其他实施例中,可以使用其他类型的通信网络,如GSM网络。 [0071] In one embodiment, the base station 10 is part of a CDMA cellular communications network, in other embodiments, other types of communication networks, such as GSM networks. 在CDMA系统中,每个蜂窝基站定期地发射用于惟一标识该蜂窝基站的伪随机序列。 In a CDMA system, each base station periodically transmit a pseudo-random sequence that uniquely identifies a cellular base station. 该伪随机序列是一系列用于锁定接收机的比特。 The pseudo-random sequence is a series of bits for locking the receiver. 在CDMA术语中,该伪随机序列被称为“导频信号”,如同这里所使用的那样,术语“导频信号”可用于任何蜂窝系统以及CDMA系统。 In CDMA terminology this pseudo-random sequence is referred to as a "pilot signal", as used herein, the term "pilot signal" may be used in any cellular system and the CDMA system. 例如,由GSM蜂窝基站提供的各种同步信号。 For example, it provided by a GSM cellular base station various synchronizing signals. 在预定的、非常精确的频率上,从蜂窝基站发射CDMA和GSM信号,其中所述预定的、非常精确的频率提供在这里描述的一个实施例中的精确载波频率。 In a predetermined, very precise frequencies, CDMA and GSM transmit signal from a cellular base station, wherein said predetermined, very accurate frequency and the carrier frequency to provide precise embodiment one embodiment described herein.

[0072] GPS卫星11包括任意数量的卫星,它们用于对GPS接收机进行定位。 [0072] GPS satellites 11 comprise any number of satellites that are used to locate the GPS receiver. 这些卫星与基于地面的GPS通信系统19进行通信,该GPS通信系统19为GPS系统提供控制功能。 These GPS satellite and ground-based communication system 19 to communicate, the GPS communication system 19 provides control functions for the GPS system. 这些卫星被同步来同时定期地发送无线信号。 The satellites are synchronized to periodically transmit wireless signals simultaneously. 当GPS接收机检测到这些信号时,GPS系统计算所检测到的GPS信号从各自的卫星传输到该接收机所需的时间量。 When the GPS receiver detects signals, GPS system calculates the GPS signals from the respective detected transmission to the satellite receiver to the amount of time required. 这假设GPS接收机具有准确的本地时钟。 This assumes that the GPS receiver has accurate local clock. 但是,只要同时接收到四个或更多个此种信号,该时钟也可由所接收到的GPS信号自身设定。 However, as long as the simultaneously received four or more such signals, which may also be a clock of the received GPS signal itself is set.

[0073] 图2是包含通信系统和定位系统的移动设备14的一个实施例的方框图。 [0073] FIG. 2 is a communication system comprising a mobile device and a positioning system 14 is a block diagram of an embodiment. 图2示出了与天线21连接的蜂窝通信系统22。 FIG 2 shows a cellular communication system is connected to the antenna 2122. 蜂窝通信系统22包括用于与蜂窝基站进行通信和/或检测来自蜂窝基站的信号的合适设备、硬件和软件,其包括本地振荡器23和将本地振荡器23锁定到蜂窝基站频率的自动频率控制(AFC)系统24。 22 comprises suitable devices, hardware, and software for communication and / or detecting signals from cellular base station and cellular base station, which includes a local oscillator 23 and local oscillator 23 is locked to the base station of the automatic frequency control the frequency of a cellular communication system (AFC) system 24. 在理想情况下,该频率为f。 In the ideal case, the frequency f. . . 如上所述,虽然在AFC的控制下,本地振荡器可以被锁定到所接收的蜂窝基站频率,但由于比如移动设备的移动的原因,本地振荡器产生的实际蜂窝频率f。 As described above, although under the control of the AFC, the local oscillator may be locked to the frequency of the received cellular base station, but such movement causes the mobile device, a cellular actual local oscillator frequency f. 可能与理想的基站频率f。 It may be the ideal base frequency f. . 不同。 different. 换言之,所发射的基站频率和实际的本振频率可能没有很好地同步。 In other words, the base station and the actual frequency of the local oscillation frequency transmitted may not be well synchronized. 蜂窝通信系统22被耦合到误差预测与校准系统30,由此允许传送诸如蜂窝本振频率f。 Cellular communication system 22 is coupled to the error prediction and calibration system 30, such as a cellular transmission thereby allowing the local oscillation frequency f. 之类的数据,该本振频率f。 Such data, the local oscillation frequency f. 用于误差预测,如别处详细描述。 A prediction error, as described in detail elsewhere.

[0074] 在一个实施例中,蜂窝通信系统22包括适合于与基站的CDMA网络进行通信的CDMA通信系统,但是,在其他实施例中,该蜂窝通信系统可以包括诸如GSM之类的另一类型的网络。 [0074] In one embodiment, the cellular communication system 22 comprises a CDMA communication system suitable for communicating with a CDMA network of base stations, however, in other embodiments, the cellular communication system may comprise another type, such as GSM, network of.

[0075] 移动设备控制系统25与通信系统22和定位系统27连接。 [0075] The mobile device control system 25 is connected to the communication system 22 and the positioning system 27. 该移动设备控制系统25包括任何合适的结构,如微处理器、存储器、其他硬件、固件和软件,以为与该控制系统25连接的系统提供合适的控制功能。 The mobile device control system 25 includes any suitable structure, such as a microprocessor, memory, other hardware, firmware and software that provides a suitable control system 25 is connected with the function of the control system. 控制系统25连接到用户接口26,该用户接口26包括任何适合于与用户交互的组件,如键盘、用于语音通信服务的麦克风/扬声器以及诸如背亮式(backlit)IXD显示器之类的显示器。 The control system 25 is connected to a user interface 26, user interface 26 which includes any suitable components to interact with the user, such as a keyboard, a display, a microphone for voice communication services / speakers and a display such as a backlit IXD (backlit) and the like. 连接到定位系统27的移动设备控制系统25和用户接口26为GPS接收机提供合适的功能,如控制用户输入和显示结果。 The mobile device control system 27 is connected to a positioning system 25 and user interface 26 provide suitable functions for the GPS receiver, such as control of user input and display the results.

[0076] 定位系统27,在该实施例中为GPS系统,其与GPS天线28连接以接收在理想GPS频率或附近发射的GPS信号。 [0076] The positioning system 27, the GPS system in this embodiment, the GPS antenna 28 which is coupled to receive a frequency at or near the ideal GPS transmits GPS signal. GPS系统27包括用于接收和处理GPS信号的任何合适的硬件和软件,并执行使用合适的定位算法来确定位置所必需的任何计算。 The GPS system 27 comprises any suitable means for receiving and processing hardware and software of the GPS signal, and performs positioning using the appropriate algorithm to determine the position of any computation required. GPS系统的示例如图3和4所示,并参照图3和图4进行描述。 Exemplary GPS system shown in Figure 3 and 4, and described with reference to FIGS. 3 and 4. 在Norman F. Krasner的美国专利No. 5,841,396、6,002, 363,6, 421,002中公开了GPS系统的其他示例。 In U.S. Patent No. Norman F. Krasner's No. 5,841,396,6,002, 363,6, 421,002 discloses additional examples of GPS systems. GPS系统27包括一个或多个本地振荡器29,所述本地振荡器29用于对来自GPS卫星的GPS信号进行下变频。 The GPS system 27 includes one or more local oscillator 29, local oscillator 29 for the GPS signals from the GPS satellites downconversion.

[0077] GPS系统27被耦合到误差预测与校准系统30,由此可以用于传送诸如GPS振荡器频率fg之类的数据。 [0077] GPS system 27 is coupled to the error prediction and calibration system 30, whereby the data transfer may be used such as a GPS oscillator frequency fg and the like. 如同本说明书中其他地方详细描述的那样,将GPS振荡器频率fg与蜂窝振荡器频率f。 As used in this specification, as described in detail elsewhere, the GPS oscillator frequency fg of the cellular oscillator frequency f. 一起使用,进行误差预测并产生一个校正信号,该校正信号被提供给GPS系统27。 Used together, for error prediction and generates a correction signal, the correction signal is provided to the GPS system 27. [0078] 现在参考图3,在图3中示出了定位系统27a、通信系统22a和误差预测与校难系统30a的一个实施例。 [0078] Referring now to Figure 3, in FIG. 3 illustrates an embodiment of the positioning system 27a, 22a and a communication system with error correction is difficult to predict the system 30a of Fig. 通过向前面讨论的参考标记附加一个小写字母(如向“21”附加“a”构成“21a”)来指定前述部件的实现。 Discussed by reference to a lower case letter in front of the marking (e.g., to "21" attached "a" configuration "21a") to achieve the specified member.

[0079] 通信系统22a包括一个具有一个AFC电路的无线调制解调器32,该AFC电路频率锁定到所接收的通信信号,从而提供线路33上的蜂窝振荡器频率输出f。 [0079] 22a comprises a communication system having a wireless modem AFC circuit 32, the AFC circuit is locked to the frequency of the received communication signal, thereby providing a cellular oscillator frequency f output on line 33. ,该蜂窝振荡器频率输出f。 The cellular oscillator output frequency f. 被提供给误差预测与校准系统30a。 It is supplied to the error prediction and calibration system 30a.

[0080] 在该实施例中的定位系统27a包括GPS RF-IF下变频器34,该GPSRF-IF下变频器34接收GPS信号并将其转换为线路35上的处于中频fIF上的信号。 [0080] In this embodiment, a positioning system 27a includes a converter 34 in the GPS RF-IF, the inverter 34 receives the GPS signal and the GPSRF-IF is converted into the signal on the line 35 on the intermediate frequency fIF. 将中频(IF)信号提供给模/数转换器36,然后,将该数字输出提供给GPS数字处理系统37,GPS数字处理系统37用于接收该数字信号并以一种方式对其进行处理,从而提供定位信息。 The intermediate frequency (IF) signal is supplied to an analog / digital converter 36, then the digital output to the digital processing system 37 GPS, GPS digital processing system 37 for receiving the digital signal and to process it in a manner, to provide location information.

[0081] RF-IF下变频器34将所接收的GPS信号与频率合成器38提供的合成频率f/组合。 [0081] RF-IF down-converter 34 the received GPS signal and the frequency synthesizer 38 provides a synthesized frequency f / combinations. 下变频器中的组合处理的结果是一个处于中频fIF上的信号。 The results of the combination process is a converter in the intermediate frequency signal fIF. 例如,如果期望的是IF为0,那么该频率合成器必须提供一个与所接收的GPS信号的频率相等的频率。 For example, if the desired IF is 0, then the frequency synthesizer must provide a frequency equal to the frequency of the received GPS signal. 但是,如果频率合成器提供的合成频率不等于所接收的GPS信号的频率,那么中频fIF就不为0,而是有一定量的差别。 However, the frequency synthesizer if the synthesizer is not provided equal to the frequency of the received GPS signal, the intermediate frequency fIF is not 0, but a certain amount of difference. 如果中频fIF与预期的GPS频率差别足够大,那么获取GPS信号可能非常困难或者甚至不可能。 If the intermediate frequency fIF expected GPS frequency difference is large enough, the acquisition of GPS signals may be very difficult or even impossible.

[0082] GPS本地振荡器39被耦合来向频率合成器38提供GPS本振频率fg,频率合成器38合成本振频率fg以提供合成频率随后该合成频率被下变频器34利用来处理GPS信号。 [0082] GPS local oscillator 39 is to provide a GPS local oscillator frequency fg, a frequency synthesizer 38 is coupled to the frequency synthesizer 38 to synthesize the synthesized local oscillator frequency to provide the frequency fg subsequently synthesized frequency converter 34 is utilized to process the GPS signals . 由于合成频率f/确定中频fIF,并且该合成频率是由GPS振荡器频率fg合成的,所以,GPS振荡器的本振频率fg中的任何变化都会影响中频fIF。 Since the synthesized frequency f / intermediate frequency fIF is determined, and the synthesized frequency is the frequency of the oscillator by a GPS fg synthesized, therefore, any change in the local oscillation frequency fg GPS oscillator influence the intermediate frequency fIF. 由于乘法器特征,该效果可能非常显著:典型的频率合成器可能将本振频率乘以100倍或更多。 Since the multiplier feature, the effect may be very significant: typical frequency synthesizer local oscillator frequency may be multiplied by 100 fold or more. 因此,本振频率fg中的任何误差将被放大来提供fg%并且,该放大的误差会使中频fIF与其预期值明显不同。 Thus, any error in the local frequency fg is fg% and to provide amplified, the amplified error causes the intermediate frequency fIF with its expected value significantly different.

[0083] 为了观察和预测本地振荡器中的误差并相对于GPS信号来对GPS接收机进行校准,误差预测与校准系统30a通过线路40从GPS本地振荡器39接收GPS本振频率fg,并且还接收线路33上的蜂窝振荡器频率。 [0083] In order to observe the local oscillator and the prediction error with respect to the GPS signals to calibrate the error prediction and calibration system 40 receives GPS line 30a from the GPS local oscillator 39 by the local oscillation frequency fg of the GPS receiver, and also receiving cellular oscillator frequency on line 33. 频率比较电路41监视该两个频率,并定期将其测量值提供给后续电路,例如,该频率比较电路可以在固定时间间隔内计数这两个频率中每个频率的周期数目,并将这些数目直接提供给作为时间函数的误差的监视与预测系统42。 Frequency comparison circuit 41 monitors the two frequencies, and periodically provide measurement values ​​to the subsequent circuit, e.g., the frequency comparison circuit may count the number of cycles that each frequency of the two frequencies within a fixed time interval, and the number of these directly to the error as a function of time monitoring and prediction system 42. 可选地,频率比较电路41可以计数零交叉点(zero crossing)的数目,它等于周期数目的2倍,并且由于比较次数翻倍,所以准确度将改善。 Alternatively, the frequency comparator circuit 41 the number of zero-cross points (zero crossing) may be counted, which is equal to twice the number of cycles, and because doubling the number of comparisons, so the accuracy will improve. 可以以任何合适的形式来周期性地提供所计数的数量,所述合适的形式例如是原始计数(raw count)、该两个频率之间的比值或者频率差8f。 It may be in any suitable form provided periodically counted number, the form, for example, a suitable raw counts (raw count), the ratio between the two frequencies or frequency difference 8f. 也可以使用各种频率比较方法,比如使用频谱分析方法的哪些方法,比如快速傅立叶变换方法等。 Frequency comparison may also be used various methods, such as using a method in which spectral analysis method, a method such as fast Fourier transform.

[0084] 作为时间函数的误差的监视和预测系统42被耦合到频率比较电路41,以接收这两个频率的测量值。 [0084] 42 is coupled to the error as a function of time monitoring and prediction system to the frequency comparator circuit 41 to receive the two measurement frequencies. 通常,定期进行测量和提供测量值,如每半秒或每I秒。 Typically, regular measurements and provide measurements, such as every half second or every second I. 作为时间函数的误差的监视和预测系统42包括任何合适的硬件或软件,并且可以包括模拟或数字设备。 Error as a function of time monitoring and prediction system 42 includes any suitable hardware or software, and may include analog or digital equipment. 例如,可以通过包括微处理器、存储器、固件和/或软件来数字地实现系统42,以提供其预期的功能。 For example, can be digitally implemented by system 42 includes a microprocessor, memory, firmware and / or software to provide its intended function. 如参照图5至9进行的更详细讨论,例如,误差监视系统接收频率测量值,估计并存储每个测量的误差,然后响应于一个误差估计集合来确定一个数学函数。 As discussed in more detail with reference made to FIG 5-9, for example, the frequency error monitoring system receives the measured values, and stores the estimated error for each measurement, and in response to a set of error estimates to determine a mathematical function. 根据该函数, 以任何合适的形式计算下一个时间间隔的误差预测值。 According to this function, calculated in any suitable form error prediction value of a next time interval. [0085] 将该误差预测值提供给频率校正产生电路43,频率校正产生电路43产生在线路44上的校正信号。 [0085] The prediction error is supplied to the frequency correction value generating circuit 43, frequency correction generated on line 44 to produce a correction signal circuit 43. 在一个实施例中,校正信号的形式为缩放因子S。 In one embodiment, the correction signal is in the form of a scaling factor S. 将校正信号提供给GPS本地振荡器39,GPS本地振荡器39响应于此来调整输出的GPS本振频率fg,从而校正预测误差。 The correction signal to the GPS local oscillator 39, GPS oscillator 39 in response to the local GPS local oscillator frequency fg thereto to adjust the output so as to correct the prediction error.

[0086] 现在参考图4,图4例示了定位系统27和误差预测与校准系统30的另一个实施例。 [0086] Referring now to FIG. 4, FIG. 4 illustrates another embodiment of the positioning system 27 and the error prediction and calibration system 30 of the embodiment. 在图4中,很多组件与图3中的组件相似,但是,替代如图3所示将校正信号提供给GPS本地振荡器39,将线路45上的校正信号提供给数字处理系统37a中的数字振荡器46。 In Figure 4, components similar to FIG. 3 and many components, however, alternatively be provided as shown in FIG correction signal to the GPS local oscillator 39, provides the correction signal on line 45 to the digital data processing system. 37a oscillator 46. 在图4中,数字处理系统37a包括与数字振荡器46耦合的数字下变频器47,以协助GPS下变频器34解调GPS信号。 In FIG. 4, a digital processing system 37a comprises a digital down converter 46 is coupled to the digital oscillator 47, to assist the GPS down converter 34 is demodulated GPS signal. 数字下变频器47从模/数转换器35接收数字信号,利用数字振荡器46的频率对其进行数字化组合,并产生处于数字中频fIFD上的转换后的数字化信号。 Digital converter 47 receives a digital signal A / D converter 35 from using the frequency of the digital oscillator 46 digitizes the combination, and generates a digital signal at the intermediate frequency conversion on the digital fIFD. 然后,GPS数字处理系统48接收转换后的数字化信号,试图获取其中所包含的GPS信号,并对其进行适当的处理。 Then, the digitized GPS digital processing system 48 receives the converted signal, attempts to acquire GPS signals contained therein, and subjected to appropriate processing.

[0087] 应当注意的是,在图4的实施例中,GPS本地振荡器39没有被耦合到误差校正电路30b,并且因此没有锁定到蜂窝振荡器频率。 [0087] It should be noted that in the embodiment of FIG. 4, GPS local oscillator 39 is not coupled to the error correction circuit 30b, and thus is not locked to the cellular oscillator frequency. 相反,GPS本地振荡器被允许有正常的频率变化,该频率变化具有改变来自GPS下变频器的信号的中频fIF的效果。 Instead, GPS local oscillator is allowed to have a normal frequency, the frequency change has the effect of changing the signal from the frequency converter at the intermediate frequency fIF of the GPS. 使用数字本地振荡器46和数字下变频器47,将中频fIF转换为一个新的频率fIFD,其响应该校正信号来校正中频fIF中的误差。 Using a digital local oscillator 46 and the digital down-converter 47, converts the intermediate frequency fIF to a new frequency fIFD, responsive correction signal to correct errors in the intermediate frequency fIF. 因此,在图4的实施例中,校正信号在形式上可以不同于图3的实施例中的校正信号,因为它们用来控制不同的元件。 Thus, in the embodiment of FIG. 4, the correction signal may be different from the correction signal in the form of embodiment in FIG. 3 embodiment because they are used to control the different elements. 此外,除误差校正调整之外,任一实施例中的校正信号可以包括其他合适的调整。 Further, in addition to the adjustment error correction, a correction signal to any one of the embodiments may include other suitable adjustments.

[0088] 现在参照图5,图5例示了本发明一个实施例中的被执行来预测误差和产生校正信号的一系列步骤的流程图。 [0088] Referring now to FIG. 5, FIG. 5 illustrates a flowchart of a prediction error to be executed in the embodiment generates a series of steps and embodiments of the present invention, the correction signal. 参照图5的下面讨论用来提供误差预测和校正方法的概述。 Referring to FIG. 5, discussed below, provides an overview of error correction and prediction methods. 在其他地方还详细描述了该方法的各个方面,如参考图6A至6D、7、8和9。 In other places also describes in detail various aspects of the method, as described with reference to FIGS. 6A to 6D, 7,8 and 9.

[0089] 在51中,开始一个观察时间间隔(周期)。 [0089] In 51, the start an observation time interval (period).

[0090] 在52中,观察GPS振荡器和蜂窝本地振荡器的频率。 [0090] 52 observed frequency of the GPS oscillator and the local oscillator of the honeycomb. 在一个实施例中,通过比较这两个频率之间的差别,来观察GPS振荡器和本地振荡器的频率。 In one embodiment, the frequency difference between the two comparison, observed frequency of the GPS oscillator and the local oscillator. 在另一个实施例中,比较这两个频率的比值。 Embodiment, the ratio of these two frequencies in comparison to another embodiment.

[0091] 在53中,在观察间隔结束时,进行频率测量。 [0091] In 53, at the end of the observation interval, frequency measurement. 例如,如果该观察涉及观察GPS振荡器信号和本地振荡器信号之间的频率比值,那么,将该间隔内观察的平均频率比值(比如通过计算)作为测量值。 For example, if the frequency ratio between the observation relates GPS oscillator signal and the local oscillator signal is observed, then the ratio of the observed average frequency interval (such as by calculation) as a measured value. 然后,观察过程返回到51,以开始下一个间隔并重复每个后续周期的观察和测量。 Then, the process returns to the observed 51 to start the next measurement interval and repeated observations and each subsequent cycle. 通常定期进行测量,例如每0. 5秒到2秒的间隔。 Typically measured periodically, for example, to 2 seconds per interval 0.5.

[0092] 在54中,频率测量被用来估计其各个时间周期的频率误差。 [0092] In 54, the frequency measurements are used to estimate a frequency error of each time period. 54中的频率误差估计过程包括将该周期内的频率比值与一个预定常量进行比较,例如,由于GPS和理想蜂窝频率的比值是一个预定常量Rtl,所以,通过考虑预定常量和这两个频率之间的观察比值之间的差值,可以估计测量误差。 Frequency error estimation process 54 comprises the frequency ratio constant within a predetermined period is compared, for example, since the ratio of GPS and cellular frequencies over a predetermined constant Rtl is, therefore, constant and predetermined by considering these two frequencies was observed between the ratio of the difference between, the measurement error can be estimated.

[0093] 在55中,在已经估计误差之后,将误差存储到一个合适的位置中,比如以数字方式实现的存储器。 [0093] 55, after the error has been estimated, the error stored in a suitable location, such as the digital implementation of the memory. 例如,误差监视系统42(图3和4)可以包括一个数据库,用于存储多个时间周期的误差估计的相关信息。 For example, the error monitoring system 42 (FIGS. 3 and 4) may include a database for storing a plurality of error information estimated time periods.

[0094] 在56中,选择一个误差估计集合,以便为下一步骤提供数据,该下一步骤是函数近似步骤。 [0094] In 56, selecting a set of error estimates, to provide data for the next step, the next step is a step function approximation. 可以预先选择该集合,使其包括多个最新的误差估计,如最新的10到20个误差估计。 The set can be preselected to include a plurality of the latest error estimates, such as the latest error estimate 10 to 20.

[0095] 在57中,使用该误差估计集合来近似一个函数。 [0095] In 57, using the error estimate to approximate a set of functions. 例如,可以使用以下方法来近似出一个数学函数:比如对所述集合中的所述误差估计求均值;使用所述集合中的误差估计来执行线形回归法;或者,使用所述集合中的误差估计来计算最小均方曲线。 For example, the following methods may be used to approximate a mathematical function: for example, the estimated error in the set averaging; using the set of error estimates to perform a linear regression; Alternatively, using the set of error calculating a minimum mean square estimation curve.

[0096] 在58中,使用该近似函数,确定下一个时间间隔的预测频率误差。 [0096] 58 using the approximate function, estimated frequency error to determine the next interval. 例如,可以直接使用该近似函数来预测下一个时间间隔中的频率误差。 For example, the approximation function can be directly used to estimate the frequency error the next time interval.

[0097] 在59中,使用所预测的频率误差,产生一个在下一个时间间隔被施加到合适的本地振荡器上的校正信号。 [0097] In 59, the prediction using the frequency error, generate a next time interval correction signal is applied to the appropriate local oscillator. 例如,在图3的实现中,校正信号被提供给GPS本地振荡器39,在图4的实现中,校正信号被提供给数字本地振荡器46。 For example, in the implementation of FIG. 3, the correction signal is supplied to the GPS local oscillator 39, in the implementation of FIG. 4, the correction signal is supplied to a digital local oscillator 46.

[0098] GPS振荡器和蜂窝电话主振荡器中的频率误差 [0098] GPS oscillator frequency error and master oscillator in a cellular telephone

[0099] 现在参考图6A、6B、6C和6D。 [0099] Referring now to FIGS. 6A, 6B, 6C and 6D. 下面对两种情况下的频率误差进行分析:对于情况1,平台移动的影响被假设为最小,并且基站发射机载波频率的精确度被假设为近乎理想,正好被蜂窝电话振荡器跟踪;情况2的不同之处在于,假设蜂窝电话振荡器中存在变化。 Next, the frequency error analysis in both cases: the case 1, the mobile platform influence is assumed to be minimized, and the accuracy of the base station transmitter carrier frequency is assumed to be almost over, the cellular phone just to be tracked oscillator; where 2 except that, assuming there is a change in a cellular telephone oscillator.

[0100] 为便于参考,被频率锁定到所接收的蜂窝电话信号(或信号)的振荡器被称为蜂窝电话主振荡器,其频率被称为“蜂窝参考”或“蜂窝振荡器”频率,用于驱动GPS电路的振荡器被称为“GPS参考”或“GPS振荡器”。 [0100] For ease of reference, the cellular telephone is locked to the frequency of the received signal (or signals) is referred to as a cellular telephone oscillator master oscillator, whose frequency is called "reference cell" or "cell oscillator" frequency, an oscillator circuit for driving the GPS is referred to as "GPS reference" or "GPS oscillator."

[0101] 图6A是在一个示例中在紧张情况(stressed condition)下蜂窝振荡器频率和GPS振荡器频率的典型频率变化的图示。 [0101] FIG 6A is a frequency in a typical example in the case of stress (stressed condition) a cellular GPS oscillator frequency and oscillator frequency variations illustrated. 如图6A所示,蜂窝振荡器频率f。 6A, the cellular oscillator frequency f. 从其初始值f2开始增加,与此同时,GPS振荡器频率fg从其初始值开始增加,但速率更快。 Began to increase from its initial value f2, at the same time, GPS oscillator frequency fg began to increase from its initial value, but at a faster rate. 这是很典型的,因为主要的频率误差经常存在于GPS振荡器而非蜂窝振荡器中。 This is typical because the main frequency error in the GPS oscillator, not often present in the cellular oscillator.

[0102] 图6B是使用图6A的频率观察结果的GPS振荡器频率与蜂窝振荡器频率的比值与时间的关系的图示。 [0102] FIG 6B is an observation frequency of the oscillator of FIG. 6A illustrates the relationship between the ratio of the frequency and time of the cellular oscillator frequency GPS. 从中可以看出,该比值是这两个频率的函数,但通常由GPS振荡器频率起主导作用。 As can be seen, it is a function of the ratio of these two frequencies, but usually dominates the GPS oscillator frequency. 尽管将该比值表示为GPS振荡器频率除以蜂窝振荡器频率,但也可以使用其倒数(即蜂窝振荡器频率除以GPS振荡器频率)。 Although this ratio represents the oscillator frequency is divided by the cellular oscillator frequency GPS, but may use the reciprocal (i.e., the cellular oscillator frequency divided oscillator frequency GPS). 在其他地方还提供了有关频率测量和比值计算的详细讨论。 In other places also provides a detailed discussion of the frequency measurement and calculation of the ratio.

[0103] 图6C是使用图6B中的比值的误差估计的图示。 [0103] FIG 6C is a ratio used in FIG. 6B illustrates the error estimation. 在图6C中,在每I秒间隔的中点执行误差估计。 In FIG. 6C, performing error estimation at the midpoint of each interval of I second. 在其他实施例中,其他合适的点可用于误差估计。 In other embodiments, other suitable point can be used for error estimation. 此外,在一些实施例中,可以使用频率测量和/或误差校正来计算校准校正的集合,然后在曲线拟合过程中用它来近似出一个函数。 Further, in some embodiments, the frequency may be used to measure and / or error correction to calculate the corrected calibration set, then the curve fitting procedure using a function to approximate it.

[0104] 图6D是根据图6C中的误差估计近似出的频率校正曲线的图示。 [0104] FIG. 6D illustrating estimated frequency approximated calibration curve according to FIG. 6C error. 下面将更详细地描述一个用于产生该频率校正曲线的过程。 It will be described in detail a process for the frequency correction curve generation. 应当注意的是,y轴的单位是无量纲的“GPS振荡器频率校正因子”,这是提供给GPS振荡器频率的一个缩放因子,用于补偿其误差。 It should be noted that the y-axis units are dimensionless "GPS oscillator frequency correction factor", which is provided to a GPS oscillator frequency scaling factor to compensate for the error.

[0105] 情况I :理想的蜂窝振荡器、非理想的GPS振荡器 [0105] where I: the oscillator over the cellular, non-ideal GPS oscillator

[0106] 假设锁定到蜂窝基站的移动振荡器(蜂窝振荡器)具有第一频率f。 [0106] Suppose a mobile cellular base station to lock the oscillator (cellular oscillator) having a first frequency f. 并且用于驱动GPS电路的移动振荡器(GPS振荡器)具有第二频率fg。 And a circuit for driving a mobile GPS oscillator (GPS oscillator) having a second frequency fg. 假设写成: Written hypothesis:

[0107] fg = fg0+ 5 f (I) [0107] fg = fg0 + 5 f (I)

[0108] 其中,fg(l为理想的GPS频率,这是期望的GPS振荡器频率,5 f被定义为理想GPS频率和实际GPS振荡器频率之间的差值。图6A示出了蜂窝振荡器频率和GPS振荡器频率的一个示例。[0109] 理想GPS频率相对于理想的蜂窝频率具有特定的比值: [0108] wherein, fg (l an ideal GPS frequency, which is desirable GPS oscillator frequency, 5 f is defined as the difference between the ideal GPS frequency and the actual frequency of the GPS oscillator. FIG. 6A illustrates a cellular oscillation One example of the oscillator frequency and GPS frequency [0109] over the ideal GPS frequency with respect to a particular cellular frequencies having a ratio:

[0110] R0 = fj fc0 (2A) [0110] R0 = fj fc0 (2A)

[0111] 如果假设蜂窝振荡器频率f。 [0111] Assuming the cellular oscillator frequency f. 是理想的(即假设f。= fj,则: It is the ideal (i.e., assuming f = fj, then:

Figure CN101604010BD00141

[0113] 图6B示出了使用图6A中的观察结果计算的比值的一个示例。 [0113] FIG 6B illustrates an example of observation results of FIG. 6A calculated ratio. 在其他实施例中,也可以采样类似的处理,其中,测量蜂窝振荡器频率与GPS参考振荡器频率的比值,S卩,计算值f;/fg,而非R (参见⑶)。 In other embodiments, a similar process may be sampled, wherein the ratio of the cellular oscillator frequency and the reference oscillator frequency GPS measurements, S Jie, calcd f; / fg, rather than R (see ⑶).

[0114] 在一个示例中,所期望的GPS振荡器频率fgQ可能是16. 368MHz,而f。 [0114] In one example, the desired GPS oscillator frequency may be fgQ 16. 368MHz, and f. (理想的)可能是19. 2MHz,在这种情况下,R0 = 0. 8525。 (Preferably) may be 19. 2MHz, in this case, R0 = 0. 8525. 图6C是通过产生比值来示出连续间隔的误差测量的图示: 6C is produced by the ratio error measurement is shown illustrating successive intervals:

Figure CN101604010BD00142

[0116] 由于已知Rtl,所以可以将其从该比值中减去(如下所述,例如通过使用频率计数型操作来测量该比值),剩下误差比值Sf/f。 [0116] Since it is known Rtl, so it can be subtracted from the ratio value (as described below, for example, the ratio is measured by using a frequency-counting operation), the remaining error ratio Sf / f. . 当然,在知道f。 Of course, knowing f. 后,就可以确定8f。 After, you can determine 8f.

[0117] 在一个实施例中,为了校正GPS误差,可以以一个能产生频率fg(l的量对GPS振荡器频率&进行缩放,也就是说,希望找到一个缩放因子S,其为S = fg0/fgO然后,该缩放因子被计算为: [0117] In one embodiment, in order to correct GPS error, may produce a frequency FG (l amounts of the GPS oscillator frequency & scaled, that is to say, it is desirable to find a scaling factor S, which is S = fg0 / fgO then, the scaling factor is calculated as:

Figure CN101604010BD00143

[0120] 其中,后面的近似值遵循这样的事实:该振荡器频率中的微小误差通常非常小(在10和100PPM之间)。 [0120] wherein the approximation to follow behind the fact that: the oscillator frequency is a slight error is typically very small (between 10 and 100PPM). 在一个示例中对其进行计算,如图6D所示。 In one example, it is calculated as shown in Figure 6D. 我们发现,出于实际应用的目的,GPS频率的修改是因子(IS f/fg(l)。应当注意的是,缩放因子校正的符号与误差比值校正相反(参见等式(3))。 We have found, for practical purposes, it is the GPS frequency modification factor (IS f / fg (l). It should be noted that the scale factor error correction code correcting contrast ratio (see equation (3)).

[0121] 情况2 :非理想的蜂窝振荡器和GPS振荡器 [0121] Case 2: non-ideal cellular oscillator and the GPS oscillator

[0122] 这里,对于GPS振荡器,我们写成: [0122] Here, for the GPS oscillator, we write:

[0123] fg = fg0+ 6 fg [0123] fg = fg0 + 6 fg

[0124] 对于蜂窝振荡器,我们写成: [0124] For cellular oscillator, we write:

[0125] fc = fc0+ 5 fc [0125] fc = fc0 + 5 fc

[0126] 其中,fg(l和是理想的GPS振荡器频率和蜂窝振荡器频率,S fg和S fc是各振荡器中存在的误差。 [0126] wherein, fg (l and is ideal oscillator frequency GPS and cellular oscillator frequency, S fg and S fc are present in each of the oscillator error.

[0127] 通常,这些误差是作为时间的函数而变化。 [0127] Generally, these errors are varied as a function of time. 在进行如上述情况I的分析之后,得到这两个频率的比值为: After performing the above analysis, such as I, to give a ratio of these two frequencies is:

[0128] R = fg/fc = (fg0+ 6 fg) / (fc0+ 8 fc) = fg0/fc0 (1+ 6 fg/fg0) / (1+ 5 fc/fc0) [0128] R = fg / fc = (fg0 + 6 fg) / (fc0 + 8 fc) = fg0 / fc0 (1+ 6 fg / fg0) / (1+ 5 fc / fc0)

[0129] R0 (1+6 fg/fg0) (1-6 fc/fc0) [0129] R0 (1 + 6 fg / fg0) (1-6 fc / fc0)

[0130] R0 (1+6 fg/fg0- 6 fc/fc0) (5) [0130] R0 (1 + 6 fg / fg0- 6 fc / fc0) (5)

[0131 ] = R0+ S fg/fc0- 6 fcfg0/fc02 [0131] = R0 + S fg / fc0- 6 fcfg0 / fc02

[0132] 其中,我们忽略了更高阶项,因为SfcZfet^P Sf/U很小,所以这种忽略是有效的。 [0132] in which we ignore the higher-order terms, because SfcZfet ^ P Sf / U is small, so this omission is valid. 查看(5),发现与(2)基本相同,区别在于最后一项-S IfgtZfc/,因为我们假设Sf。 View (5), Discovery and (2) is basically the same, except that the last item -S IfgtZfc /, because we assume Sf. 不是0,所以最后一项不为O。 Not 0, the last one is not O. 我们还看到,蜂窝振荡器误差相对于GPS振荡器误差的影响的比值与这两个误差的比值成正比,即与3 1/6匕成正比。 We also see that the error with respect to the cellular oscillator affect GPS oscillator error ratio proportional to the ratio of these two errors, i.e., proportional to the 3 1/6 dagger. 因此,例如,如果蜂窝振荡器误差(用Hertz表示)为GPS振荡器误差的10%并且这两个标称振荡器频率相同,那么,蜂窝振荡器误差的影响将是由于GPS振荡器自身导致的影响的1/10。 Thus, for example, if the cellular oscillator error (expressed by Hertz) of 10% GPS oscillator error and the two nominally identical oscillator frequencies, then the error will affect the cellular oscillator is caused because the GPS oscillator itself 1/10 affected.

[0133] 当通过使用一个仅基于(5)的右侧的前两个量的公式来补偿GPS振荡器误差时,将会出现误差。 [0133] When the amount of the first two by using only one on the right side (5) of the formula to compensate for GPS oscillator error, an error will occur. 也就是说,由于通常无法测量S f。 That is, since usually can not be measured S f. ,因此假设它是0(尽管在某些情况下,长期平均会导致该量中的短期变化非常小)。 , It is assumed that it is zero (although in some cases, can lead to short-term changes in the long-term average of the amount is very small). 如果5亿为0,与(4)类似,对于这种情况的校正缩放因子的计算将是(IS fg/fg(l)。但是,从(5)可以看出,残留误差(减去Rtl之后)是+ 6 fg/fc0- 8 f^/f。/,而不是量+ S fg/fc0O因此,我们应用的是不正确的缩放因子(I- 8 fg/fg0 6 fyfj,而不是正确的缩放因子a- 8 fg/fg0)。因此,最后一项是误差项。该量的该误差项与第二项的比值为-(sf。/ 6 fg) (fg0/fc0)。通常,后一项大约为1,因此,误差比值_( s fc/Sfg)确定补偿过程之后得到的残留误差。 If, after 500 million is 0, and (4) Similarly, in this case a correction scaling factor will be calculated (IS fg / fg (l). However, (5) it can be seen, the residual error (minus Rtl ) is + 6 fg / fc0- 8 f ^ / f. /, rather than the amount of + S fg / fc0O Thus, our application is not correct scaling factor (I- 8 fg / fg0 6 fyfj, rather than the correct scaling factor a- 8 fg / fg0) Thus, the last one is the amount of the error term of the error term and the second term is the ratio of -... (sf./ 6 fg) (fg0 / fc0) typically, after a about 1, therefore, the error ratio obtained after residual error _ (s fc / Sfg) determines the compensation process.

[0134] 频率测量 [0134] Frequency Measurement

[0135] 在一个实施例中,使用频率计数型处理来计算频率比值,其中,将蜂窝振荡器用作“时间基准(timebase)”,将GPS振荡器用作待计数的频率。 [0135] In one embodiment, the frequency of usage type of processing calculates the frequency ratio, wherein the cellular oscillator used as a "reference time (TimeBase)", as the frequency of the GPS oscillator to be counted. 通常情况下,计数该时间基准的固定数量的周期,以产生一个时间间隔。 Typically, the number of cycles counted a fixed time reference, to produce a time interval.

[0136] 例如,如果蜂窝振荡器频率标称为19. 2MHz,那么,计数19. 2百万个周期将产生I秒的时间间隔。 [0136] For example, if the cellular oscillator frequency is nominally 19. 2MHz, then 19.2 million count cycle generating second time interval I. 在此时间间隔内,计数周期的数目或GPS振荡器的零交叉点的数目。 During this time interval, the number of zero-cross point count period or the number of GPS oscillator. 在这I秒内计数的GPS振荡器周期的数目与GPS振荡器频率成正比。 In this I seconds counts the number of GPS and the GPS oscillator period is proportional to the oscillator frequency. 实际上,对于该具体示例,在I秒间隔内计数的周期数目是以HZ计量的GPS振荡器频率的估计。 In fact, for this particular example, the number of cycles counted in the second interval I is estimated GPS oscillator frequency HZ measurement. 因为在任何间隔内零交叉点大约为完整周期的两倍,所以对该振荡器的零交叉点进行计数能够提供改进的精确度。 Because any zero crossing point interval is about twice the complete cycle, it counts the zero crossing point of the oscillator to provide improved accuracy.

[0137] 上述的一种替代方法是将GPS振荡器用作时间基准,即产生计数间隔,然后计数该蜂窝振荡器的零交叉点或周期的数目。 [0137] An alternative is the above-described GPS oscillator as the time reference, i.e. generation count interval, and then counting the number of zero-cross points or the cell cycle oscillator. 显然,该比值与GPS振荡器频率的频率倒数成正t匕,即与GPS振荡器频率的周期成正比。 Obviously, the ratio of the frequency of the GPS oscillator frequency dagger reciprocal n t, i.e., proportional to the period of the GPS oscillator frequency. 该方法也被称为倒数计数法,或倒数法,而前一种方法则被称为直接法。 This method is also called reciprocal counting method, or the reciprocal method, the former method is called direct method.

[0138] 当GPS振荡器频率超过蜂窝振荡器频率时,直接计数法通常优于倒数计数法,相反,当蜂窝振荡器频率超过GPS振荡器频率时,倒数计数法通常优于直接计数法。 [0138] When the GPS oscillator frequency than the cellular oscillator frequency, direct counting method generally superior to countdown the contrary, when the cellular oscillator frequency exceeds the frequency of the GPS oscillator, the countdown process is generally better than direct counting method.

[0139] 在另一个实施例中,可以得到计算频率比值的更精确的方法,代价是更加复杂。 [0139] In another embodiment, a more accurate method of calculating the frequency ratio can be obtained at the expense of more complicated. 在上述计算过程中误差的一个主要来源是由于以下事实:一个时间间隔内振荡器的计数数目是以一个周期或半个周期为单位来进行量化的,这取决于使用的方法。 In the calculation process, a major source of error is due to the fact that: a count of the number of oscillator time interval is a half cycle or period of quantizing units, depending upon the method used. 可以采用几种方法来降低这种时间量化的影响。 There are several methods to reduce the impact of this time quantized. 在一种方法中,取代在一个时间周期T内执行单频率计数处理,在每个相邻的时段T/M内执行一次,共执行M次计数处理而不停止计数器。 In one approach, instead of performing counting at a single frequency within a processing time period T, once, a total of M times performed without stopping the counter counting process in each of the adjacent period T / M. 这M个间隔中每一个间隔的计数数目将被获取,并且可用一个线形回归过程(假设频率漂移是线形的)来对该数目集合进行拟合,以确定该频率的最小均方拟合。 The M number of intervals each counting interval is to be acquired, and may be a linear regression process (assumed that the frequency drift is linear) fit to the set number, to determine the minimum mean squares fit of the frequency. 相对于使用长度为T的时间间隔的处理,该方法将由于量化(甚至其他噪声源)而引起的RMS误差降低一个大约等于M1/2的量。 With respect to the length of time T using a process interval, RMS quantization error of the method because (even other sources of noise) caused a reduction in the amount of M1 / ​​2 is approximately equal.

[0140] 在另一个实施例中,可以将来自待测量的频率源的时钟作为模拟信号处理,并在由该时间基准确定的时间对其进行采样(例如,在等于该时间基准的N个时钟周期的时间)。 [0140] N clocks embodiment, the clock frequency from the source to be measured can be processed as an analog signal, and is sampled at the time determined by the reference time (e.g., equal to the time reference of another embodiment period of time). 对如此获得的数据进行傅立叶分析,在与该参考时钟的频率处相关的频率上产生一条谱线。 The data thus obtained was subjected to Fourier analysis to produce a spectral line at a frequency related to the frequency of the reference clock. 可以使用各种插入技术对该频率进行精确的估计。 Various insertion techniques may be used to accurately estimate the frequency. 该方法还提供高于单间隔计数法的改善的性能。 The improved method also provides a higher single counting interval performance.

[0141] 也可以使用其他频率估计方法,但最终结果是对蜂窝振荡器和GPS振荡器的频率比值进行估计。 [0141] may use other frequency estimation method, but the end result is a cellular oscillator and the GPS oscillator frequency ratio is estimated.

[0142] 用于近似函数的线形回归示例 Line [0142] for example regression approximation function

[0143] 下面是近似出频率误差与时间的函数的方法的一个示例。 [0143] The following is an example of a frequency approximate error function of time method. 例如,可以定期地执行频率校准处理,可能以I秒的间隔。 For example, the frequency of the calibration process may be performed periodically, at intervals of I may sec. 使用线形(或甚至更高阶)回归,将误差估计集合用于确定频率变化率与时间的关系曲线,这将趋向于消除快速的频率跳变,如驾车经过蜂窝基站时发生的+100-至-IOOHz的频率跳变。 Using a linear (or even higher) order regression, the set of error estimate used to determine the frequency versus time rate of change, which will tend to eliminate the fast frequency hopping, such as occur when driving through a cellular base station 100 to the + -IOOHz frequency hopping.

[0144] 如果最近的m个误差估计包括用于确定频率漂移分布图(profile)的集合,那么,在一个示例中,如下给出对线形漂移的最小均方误差拟合: [0144] If the m most recent error estimate comprises means for determining the frequency shift in FIG profile set (Profile), then, in one example, the following is given a minimum mean square error fit to a linear drift:

Figure CN101604010BD00161

[0147] 其中,yn是M个频率测量值的集合,每个测量值的方差为0 2,n为测量次数,$是相 [0147] wherein, yn is a set of M frequency measurements, the variance of each measured value is 0 2, n is a number of measurements, relative $

对于时间特性的线形频率的估计,&是与该m个频率测量值中的第一个测量值对应的频率 For estimation of the linear frequency characteristic time, frequency & measuring a first frequency of the measured values ​​m corresponding to the value

的估计。 It estimates. 上划线表示对应量的均值。 The dashed line represents the mean corresponding amount. 如果存在随机RMS误差/幅度测量值O,则(6)的测量均方误差为: If the random error RMS / amplitude measurement O is present, (6) a mean square error measure:

Figure CN101604010BD00162

[0150] 在一个多模式设备的实施例中,测量的量化步长是所提供的校正信号(例如,来自蜂窝振荡器)的1/2周期。 [0150] In an embodiment of a multi-mode device, the measured signal is the corrected quantization step size (e.g., from a cellular oscillator) provided in the half cycle. 如果该信号为19MHz,那么,I秒测量间隔的量化步长为l/38e6=2.6X10_8。 If the signal is 19MHz, then, I second measurement interval of the quantization step size is l / 38e6 = 2.6X10_8. 如果在该步长上误差均匀分布,那么,I秒测量间隔的频率中的RMS误差只有2.6xl(T8/这对应于GPS LI频率上的12.0Hz。从(7B)可以看出,如果处理12个这样的测量值,那么RMS频率误差将大约是3. 45Hz。此外,从(7A)得到频率斜率的误差为RMS误差/测量值的0. 084倍,或0. 084X7. 6X IO-9 = 6. 35X KTiciHz/秒。这对应于GPS LI频率上的大约I. OHz/秒。显然,使用12个测量值的校准方法可以产生较好的频率斜率测量。我们发现,该校准方法本身足以提供确定频率偏移和GPS振荡器改变率所需的频率测量精确度。在线形斜率模型不能提供精确拟合的情况下,二次斜率拟合通常是合适的。具体而言,在那些情况下,替换¢)的二次回归法会工作得更好。 If the error is evenly distributed over the step, then, the RMS error in the frequency measurement interval I only in the second 2.6xl (T8 / which corresponds to 12.0Hz. From (7B) can be seen on the GPS LI frequency, if the process 12 of such measurements, the RMS frequency error would be approximately 3. 45Hz. Further, from (7A) obtained error frequency slope is 0.084 times the RMS deviation / measured value, or 0. 084X7. 6X IO-9 = 6. 35X KTiciHz / sec. this corresponds to about I. OHz on the GPS LI frequency / sec. clearly, the use of 12 measurements of the calibration process can produce better frequency slope measurement. we have found that the alignment process itself is sufficient to provide frequency measurement to determine a frequency offset oscillator and the rate of change of GPS accuracy required. the slope of the linear model case not provide accurate fit, the slope of the quadratic fit is usually appropriate., specifically in those cases, replace ¢) quadratic regression method will work better.

[0151] 当然,在一些实施例中,上述误差可能主要由蜂窝振荡器而非GPS振荡器中的误差决定。 [0151] Of course, in some embodiments, the error is mainly determined by the cellular oscillator may not GPS oscillator error. 但是,对于CDMA系统,蜂窝振荡器跟踪一个蜂窝信号,该蜂窝信号基本上实现与铯标准相称的长期稳定性。 However, for CDMA systems, a cellular oscillator signal tracking a cell, the cell signal is substantially commensurate with the long-term stability of the standard cesium. 在GSM系统中,蜂窝信号也非常稳定,同步于一个高质量的TCX0。 In the GSM system, the cellular signal is also extremely stable, in synchronization with a high-quality TCX0. 通常,蜂窝振荡器中的误差的主要来源是与平台移动相关联的。 Typically, the primary source of error in the cellular oscillator is associated with the platform movement. [0152] 这里描述的方法的一个优点在于,正常的频率变化通常由与该车辆移动相关联的多普勒频率限制来界定。 [0152] An advantage of the method described herein is that the normal frequency change is typically defined by the Doppler frequency limit associated with the movement of the vehicle. 因此,下面的讨论将分析平台移动对估计的不利影响。 Therefore, the following discussion will analyze adverse effect on the estimated mobile platform.

[0153] 在一些情况下,当使用如上面讨论的线形回归方法时会出现问题。 [0153] In some cases, problems occur when using the linear regression method, as discussed above. 假设未校正的GPS本地振荡器表现出频率误差与时间的关系曲线为线性。 Suppose uncorrected GPS local oscillator frequency error curve showing the relationship is linear with time. 如果某人在M个时间周期的时间内观察该误差,那么,得到的校正将是一个常量加上一个时间的线形函数。 If a person observes the error in M ​​time periods of time, then, it will be corrected to obtain a constant plus a linear function of time. 因此,在时间周期M+1,校正后的GPS本地振荡器将表现出非常小的误差。 Thus, the time period M + 1, the corrected GPS local oscillator will exhibit a very small error. 所以,如果某人然后使用前面M个时间周期的误差(包括在时间周期M+1的微小误差)来执行线形回归,则会得到错误的结果。 Therefore, if a person in front of the M and then use an error time period (time period including a slight error in M ​​+ 1) to perform linear regression, it will give the wrong result. 该问题的一个解决办法是,对于每个时间周期(M+l、M+2等),计算在不进行频率校正时存在的GPS本振频率。 One solution to this problem is that for each time period (M + l, M + 2, etc.), GPS calculation is not performed when the local oscillation frequency of the frequency correction exists. 由于只需要累加GPS本振频率校正的集合,然后将它们从当前振荡器设定中减去,以得到未校正的频率,所以这是非常容易理解的。 Since only the accumulated GPS local oscillator frequency correction set, and the oscillator are subtracted from the current settings, to obtain the uncorrected frequency, so it is very easy to understand. 然后,将这些未校正频率应用于线形(或更高阶)的回归过程中。 Then, the frequencies applied to these uncorrected linear (or higher order) regression process. 避免上述影响的其他方法为基于闭环校正过程的方法,其中,当前测量误差的一部分被馈送到一个滤波器,其中该滤波器的输出表示对该振荡器控制的当前校正。 Other methods avoid these effects is a method based on a closed loop correction procedure, wherein a portion of the measurement error current is fed to a filter, wherein the output of which represents a correction to the current controlled oscillator.

[0154] 由于移动引起的跟踪误差 [0154] Since the tracking error caused by the movement

[0155] 现在结合图7、8和9,说明对在使用这里描述的误差校准方法的环境中的车辆移动进行的分析。 [0155] Figures 7, 8 and 9 now be described in the analysis of the moving vehicle environments described herein in a calibration method performed. 运动应当只是车辆速度的结果;在步行速度下,如I. 0米/秒,LI频率上的最大多普勒频率只有5. 3Hz,并且,明显的加速是不常见的。 Movement should only be the result of the vehicle speed; at a walking speed, such as I. 0 m / s, the maximum Doppler frequency only the frequency LI 5. 3Hz, and, obvious acceleration is not common. 这样小的多普勒频率对跟踪性能的影响可以忽略不计。 Impact of such a small Doppler frequency tracking performance is negligible.

[0156] 由于车辆靠近蜂窝塔弓I起的快速频率跳变 [0156] Since the vehicle is close to a cellular tower bow I plays fast frequency hopping

[0157] 图7是示出由近似即时+IOOHz到-IOOHz频率跳变所导致的线形斜率估计的图示。 [0157] FIG. 7 is a diagram showing a nearly instantaneous + IOOHz -IOOHz frequency hopping to the resulting linear slope estimation. 具体而言,在图7中,从蜂窝塔观察到的多普勒频率,如同针对GPS频率所计算的那样,在一秒钟内从+IOOHz变化到-IOOHz。 Specifically, in FIG. 7, viewed from the cell tower to the Doppler frequency, as for the GPS frequency calculated above, in one second to change from + IOOHz -IOOHz. 例如,如果蜂窝基站塔紧靠着一条其上汽车正以大约42英里/小时通过的公路,那么将发生这种现象。 For example, if a cellular base station towers close to the road on which the car is about 42 miles / hour through, then the occurrence of this phenomenon. 当然,对于更高速车辆,多普勒频率可能更高。 Of course, for higher speed vehicle, the Doppler frequency may be higher. 但是,蜂窝塔通常离公路远得多,因此,并不经常观察到此种频率的突然改变,相反,更可能的是观察到可能在数秒内平滑改变的多普勒频率。 However, cellular tower typically much away from the road, therefore, not frequently observed a sudden change in this frequency, on the contrary, more likely that the observed changes are possible within seconds smooth Doppler frequency. 对这种更现实的情况进行简略地分析。 This more realistic situation to be briefly analyzed.

[0158] 假设使用前面部分中描述的处理,并且使用12个校准测量值以及线形回归拟合。 [0158] Assuming the process described in the previous section, and 12 using calibration measurements and linear regression fit. 根据上面的假设,如果不使用线形回归拟合,可能观察到最大值为200Hz/秒的快速频率改变。 According to the above assumption, if not using linear regression, the fast frequency change may be observed maximum of 200Hz / sec. 然而,在图7中示出了线形回归的平滑效果。 However, in FIG. 7 shows a linear regression of the smoothing effect.

[0159] 为了获得图7的曲线,在不存在附加的噪声或任何其他线形斜率的情况下,使用12个测量值的集合,执行作为时间函数的频率斜率的连续(running)估计。 [0159] To obtain the graph of FIG. 7, in the absence of additive noise, or any other linear slope, using a set of 12 measurements, performed as a function of time frequency slope continuous (running) estimate. 从图中可以看出,斜率估计中的最大误差大约是-25. IHz0 As can be seen from the figure, the slope of the estimated maximum error is approximately -25. IHz0

[0160] 如果存在+100到-IOOHz的跳变以及附加的线形斜率(例如由于振荡器漂移),那么,估计误差仍与图7所示相同。 [0160] If there -IOOHz transition to +100 and additional linear slope (e.g., due to oscillator drift), then the estimated error is still the same as shown in FIG. 7. 在一个实验中,分析25Hz频率斜率误差的性能损失,并且输出的SNR损失被发现仅仅大约为用于高灵敏度跟踪期间使用的典型设定的0. 6dB。 In one experiment, to analyze the performance loss 25Hz frequency slope error, SNR, and the loss of output is found only about typically used for high sensitivity during tracking setting of 0. 6dB. 前面部分的讨论还表明,与该误差相比,斜率估计中的量化相关误差是微不足道的。 The previous discussion portion further show that compared with the error in the slope estimation related quantization error is negligible. [0161] 图8是示出更现实情况的线形斜率估计的图示,其中,蜂窝基站塔距离公路大约15米,其高度大约为15米,车辆行驶速度为60英里/小时(27米/秒)。 [0161] FIG. 8 is a diagram illustrating a more realistic situation illustrated linear slope estimation, wherein about 15 m from the road cellular base station towers, a height of approximately 15 meters, vehicle speed of 60 miles / hour (27 m / sec ). 这是靠近公路的较低蜂窝塔。 This is close to the highway lower cellular towers. 这导致在数秒时间内从+142Hz到-142的多普勒漂移。 This leads to drift from -142 to + 142Hz Doppler within seconds. 所得到的线形斜率估计如图8所示。 The resulting linear slope estimation as shown in FIG. 还假设只有来自蜂窝塔的直接导频信号用于AFC测量(即没有利用其他反射的导频信号加权)。 It is also assumed that only a direct pilots from the pilot signal for the cellular tower AFC measurement (i.e., without using the pilot signal of other guide reflection weighting). 如果有其他的导频信号,通常会改善这种情形。 If there are other pilot signals, usually improve the situation. 在单个导频信号的情况下,可以看出,误差的最差情况估计大约为34. 2Hz。 In the case of a single pilot signal, it can be seen, the worst-case error is estimated to be about 34. 2Hz. 分析表明,这种情况的输出SNR的恶化大约为I. 13dB。 Analysis showed that the deterioration of the output SNR of this case is about I. 13dB. [0162] 由于导频音调功率变化引起的随机波动 [0162] Since the pilot tones random fluctuations due to power variations

[0163] 上面结合图8分析的蜂窝塔情形被期望为多数情况下的最糟情形。 [0163] The above case of FIG. 8 in conjunction with a cellular tower analysis is expected to be the worst case in most cases. 其他关心的情形包括这样一些情形,在这些情形中,接收几个导频信号并将其组合,以控制AFC环路。 Other situations include some cases of interest, in these cases, the received pilot signal and several combinations to control AFC loop. 一个或其他这样的导频信号主要体现为时间函数,导致AFC漂移。 Or other such a pilot signal is mainly a function of time, resulting in AFC drift. 但是,可以预期的是,这种快速的漂移在严重的市区环境中是很常见的,其中车辆速度通常被期望为远低于上面所分析的。 However, it is expected that this rapid shift in severe urban environment is very common, in which the vehicle speed is usually much lower than expected as the above analysis. 此外,作为时间函数的AFC随机波动趋向于导致能够降低频率斜率漂移的平均影响。 Furthermore, AFC random fluctuations as a function of time tend to cause the average influence can be reduced drift frequency slope.

[0164] 图9是描述正态分布的随机频率数据的线形斜率估计的示意图。 [0164] FIG. 9 is a schematic view of a linear slope of the normal random frequency data estimation will be described. 假设车辆移动的影响导致AFC频率在[-50Hz,50Hz]范围内游动,每秒一个随机值。 Effect assumed vehicle movement causes the AFC frequency [-50Hz, 50Hz] walks within range, a second random value. 那么,对该情形进行的1000秒内的模拟产生如图9所示的频率斜率估计。 Then, the simulation of 1000 seconds for the case of generating the frequency slope as shown in FIG. 9 estimation. 使用前面12个测量值的线形回归对该模拟进行的分析,表现出4. 2Hz的RMS斜率估计误差,这与(7A)对于这种情况的预测是一致的,(7A)的预测是4. 18Hz。 Using the previous 12 measurements linear regression analysis of the simulation, showing the slope 4. 2Hz RMS estimation error, which (7A) for this case is consistent with the prediction, (7A) prediction is 4. 18Hz. 这么小的误差导致可以忽略性能损失。 Such a small error due to negligible loss of performance.

[0165] 3、进一步的评论和改进 [0165] 3, further comments and improvements

[0166] 可以使用上述线形回归的各种修改来进一步改进上述结果。 [0166] The above results can be further improved, various modifications of the above-described linear regression. 例如,可以对校准采样进行特殊滤波。 For example, a special filter may be sampled calibration. 在上述一种方案中,频率与时间的函数基本为一个阶跃函数,因此,如果对该阶跃函数进行求微分,结果将是一个很大的脉冲,可以经由合适的门限技术将该脉冲滤去。 In the above schemes, a function of time and frequency is substantially a step function, and therefore, if the step function is differentiated, the result will be a large pulse, the pulse technology can be limited through a suitable filter door go with. 进一步的集成操作产生校准采样,其频率阶跃函数被移除。 Further integration operation of generating a calibration sample, the frequency step function is removed. 可以基于识别校准值与时间关系的特定“模式”来研究其他方法,其中所述特定“模式”很可能与期望的情况相关联。 Alternative approaches may be based on a specific "pattern" recognition relationship with the calibration values, wherein the particular "mode" is the case may be associated with a desired joint. 此外,应当明白的是,这里描述的系统通常适用于任何定位系统,如俄罗斯的Glosnass系统、规划的欧洲Galileo系统、美国的全球定位系统以及任何其他卫星定位系统。 In addition, it should be appreciated that the system described here is generally applicable to any positioning system, such as the Russian Glosnass system, the European Galileo system planning, the US global positioning system as well as any other satellite positioning systems.

[0167] 鉴于这些教导,本领域技术人员应当认识到,可以在不偏离本发明精神或保护范围的前提下,实现其他实施例。 [0167] In view of these teachings, those skilled in the art should appreciate that without departing from the spirit or scope of the present invention to achieve other embodiments. 本发明仅由下面的权利要求书进行限定,当结合上述说明书和附图考虑时,该权利要求书包括所有此种实施例和修改。 The present invention is limited only by the following claims be limited, when considered in conjunction with the above specification and drawings, the following claims include all such embodiments and modifications.

Claims (25)

1. 一种校准和校正移动设备中的GPS接收机的方法,该方法包括: 将第一本地振荡器频率锁定到接收的第一信号; 比较第一时间周期和第二时间周期内所述第一本地振荡器的频率和GPS本地振荡器的频率; 基于所述比较,估计所述第一时间周期和所述第二时间周期内的误差,以确定一组误差估计; 计算下一个时间间隔的误差预测值;以及基于所述误差预测值,在所述下一个时间间隔期间,为所述GPS接收机中的数字本地振荡器生成校正信号; 基于所述校正信号调整所述GPS接收机中的所述数字本地振荡器的频率,以补偿所述GPS本地振荡器输出的频率中的估计的误差。 1. A method for calibrating and correcting the GPS receiver in the mobile device, the method comprising: a first local oscillator frequency locked to the received first signal; comparing the first time period and said second time period of GPS local oscillator frequency and a local oscillator; based on the comparison of the estimation errors within a first time period of the second time period and to determine a set of error estimates; in calculating a time interval error prediction value; and a prediction based on the error value during a time interval in the lower, generating a correction signal to said GPS receiver in a digital local oscillator; based on the correction signal to adjust the GPS receiver the digital local oscillator frequency, the frequency error estimation in order to compensate for the output of the GPS local oscillator.
2.如权利要求I所述的方法,其中频率锁定所述第一本地振荡器包括: 将蜂窝通信系统的参考振荡器锁定到所接收的第一信号。 The method of claim I as claimed in claim 2, wherein said first local oscillator frequency lock comprising: a cellular communication system according to a first reference oscillator locked to the received signal.
3.如权利要求I所述的方法,其中频率锁定所述第一本地振荡器包括: 将蜂窝通信系统的压控温度补偿晶体振荡器(VCTCXO)锁定到所接收的第一信号。 The method of claim I as claimed in claim 3, wherein said first local oscillator frequency lock comprising: a voltage controlled temperature compensated crystal oscillator of a cellular communication system (the VCTCXO) locked to a first received signal.
4.如权利要求I所述的方法,其中所接收的第一信号包括: 从蜂窝基站接收的信号。 The method of claim I as claimed in claim 4, wherein the received first signal comprising: a signal received from a cellular base station.
5.如权利要求4所述的方法,其中所述从所述蜂窝基站接收的所述信号包括: 从CDMA蜂窝站接收的导频信号。 5. The method according to claim 4, wherein the signal received from the cellular base station comprising: receiving a CDMA cellular station from the pilot signal.
6.如权利要求4所述的方法,其中所述从所述蜂窝基站接收的所述信号包括: 从GSM蜂窝站接收的信号。 6. The method according to claim 4, wherein the signal received from the cellular base station comprising: receiving a signal from the GSM cellular station.
7.如权利要求I所述的方法,其中所述GPS本地振荡器包括: 用于RF-IF下变频器的、且与所述GPS接收机中的振荡器不同的本地振荡器。 7. The method of claim I, wherein said GPS local oscillator comprising: a RF-IF down-converter, and an oscillator in the receiver of the GPS local oscillator different.
8.如权利要求I所述的方法,其中比较所述第一本地振荡器的频率和所述GPS本地振荡器的频率包括: 对所述第一时间周期和所述第二时间周期内,所述第一本地振荡器和GPS本地振荡器中每一个的周期数进行计数。 8. The method of claim I, wherein the frequency of the GPS local oscillator and comparing the first local oscillator comprises: said first time period and said second time period, the per cycle of said first local oscillator of a GPS local oscillator and counting.
9.如权利要求I所述的方法,其中比较所述第一本地振荡器的频率和所述GPS本地振荡器的频率包括: 对所述第一时间周期和所述第二时间周期内,所述第一本地振荡器和GPS本地振荡器中每一个的零交叉点的数目进行计数。 9. The method of claim I, wherein the frequency of the GPS local oscillator and comparing the first local oscillator comprises: said first time period and said second time period, the each of said number of zero-cross point of the first local oscillator and a GPS local oscillator counts.
10.如权利要求I所述的方法,其中比较所述第一本地振荡器的频率和所述GPS本地振荡器的频率包括: 确定所述第一本地振荡器的频率和所述GPS本地振荡器的频率的比值。 10. The method of claim I, wherein the frequency of the first frequency comparator and the local oscillator of the GPS local oscillator comprises: determining the frequency of the first local oscillator and the GPS local oscillator frequency ratio.
11.如权利要求I所述的方法,其中比较所述第一本地振荡器的频率和所述GPS本地振荡器的频率包括: 确定所述第一本地振荡器的频率和所述GPS本地振荡器的频率之差。 11. The method of claim I, wherein the frequency of the first frequency comparator and the local oscillator of the GPS local oscillator comprises: determining the frequency of the first local oscillator and the GPS local oscillator the difference in frequency.
12.如权利要求I所述的方法,其中估计所述误差包括: 将所述第一本地振荡器的频率和所述GPS本地振荡器的频率的频率比值与预定常数进行比较;以及确定所述预定常数和所述频率比值之差。 12. The method of claim I, wherein said error estimating comprises: a frequency ratio of the frequency of the local oscillator frequency of the first local oscillator and the GPS is compared with a predetermined constant; and determining the and said predetermined constant frequency difference between the ratio.
13.如权利要求I所述的方法,其中计算所述误差预测值包括: 基于所述组误差估计来近似出函数;以及基于所述时间间隔和所述函数来确定所述误差预测值。 13. The method of claim I, wherein calculating the error prediction value comprises: based on the set of error estimates to approximate the function; and determining the error prediction value based on the time interval and the function.
14.如权利要求13所述的方法,其中近似出所述函数包括: 对所述组误差估计中的误差估计进行平均。 14. The method according to claim 13, wherein said approximated function comprising: a set of errors for the estimation error estimates are averaged.
15.如权利要求13所述的方法,其中近似出所述函数包括: 利用所述组误差估计中的误差估计进行线性回归。 15. The method according to claim 13, wherein said approximated function comprises: using the set of error estimates error estimate linear regression.
16.如权利要求13所述的方法,其中近似出所述函数包括: 利用所述组误差估计中的误差估计计算最小均方曲线。 16. The method according to claim 13, wherein said approximated function comprises: using the set of error estimates calculated minimum mean square error estimation curve.
17.如权利要求I所述的方法,其中所述第一时间周期包括: 多个相邻的时间周期, 其中为所述多个相邻的时间周期中的每一个获得若干单个计数。 17. The method of claim I, wherein said first time period comprises: a plurality of adjacent time periods, wherein each of said plurality of counts to get a number of individual adjacent time periods.
18. 一种校准和校正移动设备中的GPS接收机的方法,该方法包括: 将蜂窝参考振荡器频率锁定到从蜂窝基站接收的信号; 比较第一时间周期和第二时间周期中的每一个内,所述蜂窝参考振荡器的频率和GPS本地振荡器的频率,以生成所述第一时间周期和所述第二时间周期中每一个内的频率测量; 基于所述频率测量,估计所述第一时间周期和所述第二时间周期内的误差,以确定一组误差估计; 基于所述组误差估计来近似出函数; 基于所述函数来计算下一个时间间隔的误差预测值;以及基于所述误差预测值,在所述时间间隔期间,为所述GPS本地振荡器生成校正信号。 18. A method for calibrating and correcting the GPS receiver in the mobile device, the method comprising: a cellular frequency locked to the reference oscillator signal received from a cellular base station; comparing a first time period and second time period of each of GPS local oscillator frequency and in the honeycomb reference oscillator to generate said first time period and frequency measurements within each of said second time period; based on the frequency measurement, estimating the a first time period and the error in the second time period, to determine a set of error estimate; based on the set of error estimates to approximate the function; error prediction value is calculated based on a function of the time interval; and based on the prediction error value, during the time interval, generating a correction signal to the GPS local oscillator.
19. 一种多功能便携式设备,用于利用包括工作于预定蜂窝频率的蜂窝站的网络提供蜂窝通信,还用于利用在预定GPS频率发射GPS信号的GPS卫星来提供定位,该多功能便携式设备包括: 蜂窝通信系统,包括蜂窝参考振荡器,该蜂窝参考振荡器用于产生对与所述蜂窝站的网络之间的通信进行解调的频率; GPS系统,包括GPS本地振荡器,该GPS本地振荡器产生被耦合来处理所述GPS信号的频率;以及连接到所述蜂窝参考振荡器和所述GPS本地振荡器的误差预测和校准系统,所述误差预测和校准系统比较所述蜂窝参考振荡器的频率和所述GPS本地振荡器的频率,确定一组误差估计,使用该组误差估计来近似一个函数,使用所近似的该函数来确定下一个时间间隔的预测频率误差,使用所述预测频率误差来产生一个在下一个时间间隔被施加到所述GPS本地振荡器上的校正信 19. A multi-function portable device for providing a cellular communication using a cellular network station to a predetermined operating frequency cell comprising further for utilizing GPS satellites transmit GPS signals at a predetermined frequency to provide a GPS positioning, the portable multifunction device comprising: a cellular communication system, including cellular reference oscillator, a reference oscillator for generating the frequency cellular communication network between the cell station and the demodulating; GPS system, comprising a GPS local oscillator, the GPS local oscillator frequency is coupled to process the GPS signals; and a reference oscillator connected to the cellular and GPS local oscillators of the error prediction and calibration system, the error prediction and calibration system comparing said reference oscillation cellular frequency and the frequency of the local oscillator of the GPS device to determine a set of error estimates, using the set of error estimates to approximate a function by using the estimated frequency error at the approximated function to determine a time interval using the prediction a frequency error correction signal to produce a next time interval is applied to the GPS local oscillator .
20.如权利要求19所述的多功能便携式设备,其中所述误差预测和校准系统包括: 频率比较电路; 误差监视和预测电路;以及频率校正生成电路。 20. The multi-function portable device according to claim 19, wherein the error prediction and calibration system comprising: a frequency comparison circuit; and the prediction error monitoring circuit; and generating a frequency correction circuit.
21.如权利要求20所述的多功能便携式设备,其中所述频率比较电路: 对固定的时间间隔内所述蜂窝参考振荡器和所述GPS本地振荡器中每一个的周期数量进行计数;以及将所述数量提供给所述误差监视和预测电路。 21. The multi-function portable device according to claim 20, wherein the frequency comparison circuit: the number of cycles in each of a fixed time interval of said reference oscillator and said cellular GPS local oscillator is counted; and the number provided to the error monitoring and prediction circuit.
22.如权利要求20所述的多功能便携式设备,其中所述频率比较电路: 对固定的时间间隔内所述蜂窝参考振荡器和所述GPS本地振荡器中每一个的零交叉点的数目进行计数;以及将所述数目提供给所述误差监视和预测电路。 22. The multi-function portable device according to claim 20, wherein the frequency comparison circuit: the number of zero-cross point of each fixed time interval within the cellular oscillator and the GPS reference local oscillator for count; and the error monitoring and prediction circuit is supplied to said number.
23.如权利要求20所述的多功能便携式设备,其中所述频率比较电路将所述蜂窝参考振荡器的频率和所述GPS本地振荡器的频率之比提供给所述误差监视和预测电路。 23. The multi-function portable device according to claim 20, wherein the frequency comparison circuit than a frequency of the reference cell and the GPS local oscillator frequency of the oscillator is supplied to the error monitoring and prediction circuit.
24.如权利要求20所述的多功能便携式设备,其中所述频率比较电路将所述蜂窝参考振荡器的频率和所述GPS本地振荡器的频率之差提供给所述误差监视和预测电路。 24. The multi-function portable device according to claim 20, wherein the comparison circuit compares the frequency difference between the frequency reference cell and the GPS local oscillator frequency of the oscillator is supplied to the error monitoring and prediction circuit.
25.如权利要求20所述的多功能便携式设备,其中所述频率校正生成电路生成校正信号作为缩放因子。 25. The multi-function portable device according to claim 20, wherein said frequency correction as correction signal generating circuit generates a scaling factor.
CN 200910141395 2002-12-13 2003-12-10 Calibration and correction system for satellite position location systems CN101604010B (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US43313802P true 2002-12-13 2002-12-13
US60/433,138 2002-12-13
US10/336,125 2003-01-03
US10/336,125 US6816111B2 (en) 2002-12-13 2003-01-03 Calibration and correction system for satellite position location systems
CN200380105804.82003.12.10 2003-12-10
CN200380105804.8 2003-12-10

Publications (2)

Publication Number Publication Date
CN101604010A CN101604010A (en) 2009-12-16
CN101604010B true CN101604010B (en) 2012-08-22



Family Applications (2)

Application Number Title Priority Date Filing Date
CN 200910141395 CN101604010B (en) 2002-12-13 2003-12-10 Calibration and correction system for satellite position location systems
CN 200380105804 CN100516927C (en) 2002-12-13 2003-12-10 Calibration and correction system for satellite position location systems

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN 200380105804 CN100516927C (en) 2002-12-13 2003-12-10 Calibration and correction system for satellite position location systems

Country Status (2)

Country Link
CN (2) CN101604010B (en)
BR (1) BRPI0317181B1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7613468B2 (en) 2006-02-28 2009-11-03 Trimble Navigation Limited Method and a system for communicating information to a land surveying rover located in an area without cellular coverage
CN101059560B (en) 2006-04-17 2011-04-20 中国科学院空间科学与应用研究中心 Method for detecting measurement error of occultation double-frequency GPS receiver
CN102135623B (en) 2011-03-23 2014-11-05 中兴通讯股份有限公司 Mobile terminal and calibration method of global positioning system
US10107917B2 (en) 2011-12-05 2018-10-23 Mediatek Inc. Method of inter-channel bias calibration in a GNSS receiver and related device
US8923778B2 (en) * 2012-08-20 2014-12-30 Google Technology Holdings LLC Method for automatic frequency correction in a multi-carrier communications device
US20150118980A1 (en) * 2013-10-29 2015-04-30 Qualcomm Incorporated Transmitter (tx) residual sideband (rsb) and local oscillator (lo) leakage calibration using a reconfigurable tone generator (tg) and lo paths
US9184786B2 (en) * 2013-11-19 2015-11-10 Marvell World Trade Ltd. Systems and methods for clock calibration for satellite navigation
CN105353602B (en) * 2015-11-21 2018-01-12 广西南宁至简至凡科技咨询有限公司 One kind of school system based gps

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5623414A (en) 1995-01-24 1997-04-22 Massachusetts Inst Technology Clock-aided satellite navigation receiver system for enhanced position estimation and integrity monitoring
US6208290B1 (en) 1996-03-08 2001-03-27 Snaptrack, Inc. GPS receiver utilizing a communication link

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6023489A (en) 1995-05-24 2000-02-08 Leica Geosystems Inc. Method and apparatus for code synchronization in a global positioning system receiver
AT376194T (en) 1995-08-09 2007-11-15 Magellan Corp Detection and location-by current leak errors and detection of shrinkage
US6748224B1 (en) 1998-12-16 2004-06-08 Lucent Technologies Inc. Local positioning system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5623414A (en) 1995-01-24 1997-04-22 Massachusetts Inst Technology Clock-aided satellite navigation receiver system for enhanced position estimation and integrity monitoring
US6208290B1 (en) 1996-03-08 2001-03-27 Snaptrack, Inc. GPS receiver utilizing a communication link

Also Published As

Publication number Publication date
BRPI0317181B1 (en) 2016-10-18
CN100516927C (en) 2009-07-22
CN101604010A (en) 2009-12-16
CN1726405A (en) 2006-01-25
BR0317181A (en) 2005-10-25

Similar Documents

Publication Publication Date Title
KR100459834B1 (en) Multi-bit correlation a spread spectrum receiver having an
US6052081A (en) Method and apparatus for satellite positioning system based time measurement
CN1113250C (en) GPS receiver and method for processing GPS signals
US5841396A (en) GPS receiver utilizing a communication link
KR100726108B1 (en) System and method for frequency management in a communications positioning device
US8805376B2 (en) Satellite (GPS) assisted clock apparatus, circuits, systems and processes for cellular terminals on asynchronous networks
US6859761B2 (en) Accurate distance measurement using RF techniques
EP0796437B1 (en) Dual frequency global positioning system
JP4616282B2 (en) Rapid acquisition method and apparatus Gps signal
JP4191605B2 (en) Real-time clock that is calibrated to obtain the gps signal during a low-power operation
US7053824B2 (en) Method and apparatus for receiving a global positioning system signal using a cellular acquisition signal
US6741842B2 (en) System and method for frequency management in a communication device having a positioning device
US20020135511A1 (en) Time synchronization of a satellite positioning system enabled mobile receiver and base station
JP5957025B2 (en) Method of locating the user receiver
US20020145557A1 (en) Location-determination method and apparatus
US8395969B2 (en) Virtual real-time clock based on time information from multiple communication systems
KR100734451B1 (en) Oscillator frequency corrention in gps signal acquisition
US7639181B2 (en) Method and device for tracking weak global navigation satellite system (GNSS) signals
CA2298213C (en) Receiver calibration technique for global orbiting navigation satellite system (glonass)
US7002516B2 (en) Signal detector employing correlation analysis of non-uniform and disjoint sample segments
CN102047136B (en) Internet hotspots localization using satellite systems
EP1486795B1 (en) Portable terminal and GPS time keeping method
US7298321B2 (en) Satellite positioning system receivers and methods
KR20030012857A (en) Method and apparatus for determining time in a gps receiver
US6525688B2 (en) Location-determination method and apparatus

Legal Events

Date Code Title Description
C06 Publication
C10 Request of examination as to substance
REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 1139463

Country of ref document: HK

C14 Granted
REG Reference to a national code

Ref country code: HK

Ref legal event code: GR

Ref document number: 1139463

Country of ref document: HK