CN101580273A - High energy density spinel structural lithium titanate material and preparation method thereof - Google Patents

High energy density spinel structural lithium titanate material and preparation method thereof Download PDF

Info

Publication number
CN101580273A
CN101580273A CNA2009100869463A CN200910086946A CN101580273A CN 101580273 A CN101580273 A CN 101580273A CN A2009100869463 A CNA2009100869463 A CN A2009100869463A CN 200910086946 A CN200910086946 A CN 200910086946A CN 101580273 A CN101580273 A CN 101580273A
Authority
CN
China
Prior art keywords
lithium
lithium titanate
energy density
high energy
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CNA2009100869463A
Other languages
Chinese (zh)
Inventor
唐子龙
徐睿
张中太
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tsinghua University
Original Assignee
Tsinghua University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsinghua University filed Critical Tsinghua University
Priority to CNA2009100869463A priority Critical patent/CN101580273A/en
Publication of CN101580273A publication Critical patent/CN101580273A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/50Electrodes characterised by their material specially adapted for lithium-ion capacitors, e.g. for lithium-doping or for intercalation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Abstract

The invention relates to a high energy density spinel structural lithium titanate material and a preparation method thereof, belonging to the field of nano material preparation technology and energy. The preparation method comprises the following steps: taking cheap industrially produced titanium dioxide as a raw material and carrying out heat treatment on the titanium dioxide by an ultrasonic chemical water-heating method under reducing atmosphere to prepare a lithium titanate nano tube/wire, or taking lithium salt and titanium dioxide as raw materials and carrying out heat treatment on the lithium salt and titanium dioxide under reducing atmosphere to prepare lithium titanate submicron particulate, or carrying out heat treatment on the prepared spinel structural lithium titanate under reducing atmosphere. The high energy density lithium titanate materials obtained through heat treatment under reducing atmosphere can maintain higher capacity, better cyclical stability and longer service life under heavy current than the lithium titanate materials obtained through heat treatment in air, are suitable for serving as electrode materials of lithium ion batteries, supercapacitors or hybrid batteries and are expected to be applied to electric automobiles, etc.

Description

High energy density spinel structural lithium titanate material and preparation method thereof
Technical field
The present invention relates to the high charge-discharge magnification high energy density spinel structural lithium titanate, belong to nano material preparation technology and energy field.
Background technology
In recent years, spinel type lithium titanate comes into one's own day by day as the electrode materials of novel energy storage cell, this is because the lattice parameter of spinel type lithium titanate before and after lithium ion inserts and deviates from changes very little, be called " zero strain material " that lithium ion inserts, thereby can have excellent cyclical stability in theory.Simultaneously, characteristics such as spinel lithium titanate has good anti-over-charging performance and thermal stability, security is good and specific storage is big are a kind of novel lithium ion battery materials of excellence.Spinel type lithium titanate can also be applied to the electrode materials of ultracapacitor, for it provides high power density and energy density, has broad application prospects in fields such as electromobile and hybrid vehicles.
Li 4Ti 5O 12As the negative material of lithium ion battery, though capacity less than carbon negative pole material, it has the following advantages [127]: (1) embeds the stability that crystalline structure in the process of deviating from can keep height at lithium ion, makes it have good cycle performance and sparking voltage stably; (2) have higher electrode voltage, thereby avoided the generation of electrolyte decomposition phenomenon or protective membrane; (3) preparation Li 4Ti 5O 12Raw material sources abundanter.So Li 4Ti 5O 12A kind of more satisfactory lithium ion battery negative material that can replace carbon of can yet be regarded as.Present Li 4Ti 5O 12In the all-solid-state battery that adopts solid electrolyte, obtained suitable application.
The initial electronic conductivity of pure spinel lithium titanate is very low, has influenced the charge-discharge performance as lithium ion battery electrode material, and especially fast charging and discharging performance is very poor.Therefore, the level that reach practicability must be carried out modification to material.Modification is mainly carried out from two aspects, and the first improves its electronic conductivity, and it two is to reduce the path that grain-size shortens the lithium ion migration.
Among the present invention, adopting cheap industrial production titanium dioxide is starting material, heat-treat preparation lithium titanate nanotube/line through the sonochemistry hydrothermal method with under reducing atmosphere, or be raw material, under reducing atmosphere, heat-treat preparation lithium titanate submicron particles with lithium salts and titanium dioxide.These high specific energy lithium titanate materials that thermal treatment obtains through reducing atmosphere are compared with the lithium titanate material that thermal treatment in air obtains, and can keep higher capacity, better cyclical stability and longer work-ing life under big electric current.Be fit to the electrode materials of development, and be expected to be applied to aspect such as electromobile as lithium ion battery, ultracapacitor or hybrid battery.
Summary of the invention
The objective of the invention is to adopt cheap industrial production titanium dioxide is starting material, heat-treat preparation lithium titanate nanotube/line through the sonochemistry hydrothermal method with under reducing atmosphere, or be raw material with lithium salts and titanium dioxide, under reducing atmosphere, heat-treat preparation lithium titanate submicron particles, or under reducing atmosphere, the spinel header structure lithium titanate that has prepared is heat-treated.These high specific energy lithium titanate materials that thermal treatment obtains through reducing atmosphere are compared with the lithium titanate that thermal treatment in air obtains, and can keep higher capacity, better cyclical stability and longer work-ing life under big electric current.Wherein pass through in nitrogen heat treated lithium titanate submicron particles and (promptly put whole electric weight in 3.2min) under the high magnification of 19C loading capacity can reach 107mAh/g, loading capacity also can reach 60mAh/g and 40mAh/g under the ultra-high magnifications of 85C (promptly having put whole electric weight in 42.4s) and 212C (promptly having put whole electric weight in 17s).Under the charge-discharge magnification of 6C and 16.3C through 400 times the circulation after, still kept 100% capacity, be respectively 135mAh/g and 109mAh/g.This has shown in reducing atmosphere heat-treats lithium titanate, compare in air and heat-treat, not only can improve the high rate during charging-discharging of electrode, can also improve its cycle performance under high magnification greatly, be fit to the electrode materials of development, and be expected to be applied to aspect such as electromobile as lithium ion battery, ultracapacitor or hybrid battery.
The present invention is achieved through the following technical solutions:
The preparation method of common spinel lithium titanate nanotube/line: with 5g TiO 2With 70mL concentration is that the NaOH solution of 10M mixes, and is 0.2~0.5W/cm at power 2Following sonochemistry reaction 30 minutes, to move into volume then be 100mL, have in the autoclave of teflon lined and carry out hydro-thermal reaction 24-40h, hydrothermal temperature is 150-180 ℃.After reaction finishes, take out reactor, naturally cool to room temperature, opening the kettle cover after-filtration, is that the product to hydrothermal method washed 30 minutes under 3 the condition at pH with the nitric acid of 0.2M concentration, behind the vacuum filtration, product obtains the fluffy powder product of white after 80 ℃ of dryings, be H 2Ti 3O 7Nanotube/line.With 1.5g H 2Ti 3O 7Nanotube/line and 40mL LiOH aqueous solution stir, and moving into volume then is 50mL, have in the autoclave of teflon lined to carry out more than the hydro-thermal reaction 24h, and preparation nanotube/line hydrothermal temperature is 120-180 ℃.After reaction finishes, take out reactor, naturally cool to room temperature, open the kettle cover after-filtration, for several times with deionized water wash.Behind the vacuum filtration, filter cake with absolute ethanol washing for several times, product obtains the product of white after 80 ℃ of vacuum-drying.Product obtains having the Li of spinel structure after 350~600 ℃ of thermal treatment in air atmosphere 4Ti 5O 12Nanotube/line.
Above-mentioned common spinel lithium titanate nanotube/line is obtained high specific energy lithium titanate nanotube/line in reducing atmosphere after 300~600 ℃ of thermal treatment.Perhaps in the last heat treatment step of said process, change into directly and under reducing atmosphere, obtain high specific energy lithium titanate nanotube/line through 350~600 ℃ of thermal treatments.
The preparation method of common spinel lithium titanate submicron particles: a certain amount of lithium salts is dissolved in 20~40ml ethanol, add 3g titania powder (mol ratio of elemental lithium and titanium elements is 0.8: 1~1.08: 1), stir 4~6h, then at 100 ℃ of down dry 7~10h.Dried powder takes out, and grinds, sieves, thermal treatment 3h in 800 ℃ air atmosphere then, furnace cooling.
Common spinel lithium titanate submicron particles is obtained high energy density spinel lithium titanate submicron particles in reducing atmosphere after 300~400 ℃ of thermal treatment.Perhaps in the last heat treatment step of said process, change into directly and under reducing atmosphere, obtain high energy density spinel lithium titanate submicron particles through 800 ℃ of thermal treatments.
Material is carried out the composition of the test battery electrode diaphragm of electro-chemical test: anodal diaphragm adds a certain proportion of conductive agent acetylene black and binding agent polyvinylidene difluoride (PVDF) (PVDF) with heat treated spinel lithium titanate nanotube/line or submicron particles under the process reducing atmosphere as active substance.Wherein the quality of active substance accounts for 80% altogether, and the quality of conductive agent acetylene black and binding agent respectively accounts for 10%.
The process of assembling test battery: in through active substance, conductive agent acetylene black and binding agent PVDF after disperseing, add dispersion agent N-Methyl pyrrolidone (NMP) and form slurry, it was mixed fully in 4 hours the slurry stirring, and it is ultrasonic to place ultrasonic generator to carry out, and ultrasonic power is 0.2~0.5W/cm 2, 1 hour time.Coat equably on the conductive current collector aluminium foil with scraping the skill in using a kitchen knife in cookery then, in 85 ℃ of following vacuum, carry out punching after dry 1.5 hours.Packaged battery carries out in the glove box of argon gas atmosphere.Electrolytic solution adopts 1mol/L LiPF 6EC: DMC (1: 1) mixed solution, barrier film adopt Celgard 2400.
Description of drawings
Fig. 1 is the SEM image that does not pass through heat treated material under the nitrogen atmosphere among present method embodiment 1.
Fig. 2 is the SEM image of the material among present method embodiment 1.
Fig. 3 is that the specific storage of the test battery of the material among present method embodiment 1 contrasts with the discharge-rate change trend curve.
Fig. 4 is the cycle performance contrast of the test battery of the material among present method embodiment 1.
Fig. 5 is the cycle performance of the test battery of the material among present method embodiment 1.
Fig. 6 is the TEM image of the material among present method embodiment 2.
Fig. 7 is that the specific storage of test battery of the material among present method embodiment 2 is with the discharge-rate change trend curve.
Fig. 8 is the SEM image of the material among present method embodiment 3.
Fig. 9 is that the specific storage of test battery of the material among present method embodiment 3 is with the discharge-rate change trend curve.
Embodiment
Adopting cheap industrial production titanium dioxide is starting material, heat-treat preparation lithium titanate nanotube/line through the sonochemistry hydrothermal method with under reducing atmosphere, or be raw material with Lithium Acetate or Quilonum Retard and titanium dioxide, under reducing atmosphere, heat-treat preparation lithium titanate submicron particles, or under reducing atmosphere, the spinel header structure lithium titanate that has prepared is heat-treated.These high specific energy lithium titanate materials that thermal treatment obtains through reducing atmosphere are compared with the lithium titanate material that thermal treatment in air obtains, and can keep higher capacity, better cyclical stability and longer work-ing life under big electric current.Be fit to the electrode materials of development, and be expected to be applied to aspect such as electromobile as lithium ion battery, ultracapacitor or hybrid battery.
Embodiment 1
The lithium titanate with spinel structure submicron particles heat-treated under 350 ℃ of nitrogen atmospheres obtain the high energy density spinel structural lithium titanate submicron particles, test its performance, and compare with performance without the heat treated lithium titanate with spinel structure submicron particles of nitrogen:
3~4g Lithium Acetate is dissolved in 20~40ml ethanol, adds the 3g titania powder, stir 4~6h, then at 100 ℃ of down dry 7~10h.Dried powder takes out, and grinds, sieves, thermal treatment 3h in 800 ℃ air atmosphere then, furnace cooling.The common spinel lithium titanate submicron particles that obtains is being obtained high energy density spinel lithium titanate submicron particles under the nitrogen atmosphere, and testing its performance after 350 ℃ of thermal treatment.SEM image without heat treated lithium titanate with spinel structure submicron particles of nitrogen and product is seen Fig. 1 and Fig. 2.
Get high energy density spinel lithium titanate submicron particles 2.4g, binding agent polyvinylidene difluoride (PVDF) (PVDF) 0.3g and conductive agent acetylene black 0.3g.Mix the back and add the about 15ml of dispersion agent N-Methyl pyrrolidone (NMP), stirred 4 hours.On aluminium foil, carry out curtain coating with scraping the skill in using a kitchen knife in cookery then, and place 85 ℃ of following vacuum to obtain anodal diaphragm after dry 1.5 hours.
The process of assembling test battery: with anodal diaphragm diameter is 12 millimeters drift punching, and negative pole adopts the lithium sheet, assembling CR2032 type button test battery.Packaged battery carries out in the glove box of argon gas atmosphere.Electrolytic solution adopts 1mol/L LiPF 6EC: DMC (1: 1) mixed solution, barrier film adopt Celgard 2400.
The testing method of high energy density spinel lithium titanate submicron particles chemical property: under multiplying powers such as 0.1C, 0.5C, 1C, 6C, 16.3C, 19C, 85C, 103C, 212C, battery is carried out charge-discharge test respectively, and compare with common spinel lithium titanate submicron particles, obtain specific storage with discharge-rate changing trend diagram (Fig. 3) and cycle performance (Fig. 4 and Fig. 5).
Embodiment 2
Heat-treat with the sonochemistry hydrothermal method and under 3% (volume) hydrogen/argon gas atmosphere of 350 ℃ and to obtain the high energy density spinel structural lithium titanate nanotube, and test its performance:
With 5g TiO 2With 70mL concentration is that the NaOH solution of 10M mixes, and is 0.2~0.5W/cm at power 2Following sonochemistry reaction 30 minutes, to move into volume then be 100mL, have in the autoclave of teflon lined and carry out hydro-thermal reaction 24h, hydrothermal temperature is 150 ℃.After reaction finishes, take out reactor, naturally cool to room temperature, opening the kettle cover after-filtration, is that the product to hydrothermal method washed 30 minutes under 3 the condition at pH with the nitric acid of 0.2M concentration, behind the vacuum filtration, product obtains the fluffy powder product of white after 80 ℃ of dryings, be H 2Ti 3O 7Nanotube.With 1.5g H 2Ti 3O 7Nanotube and 40mL LiOH aqueous solution stir, and moving into volume then is 50mL, have in the autoclave of teflon lined to carry out more than the hydro-thermal reaction 40h, and preparation nanotube hydrothermal temperature is 150 ℃.After reaction finishes, take out reactor, naturally cool to room temperature, open the kettle cover after-filtration, for several times with deionized water wash.Behind the vacuum filtration, filter cake with absolute ethanol washing for several times, product obtains the product of white after 80 ℃ of vacuum-drying.Product obtains the Li of high energy density spinel structural after 350 ℃ of thermal treatment in 3% (volume) hydrogen/argon gas atmosphere 4Ti 5O 12Nanotube.The TEM image of product is seen Fig. 6.
Get high energy density spinel lithium titanate nanotube 2.4g, binding agent polyvinylidene difluoride (PVDF) (PVDF) 0.3g and conductive agent acetylene black 0.3g.Mix the back and add the about 15ml of dispersion agent N-Methyl pyrrolidone (NMP), stirred 4 hours, and the excusing from death wavelength-division that places the excusing from death wave producer to carry out 1 hour is loose.On aluminium foil, carry out curtain coating with scraping the skill in using a kitchen knife in cookery then, and place 85 ℃ of following vacuum to obtain anodal diaphragm after dry 1.5 hours.
The process of assembling test battery: with anodal diaphragm diameter is 12 millimeters drift punching, and negative pole adopts the lithium sheet, assembling CR2032 type button test battery.Packaged battery carries out in the glove box of argon gas atmosphere.Electrolytic solution adopts 1mol/L LiPF 6EC: DMC (1: 1) mixed solution, barrier film adopt Celgard 2400.
The testing method of the chemical property of high energy density spinel lithium titanate nanotube: under multiplying powers such as 0.1C, 0.5C, 1C, 2.3C, 6C, 13.7C, 26.7C, 40C, battery is carried out charge-discharge test respectively, obtain specific storage with discharge-rate variation tendency (Fig. 7).
Embodiment 3
Heat-treat under 800 ℃ of nitrogen atmospheres with solid phase method and to obtain the high energy density spinel structural lithium titanate submicron particles, and test its performance:
3~4g Lithium Acetate is dissolved in 20~40ml ethanol, adds the 3g titania powder, stir 4~6h, then at 100 ℃ of down dry 7~10h.Dried powder takes out, and grind, sieve, thermal treatment 3h in 800 ℃ nitrogen atmosphere atmosphere then, furnace cooling obtains high energy density spinel lithium titanate submicron particles, and tests its performance.The SEM image of product is seen Fig. 8.
Get high energy density spinel lithium titanate submicron particles 2.4g, binding agent polyvinylidene difluoride (PVDF) (PVDF) 0.3g and conductive agent acetylene black 0.3g.Mix the back and add the about 15ml of dispersion agent N-Methyl pyrrolidone (NMP), stirred 4 hours.On aluminium foil, carry out curtain coating with scraping the skill in using a kitchen knife in cookery then, and place 85 ℃ of following vacuum to obtain anodal diaphragm after dry 1.5 hours.
The process of assembling test battery: with anodal diaphragm diameter is 12 millimeters drift punching, and negative pole adopts the lithium sheet, assembling CR2032 type button test battery.Packaged battery carries out in the glove box of argon gas atmosphere.Electrolytic solution adopts 1mol/L LiPF 6EC: DMC (1: 1) mixed solution, barrier film adopt Celgard 2400.
The testing method of high energy density spinel lithium titanate submicron particles chemical property: under multiplying powers such as 0.1C, 0.5C, 1C, 3C, 7C, 15C, 30C, 80C, 100C, battery is carried out charge-discharge test respectively, obtain specific storage with discharge-rate variation tendency (Fig. 9).
Embodiment 4
The lithium titanate with spinel structure submicron particles heat-treated under 300 ℃ of nitrogen atmospheres obtain the high energy density spinel structural lithium titanate submicron particles and test its performance.
3~4g Lithium Acetate is dissolved in 20~40ml ethanol, adds the 3g titania powder, stir 4~6h, then at 100 ℃ of down dry 7~10h.Dried powder takes out, and grinds, sieves, thermal treatment 3h in 800 ℃ air atmosphere then, furnace cooling.The common spinel lithium titanate submicron particles that obtains is obtained high energy density spinel lithium titanate submicron particles after thermal treatment under 300 ℃ of nitrogen atmospheres, and test its performance.
Get high energy density spinel lithium titanate submicron particles 2.4g, binding agent polyvinylidene difluoride (PVDF) (PVDF) 0.3g and conductive agent acetylene black 0.3g.Mix the back and add the about 15ml of dispersion agent N-Methyl pyrrolidone (NMP), stirred 4 hours.On aluminium foil, carry out curtain coating with scraping the skill in using a kitchen knife in cookery then, and place 85 ℃ of following vacuum to obtain anodal diaphragm after dry 1.5 hours.
The process of assembling test battery: with anodal diaphragm diameter is 12 millimeters drift punching, and negative pole adopts the lithium sheet, assembling CR2032 type button test battery.Packaged battery carries out in the glove box of argon gas atmosphere.Electrolytic solution adopts 1mol/L LiPF 6EC: DMC (1: 1) mixed solution, barrier film adopt Celgard 2400.
The testing method of high energy density spinel lithium titanate submicron particles chemical property: under multiplying powers such as 0.1C, 0.5C, 1C, 5C, 10C, 20C, 50C, 100C, 200C, battery is carried out charge-discharge test respectively, obtain its specific storage and be respectively 157mAh/g, 156mAh/g, 155mAh/g, 135mAh/g, 117mAh/g, 100mAh/g, 80mAh/g, 52mAh/g, 32mAh/g.
Embodiment 5
The lithium titanate with spinel structure submicron particles heat-treated through 400 ℃ under 3% (volume) hydrogen/argon gas atmosphere obtain the high energy density spinel structural lithium titanate submicron particles and test its performance.
3~4g Lithium Acetate is dissolved in 20~40ml ethanol, adds the 3g titania powder, stir 4~6h, then at 100 ℃ of down dry 7~10h.Dried powder takes out, and grinds, sieves, thermal treatment 3h in 800 ℃ air atmosphere then, furnace cooling.The common spinel lithium titanate submicron particles that obtains is obtained high energy density spinel lithium titanate submicron particles under 3% (volume) hydrogen/argon gas atmosphere, and test its performance after 400 ℃ of thermal treatment.
Get high energy density spinel lithium titanate submicron particles 2.4g, binding agent polyvinylidene difluoride (PVDF) (PVDF) 0.3g and conductive agent acetylene black 0.3g.Mix the back and add the about 15ml of dispersion agent N-Methyl pyrrolidone (NMP), stirred 4 hours.On aluminium foil, carry out curtain coating with scraping the skill in using a kitchen knife in cookery then, and place 85 ℃ of following vacuum to obtain anodal diaphragm after dry 1.5 hours.
The process of assembling test battery: with anodal diaphragm diameter is 12 millimeters drift punching, and negative pole adopts the lithium sheet, assembling CR2032 type button test battery.Packaged battery carries out in the glove box of argon gas atmosphere.Electrolytic solution adopts 1mol/L LiPF 6EC: DMC (1: 1) mixed solution, barrier film adopt Celgard 2400.
The testing method of high energy density spinel lithium titanate submicron particles chemical property: under multiplying powers such as 0.1C, 0.5C, 1C, 5C, 10C, 20C, 50C, 100C, 200C, battery is carried out charge-discharge test respectively, obtain its specific storage and be respectively 157mAh/g, 154mAh/g, 154mAh/g, 133mAh/g, 115mAh/g, 102mAh/g, 81mAh/g, 52mAh/g, 33mAh/g.
Embodiment 6
The lithium titanate with spinel structure submicron particles heat-treated under 450 ℃ of nitrogen atmospheres obtain the high energy density spinel structural lithium titanate submicron particles and test its performance.
3~4g Lithium Acetate is dissolved in 20~40ml ethanol, adds the 3g titania powder, stir 4~6h, then at 100 ℃ of down dry 7~10h.Dried powder takes out, and grinds, sieves, thermal treatment 3h in 800 ℃ air atmosphere then, furnace cooling.The common spinel lithium titanate submicron particles that obtains is obtained high energy density spinel lithium titanate submicron particles at nitrogen atmosphere after 450 ℃ of thermal treatment, and test its performance.
Get high energy density spinel lithium titanate submicron particles 2.4g, binding agent polyvinylidene difluoride (PVDF) (PVDF) 0.3g and conductive agent acetylene black 0.3g.Mix the back and add the about 15ml of dispersion agent N-Methyl pyrrolidone (NMP), stirred 4 hours.On aluminium foil, carry out curtain coating with scraping the skill in using a kitchen knife in cookery then, and place 85 ℃ of following vacuum to obtain anodal diaphragm after dry 1.5 hours.
The process of assembling test battery: with anodal diaphragm diameter is 12 millimeters drift punching, and negative pole adopts the lithium sheet, assembling CR2032 type button test battery.Packaged battery carries out in the glove box of argon gas atmosphere.Electrolytic solution adopts 1mol/L LiPF 6EC: DMC (1: 1) mixed solution, barrier film adopt Celgard 2400.
The testing method of high energy density spinel lithium titanate submicron particles chemical property: under multiplying powers such as 0.1C, 0.5C, 1C, 5C, 10C, 20C, 50C, 100C, 200C, battery is carried out charge-discharge test respectively, obtain its specific storage and be respectively 156mAh/g, 156mAh/g, 155mAh/g, 132mAh/g, 116mAh/g, 101mAh/g, 81mAh/g, 51mAh/g, 34mAh/g.
Embodiment 7
Heat-treat with the sonochemistry hydrothermal method and under 3% (volume) hydrogen/argon gas atmosphere of 400 ℃ and to obtain the high energy density spinel structural lithium titanate nanotube, and test its performance:
With 5g TiO 2With 70mL concentration is that the NaOH solution of 10M mixes, and is 0.2~0.5W/cm at power 2Following sonochemistry reaction 30 minutes, to move into volume then be 100mL, have in the autoclave of teflon lined and carry out hydro-thermal reaction 24h, hydrothermal temperature is 150 ℃.After reaction finishes, take out reactor, naturally cool to room temperature, opening the kettle cover after-filtration, is that the product to hydrothermal method washed 30 minutes under 3 the condition at pH with the nitric acid of 0.2M concentration, behind the vacuum filtration, product obtains the fluffy powder product of white after 80 ℃ of dryings, be H 2Ti 3O 7Nanotube.With 1.5g H 2Ti 3O 7Nanotube and 40mL LiOH aqueous solution stir, and moving into volume then is 50mL, have in the autoclave of teflon lined to carry out more than the hydro-thermal reaction 40h, and preparation nanotube hydrothermal temperature is 150 ℃.After reaction finishes, take out reactor, naturally cool to room temperature, open the kettle cover after-filtration, for several times with deionized water wash.Behind the vacuum filtration, filter cake with absolute ethanol washing for several times, product obtains the product of white after 80 ℃ of vacuum-drying.Product obtains the Li of high energy density spinel structural after 400 ℃ of thermal treatment in 3% (volume) hydrogen/argon gas atmosphere 4Ti 5O 12Nanotube.The TEM image of product is seen Fig. 6.
Get high energy density spinel lithium titanate nanotube 2.4g, binding agent polyvinylidene difluoride (PVDF) (PVDF) 0.3g and conductive agent acetylene black 0.3g.Mix the back and add the about 15ml of dispersion agent N-Methyl pyrrolidone (NMP), stirred 4 hours, and the excusing from death wavelength-division that places the excusing from death wave producer to carry out 1 hour is loose.On aluminium foil, carry out curtain coating with scraping the skill in using a kitchen knife in cookery then, and place 85 ℃ of following vacuum to obtain anodal diaphragm after dry 1.5 hours.
The process of assembling test battery: with anodal diaphragm diameter is 12 millimeters drift punching, and negative pole adopts the lithium sheet, assembling CR2032 type button test battery.Packaged battery carries out in the glove box of argon gas atmosphere.Electrolytic solution adopts 1mol/L LiPF 6EC: DMC (1: 1) mixed solution, barrier film adopt Celgard 2400.
The testing method of the chemical property of high energy density spinel lithium titanate nanotube: under multiplying powers such as 0.1C, 0.5C, 1C, 2C, 5C, 10C, 30C, 50C, battery is carried out charge-discharge test respectively, obtain its specific storage and be respectively 165mAh/g, 154mAh/g, 151mAh/g, 148mAh/g, 145mAh/g, 138mAh/g, 128mAh/g, 124mAh/g.
Embodiment 8
Heat-treat with the sonochemistry hydrothermal method and under 450 ℃ nitrogen atmosphere and to obtain the high energy density spinel structural lithium titanate nanotube, and test its performance:
With 5g TiO 2With 70mL concentration is that the NaOH solution of 10M mixes, and is 0.2~0.5W/cm at power 2Following sonochemistry reaction 30 minutes, to move into volume then be 100mL, have in the autoclave of teflon lined and carry out hydro-thermal reaction 24h, hydrothermal temperature is 150 ℃.After reaction finishes, take out reactor, naturally cool to room temperature, opening the kettle cover after-filtration, is that the product to hydrothermal method washed 30 minutes under 3 the condition at pH with the nitric acid of 0.2M concentration, behind the vacuum filtration, product obtains the fluffy powder product of white after 80 ℃ of dryings, be H 2Ti 3O 7Nanotube.With 1.5g H 2Ti 3O 7Nanotube and 40mL LiOH aqueous solution stir, and moving into volume then is 50mL, have in the autoclave of teflon lined to carry out more than the hydro-thermal reaction 40h, and preparation nanotube hydrothermal temperature is 150 ℃.After reaction finishes, take out reactor, naturally cool to room temperature, open the kettle cover after-filtration, for several times with deionized water wash.Behind the vacuum filtration, filter cake with absolute ethanol washing for several times, product obtains the product of white after 80 ℃ of vacuum-drying.Product obtains the Li of high energy density spinel structural after 450 ℃ of thermal treatment in nitrogen atmosphere 4Ti 5O 12Nanotube.The TEM image of product is seen Fig. 6.
Get high energy density spinel lithium titanate nanotube 2.4g, binding agent polyvinylidene difluoride (PVDF) (PVDF) 0.3g and conductive agent acetylene black 0.3g.Mix the back and add the about 15ml of dispersion agent N-Methyl pyrrolidone (NMP), stirred 4 hours, and the excusing from death wavelength-division that places the excusing from death wave producer to carry out 1 hour is loose.On aluminium foil, carry out curtain coating with scraping the skill in using a kitchen knife in cookery then, and place 85 ℃ of following vacuum to obtain anodal diaphragm after dry 1.5 hours.
The process of assembling test battery: with anodal diaphragm diameter is 12 millimeters drift punching, and negative pole adopts the lithium sheet, assembling CR2032 type button test battery.Packaged battery carries out in the glove box of argon gas atmosphere.Electrolytic solution adopts 1mol/L LiPF 6EC: DMC (1: 1) mixed solution, barrier film adopt Celgard 2400.
The testing method of the chemical property of high energy density spinel lithium titanate nanotube: under multiplying powers such as 0.1C, 0.5C, 1C, 2C, 5C, 10C, 30C, 50C, battery is carried out charge-discharge test respectively, obtain its specific storage and be respectively 161mAh/g, 152mAh/g, 151mAh/g, 145mAh/g, 142mAh/g, 135mAh/g, 124mAh/g, 120mAh/g.

Claims (7)

1, high energy density spinel structural lithium titanate material is characterized in that, described material is by hydrothermal method and heat-treats the high energy density spinel structural lithium titanate nanotube or the line of preparation under reducing atmosphere.
2, the method for preparation high energy density spinel structural lithium titanate material as claimed in claim 1, this method contains following steps:
(1) with TiO 2Mix with NaOH solution, carry out sonochemistry reaction after, carry out hydro-thermal reaction, hydrothermal temperature is 150-180 ℃:
(2) after reaction finishes, wash with the product of diluted acid to hydrothermal method, behind the vacuum filtration, product obtains the fluffy powder product of white after drying, is H 2Ti 3O 7Nanotube or line;
(3) with H 2Ti 3O 7Nanotube or line and LiOH aqueous solution are carried out hydro-thermal reaction, and preparation nanotube or line hydrothermal temperature are 120-180 ℃;
(4) after reaction finishes, use the deionized water wash product, behind the vacuum filtration, filter cake absolute ethanol washing, product obtain the product of white after vacuum-drying;
It is characterized in that,
(5) with the product of above-mentioned white in reducing atmosphere after 350~600 ℃ of thermal treatment, obtain having the Li of spinel structure 4Ti 5O 12Nanotube or line.
3, high energy density spinel structural lithium titanate material is characterized in that, described material is by solid phase method and heat-treats the high energy density spinel structural lithium titanate submicron particles of preparation under reducing atmosphere.
4, the method for preparation high energy density spinel structural lithium titanate submicron particles as claimed in claim 4, this method contains following steps:
(1) lithium salts is dissolved in 20~40ml ethanol, adds titania powder, the mol ratio of described elemental lithium and titanium elements is 0.8: 1~1.08: 1;
(2) stir and carry out drying;
(3) dried powder takes out, and grinds, sieves, thermal treatment 3 hours in 800 ℃ reducing atmosphere then, furnace cooling.
5, preparation method according to claim 5 is characterized in that, this method is that common spinel lithium titanate submicron particles is obtained high energy density spinel lithium titanate submicron particles in reducing atmosphere after 300~400 ℃ of thermal treatment.
6, preparation method according to claim 4, it is characterized in that, described lithium salts is organic lithium salt or inorganic lithium salt, comprises a kind of in lithium hydroxide, Lithium Oxide 98min, Quilonum Retard, lithium nitrate, Lithium Sulphate, Trilithium phosphate, lithium chloride, lithium chlorate or Lithium Acetate, lithium oxalate, lithium benzoate, the vinylformic acid lithium.
According to claim 2,3,4 or 5 described preparation methods, it is characterized in that 7, the reducing atmosphere that described material is heat-treated comprises nitrogen, hydrogen or argon gas or their gas mixture.
CNA2009100869463A 2009-06-12 2009-06-12 High energy density spinel structural lithium titanate material and preparation method thereof Pending CN101580273A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CNA2009100869463A CN101580273A (en) 2009-06-12 2009-06-12 High energy density spinel structural lithium titanate material and preparation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNA2009100869463A CN101580273A (en) 2009-06-12 2009-06-12 High energy density spinel structural lithium titanate material and preparation method thereof

Publications (1)

Publication Number Publication Date
CN101580273A true CN101580273A (en) 2009-11-18

Family

ID=41362614

Family Applications (1)

Application Number Title Priority Date Filing Date
CNA2009100869463A Pending CN101580273A (en) 2009-06-12 2009-06-12 High energy density spinel structural lithium titanate material and preparation method thereof

Country Status (1)

Country Link
CN (1) CN101580273A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102044662A (en) * 2010-10-13 2011-05-04 太原理工大学 Method for preparing spinel type lithium titanate nanowire array
CN102064315A (en) * 2010-12-21 2011-05-18 福州大学 Method for preparing spinel lithium titanate nano piece and application of spinel lithium titanate nano piece in lithium battery
CN102502799A (en) * 2011-11-11 2012-06-20 东莞市迈科科技有限公司 Modification method for commercial spinel lithium titanate and product obtained therethrough
CN103730637A (en) * 2014-01-10 2014-04-16 纪效波 Method for preparing negative electrode material lithium titanate of lithium ion battery through alternating voltage method
WO2015038076A1 (en) * 2013-09-16 2015-03-19 Nanyang Technological University Elongated titanate nanotube, its synthesis method, and its use
CN106207089A (en) * 2016-07-19 2016-12-07 青海大学 A kind of used as negative electrode of Li-ion battery lithium titanate nano-tube material and preparation method thereof
CN106935827A (en) * 2017-03-28 2017-07-07 刘高侠 A kind of oxygen vacancy type lithium titanate composite material and preparation method thereof, lithium titanate battery
CN107244693A (en) * 2017-05-23 2017-10-13 湖南大学 A kind of Li0.5TiO2The preparation method of powder body material
CN107799755A (en) * 2017-10-31 2018-03-13 攀钢集团攀枝花钢铁研究院有限公司 The method of lithium titanate particle Surface coating titanium nitride
CN108807008A (en) * 2018-06-06 2018-11-13 广东天劲新能源科技股份有限公司 A kind of lithium-ion capacitor nano whiskers flexibility lithium titanate/carbon nano tube/graphene composite material and preparation method
WO2019051534A1 (en) * 2017-09-14 2019-03-21 Neomaterials Pty Ltd Synthesis of lithium titanate
CN110844934A (en) * 2019-07-29 2020-02-28 西安越遴新材料研究院有限公司 Preparation of spinel type Li4Ti5O12Method for preparing ultrathin nanosheet
CN112670486A (en) * 2020-12-25 2021-04-16 中博龙辉装备集团股份有限公司 Modified lithium titanate electrode material and preparation method thereof

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102044662A (en) * 2010-10-13 2011-05-04 太原理工大学 Method for preparing spinel type lithium titanate nanowire array
CN102044662B (en) * 2010-10-13 2013-01-23 太原理工大学 Method for preparing spinel type lithium titanate nanowire array
CN102064315A (en) * 2010-12-21 2011-05-18 福州大学 Method for preparing spinel lithium titanate nano piece and application of spinel lithium titanate nano piece in lithium battery
CN102502799A (en) * 2011-11-11 2012-06-20 东莞市迈科科技有限公司 Modification method for commercial spinel lithium titanate and product obtained therethrough
WO2015038076A1 (en) * 2013-09-16 2015-03-19 Nanyang Technological University Elongated titanate nanotube, its synthesis method, and its use
US20160207789A1 (en) * 2013-09-16 2016-07-21 Nanyang Technological University Elongated titanate nanotube, its synthesis method, and its use
CN105873853A (en) * 2013-09-16 2016-08-17 南洋理工大学 Elongated titanate nanotube, its synthesis method, and its use
JP2016531839A (en) * 2013-09-16 2016-10-13 ナンヤン テクノロジカル ユニヴァーシティー Elongated titanate nanotubes, synthesis method thereof, and use thereof
CN103730637A (en) * 2014-01-10 2014-04-16 纪效波 Method for preparing negative electrode material lithium titanate of lithium ion battery through alternating voltage method
CN103730637B (en) * 2014-01-10 2016-04-20 纪效波 A kind of alternating voltage method prepares the method for lithium ionic cell cathode material lithium titanate
CN106207089A (en) * 2016-07-19 2016-12-07 青海大学 A kind of used as negative electrode of Li-ion battery lithium titanate nano-tube material and preparation method thereof
CN106935827A (en) * 2017-03-28 2017-07-07 刘高侠 A kind of oxygen vacancy type lithium titanate composite material and preparation method thereof, lithium titanate battery
CN107244693A (en) * 2017-05-23 2017-10-13 湖南大学 A kind of Li0.5TiO2The preparation method of powder body material
CN107244693B (en) * 2017-05-23 2022-01-14 湖南大学 Li0.5TiO2Method for preparing powder material
WO2019051534A1 (en) * 2017-09-14 2019-03-21 Neomaterials Pty Ltd Synthesis of lithium titanate
CN111630701A (en) * 2017-09-14 2020-09-04 尼欧梅特丽有限公司 Synthesis of lithium titanate
CN107799755A (en) * 2017-10-31 2018-03-13 攀钢集团攀枝花钢铁研究院有限公司 The method of lithium titanate particle Surface coating titanium nitride
CN108807008A (en) * 2018-06-06 2018-11-13 广东天劲新能源科技股份有限公司 A kind of lithium-ion capacitor nano whiskers flexibility lithium titanate/carbon nano tube/graphene composite material and preparation method
CN110844934A (en) * 2019-07-29 2020-02-28 西安越遴新材料研究院有限公司 Preparation of spinel type Li4Ti5O12Method for preparing ultrathin nanosheet
CN112670486A (en) * 2020-12-25 2021-04-16 中博龙辉装备集团股份有限公司 Modified lithium titanate electrode material and preparation method thereof
CN112670486B (en) * 2020-12-25 2021-10-08 中博龙辉装备集团股份有限公司 Modified lithium titanate electrode material and preparation method thereof

Similar Documents

Publication Publication Date Title
CN101580273A (en) High energy density spinel structural lithium titanate material and preparation method thereof
Li et al. Synthesis and electrochemical performance of cathode material Li1. 2Co0. 13Ni0. 13Mn0. 54O2 from spent lithium-ion batteries
Wang et al. A new cathode material Na2V6O16· xH2O nanowire for lithium ion battery
Wang et al. Gold coating for a high performance Li4Ti5O12 nanorod aggregates anode in lithium-ion batteries
Alsamet et al. Synthesis and characterization of nano-sized LiFePO4 by using consecutive combination of sol-gel and hydrothermal methods
Chen et al. Defective mesoporous Li4Ti5O12− y: An advanced anode material with anomalous capacity and cycling stability at a high rate of 20 C
CN102324511B (en) Preparation method for lithium ion battery composite cathode material
CN102637873B (en) A kind of lithium ion battery negative material and preparation method thereof
CN101488584A (en) Asymmetric lithium iron phosphate cell using lithium titanate as main active substance of negative pole
Zhong et al. Low temperature combustion synthesis and performance of spherical 0.5 Li2MnO3–LiNi0. 5Mn0. 5O2 cathode material for Li-ion batteries
Marzuki et al. Enhanced lithium storage in Co3O4/carbon anode for Li-ion batteries
Ogihara et al. Effect of organic acid on the electrochemical properties of Li4Ti5O12/C composite powders synthesized by spray pyrolysis
CN102120610A (en) Lithium ion battery cathode material as well as preparation method and application thereof
Gao et al. Enhanced rate performance of nanosized RGO-LiNi 0.5 Mn 1.5 O 4 composites as cathode material by a solid-state assembly method
TWI651272B (en) Process for producing lr-lnmo composite materials and use the same
Yao et al. Porous Co3O4 nanoflakes as anode material for lithium ion batteries
CN101575118B (en) Method for preparing hydrogen lithium titanate nano-tube or wire with high specific energy
Wei et al. High power LiMn2O4 hollow microsphere cathode materials for lithium ion batteries
Wu et al. Electrochemical properties of submicro-sized layered LiNi0. 5Mn0. 5O2
Li et al. Synthesis and electrochemical performances of high-voltage LiNi 0.5 Mn 1.5 O 4 cathode materials prepared by hydroxide co-precipitation method
CN101504989B (en) Titanium oxide energy accumulation cell with high power and high energy
Song et al. Effect of drying time on electrochemical properties of Li1. 2Mn0. 54Ni0. 13Co0. 13O2 cathode material
Feng et al. A simple method for the synthesis of KV3O80. 42H2O nanorod and its lithium insertion/deinsertion properties
CN109817899B (en) Preparation method and application of hetero-element-doped carbon nanotube-packaged metal sulfide composite negative electrode material
Guo et al. A novel non-organic hydrothermal/hydrolysis method for preparation of well-dispersed Li4Ti5O12

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C12 Rejection of a patent application after its publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20091118