CN101577670A - Method, device and system for bandwidth allocation - Google Patents
Method, device and system for bandwidth allocation Download PDFInfo
- Publication number
- CN101577670A CN101577670A CNA2008101059971A CN200810105997A CN101577670A CN 101577670 A CN101577670 A CN 101577670A CN A2008101059971 A CNA2008101059971 A CN A2008101059971A CN 200810105997 A CN200810105997 A CN 200810105997A CN 101577670 A CN101577670 A CN 101577670A
- Authority
- CN
- China
- Prior art keywords
- bandwidth
- communication link
- network
- value
- communication terminal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Images
Landscapes
- Data Exchanges In Wide-Area Networks (AREA)
Abstract
本发明实施例涉及一种带宽分配方法、装置及系统,其中方法包括:当监测到网络带宽资源减少时,根据预设的带宽最小值,将各通信链路的带宽调整为与所述各通信链路对应的带宽最小值;若调整后网络带宽资源提高,则根据各通信链路的带宽最大值以及视频主观质量,获取各通信链路需要的带宽增量;根据所述带宽增量,按照各通信链路的优先级从高到低的顺序,将网络剩余带宽依次分配给各通信链路。本发明实施例能保证带宽资源整体分配最优化,从而保证用户通信终端的服务质量。
The embodiment of the present invention relates to a bandwidth allocation method, device and system, wherein the method includes: when the decrease of network bandwidth resources is detected, according to the preset minimum bandwidth, the bandwidth of each communication link is adjusted to the bandwidth of each communication link. The minimum value of the bandwidth corresponding to the link; if the adjusted network bandwidth resources increase, the bandwidth increment required by each communication link is obtained according to the maximum bandwidth of each communication link and the subjective quality of the video; according to the bandwidth increment, according to The priority of each communication link is from high to low, and the remaining bandwidth of the network is allocated to each communication link in turn. The embodiments of the present invention can ensure the optimization of the overall allocation of bandwidth resources, thereby ensuring the service quality of user communication terminals.
Description
技术领域 technical field
本发明实施例涉及网络领域,尤其涉及一种带宽分配方法、装置及系统。The embodiments of the present invention relate to the network field, and in particular to a bandwidth allocation method, device and system.
背景技术 Background technique
自20世纪90年代以来,互联网业务由于提供了大量且丰富的业务内容而得到了飞速的发展,与此同时,移动通信业务也迅速崛起,能够随时随地进行通信成为人们日常生活的迫切需求。在此背景下,提出了下一代网络(Next Generation Network,以下简称:NGN)的构想。NGN的基本特征是:提供大量宽带业务,用以增长业务收入;融合各种网络业务,诸如数据、电话、多媒体以及各种正在兴起的互联网业务,包括即时消息、视频点播等流媒体业务。Since the 1990s, Internet services have developed rapidly due to the provision of a large number of rich service content. At the same time, mobile communication services have also risen rapidly. Being able to communicate anytime and anywhere has become an urgent need for people's daily life. In this context, the idea of Next Generation Network (NGN) is proposed. The basic features of NGN are: provide a large number of broadband services to increase business revenue; integrate various network services, such as data, telephone, multimedia and various emerging Internet services, including streaming media services such as instant messaging and video-on-demand.
NGN体系及标准采用因特网协议(Internet Protocol,以下简称:IP)技术作为NGN业务的承载网。NGN业务种类繁多,包括语音、数据、视频等多媒体业务,这些业务对服务质量(Quality of Service,以下简称:QoS)的要求各不相同,例如语音和视频等实时业务,对时延很敏感,要求尽可能小的时延,而允许有一定的丢包率;数据文件和静止图片等业务对时延不敏感,但却要求较低的丢包率。不仅如此,NGN可能由若干个运营商的区域组成,这些异质网络的传输性能也各不相同。因此,在NGN中,对端到端的QoS有更为严格的要求,须更好地对NGN的QoS进行有效的控制,以保证NGN通信的质量。但是传统的IP技术难以满足NGN业务多样性、实时性和安全性的要求,现有的公共IP网络还不能为软交换网络提供大规模的具有QoS保证的承载服务。The NGN system and standards adopt Internet Protocol (Internet Protocol, hereinafter referred to as: IP) technology as the bearer network of NGN services. There are many kinds of NGN services, including multimedia services such as voice, data, and video. These services have different requirements for Quality of Service (QoS). For example, real-time services such as voice and video are sensitive to delay. It requires as little delay as possible, but allows a certain packet loss rate; services such as data files and still pictures are not sensitive to delay, but require a lower packet loss rate. Not only that, NGN may be composed of several operators' areas, and the transmission performance of these heterogeneous networks is also different. Therefore, in NGN, there are stricter requirements on end-to-end QoS, and the QoS of NGN must be effectively controlled to ensure the quality of NGN communication. However, the traditional IP technology is difficult to meet the requirements of NGN business diversity, real-time and security, and the existing public IP network cannot provide large-scale bearer services with QoS guarantee for the softswitch network.
由于网络带宽不断增加,运营商在解决网络拥塞和QoS的问题时,最简单的方法就是“将问题扔给带宽”,导致网络容量不断增加。资源管理的目标是在有限资源的条件下,灵活分配和动态调整系统的可用资源,最大限度地提高系统资源利用率,防止网络拥塞,同时又为用户通信终端提供业务的服务质量保证。因此,QoS和带宽管理方法之间有密切的联系,带宽管理能力是运营商解决QoS问题的基石。Due to the continuous increase of network bandwidth, the easiest way for operators to solve network congestion and QoS problems is to "throw the problem to the bandwidth", resulting in continuous increase of network capacity. The goal of resource management is to flexibly allocate and dynamically adjust the available resources of the system under the condition of limited resources, to maximize the utilization of system resources, to prevent network congestion, and to provide service quality assurance for user communication terminals. Therefore, there is a close relationship between QoS and bandwidth management methods, and bandwidth management capabilities are the cornerstone for operators to solve QoS problems.
现有技术提供了一种在IP网络中采用价格策略分配网络带宽的方法,当网络不能同时满足所有正在通信的用户的QoS要求时,运营商会有所损失,在这种情况下,运营商可以采用价格策略分配网络带宽,从而保证通信服务运营收益最大化。所谓价格策略是指线性价格策略,其服务性能参数为数据包时延。假定用i,j(i,j=1,2,...,n)来表示用户通信终端的服务等级(也可称为优先级),用di来表示服务等级为i的用户通信终端的数据包时延,用ri(di)来表示价格函数,所述价格函数定义为网络提供商提供的QoS和用户所付价格之间的函数关系,其表达式为:The prior art provides a method of allocating network bandwidth using a price strategy in an IP network. When the network cannot simultaneously meet the QoS requirements of all communicating users, the operator will suffer losses. In this case, the operator can The price strategy is adopted to allocate network bandwidth, so as to ensure the maximum profit of communication service operation. The so-called price strategy refers to a linear price strategy, and its service performance parameter is data packet delay. Assuming that i, j (i, j=1, 2, ..., n) is used to represent the service level (also called priority) of the user communication terminal, and d i is used to represent the user communication terminal whose service level is i The packet delay of , using ri (d i ) to represent the price function, the price function is defined as the functional relationship between the QoS provided by the network provider and the price paid by the user, and its expression is:
ri(di)=bi-kidi (1.1)r i (d i )=b i -k i d i (1.1)
其中bi和ki为价格函数的参数,bi>0,ki>0。通常,若服务等级i高于服务等级j,则有bi>bj,ki>kj。在该价格策略下,服务等级较高的用户将支付较高的费用,同时,当运营商不能满足较高服务等级用户的QoS要求时,也将支付较多的赔偿金。Where bi and ki are parameters of the price function, bi >0, ki > 0. Usually, if the service level i is higher than the service level j, then bi > b j , ki > k j . Under this price strategy, users with higher service levels will pay higher fees. At the same time, when operators cannot meet the QoS requirements of users with higher service levels, they will also pay more compensation.
假定用Cbit/s来表示网络的总带宽,用λ1,λ2,...,λn来表示n个服务等级的业务流的到达率,业务流的到达率满足泊松(Poisson)分布,业务流的数据包长度呈指数分布,用Li(bits)表示服务等级i的平均包长,用ωiC表示分配给服务等级i的业务流的带宽,其中ωi表示分配给服务等级i的业务流的带宽占总带宽的比例,对这些比例的约束条件为:Assume that Cbit/s is used to represent the total bandwidth of the network, and λ 1 , λ 2 , ..., λ n are used to represent the arrival rate of service flows of n service levels, and the arrival rate of service flows satisfies the Poisson distribution , the data packet length of the service flow is exponentially distributed, let L i (bits) represent the average packet length of service level i, and use ω i C to represent the bandwidth allocated to the service flow of service level i, where ω i represents the bandwidth allocated to service level The ratio of the bandwidth of the business flow of i to the total bandwidth, the constraints on these ratios are:
假定分配带宽和分配处理能力及缓存容量相匹配(即分配带宽不受分配处理能力的限制而能得到充分利用,系统也不会因缓存溢出而丢包),则基于排队理论,在无丢包情况下平均数据包延时di可以表示为:Assuming that the allocated bandwidth matches the allocated processing capacity and buffer capacity (that is, the allocated bandwidth is not limited by the allocated processing capacity and can be fully utilized, and the system will not lose packets due to buffer overflow), then based on the queuing theory, when there is no packet loss In this case, the average packet delay d i can be expressed as:
di=1/(ωic/Li-λi)=Li/(ωic-λiLi)d i =1/(ω i c/L i -λ i )=L i /(ω i c-λ i L i )
上式的约束条件为ωic>λiLi。由于采用的通信服务运营收益度量为单位时间内的通信服务运营收益,在代入上述线性价格函数后,网络提供商获得的通信服务运营收益REV可以表示为:The constraint condition of the above formula is ω i c > λ i L i . Since the operating income of communication services is measured as the operating income of communication services per unit time, after substituting the above linear price function, the operating income REV of communication services obtained by network providers can be expressed as:
则在线性价格策略下的通信服务运营收益最大化的带宽分配问题可以用下面的最优化求解方程来表示:Then the bandwidth allocation problem of maximizing communication service operating income under the linear price strategy can be expressed by the following optimization solution equation:
其中在最优化点上满足以下约束条件:Among them, the following constraints are satisfied at the optimization point:
ωic>λiLi(1.5)ω i c > λ i L i (1.5)
利用拉格朗日最优化算法,根据式(1.3)和(1.4),构造如下拉格朗日方程:Using the Lagrangian optimization algorithm, according to formula (1.3) and (1.4), construct the following Lagrangian equation:
取P的偏微分并使之等于0,便可得到ωi,从而得到运营商的通信服务运营收益。当式(1.6)的二阶偏导数在(0,1)内严格大于0或严格小于0时,ωi在(0,1)内有唯一的最优解。Take the partial differential of P And make it equal to 0, then ω i can be obtained, thus obtaining the operator's communication service operating income. When the second-order partial derivative of formula (1.6) is strictly greater than 0 or strictly smaller than 0 in (0, 1), ω i has a unique optimal solution in (0, 1).
在实现本发明过程当中,发明人发现上述现有技术存在如下缺陷:In the course of realizing the present invention, the inventor finds that the above-mentioned prior art has the following defects:
(1)该技术方案能够保证运营商的利益最大化,但不能保证带宽资源得到整体最优化利用,进而不能保证网络服务质量;(1) This technical solution can guarantee the maximization of the interests of operators, but it cannot guarantee the overall optimal utilization of bandwidth resources, and thus cannot guarantee the quality of network services;
(2)该技术方案仅以数据包时延作为网络服务性能参数,无法综合反映实时视频通信服务质量。(2) This technical solution only uses packet delay as a network service performance parameter, which cannot comprehensively reflect the service quality of real-time video communication.
发明内容 Contents of the invention
本发明实施例提供的带宽分配方法、装置及系统,能够保证带宽资源得到整体最优化利用,从而保证网络服务质量。The bandwidth allocation method, device, and system provided by the embodiments of the present invention can ensure that bandwidth resources are optimally utilized as a whole, thereby ensuring network service quality.
本发明实施例提供了一种带宽分配方法,包括:An embodiment of the present invention provides a bandwidth allocation method, including:
当监测到网络带宽资源减少时,根据预设的带宽最小值,将各通信链路的带宽调整为与所述各通信链路对应的带宽最小值;When it is detected that the network bandwidth resources decrease, according to the preset minimum bandwidth value, the bandwidth of each communication link is adjusted to the minimum bandwidth value corresponding to each communication link;
若调整后网络带宽资源提高,则根据各通信链路的带宽最大值以及视频主观质量,获取各通信链路需要的带宽增量;If the adjusted network bandwidth resource is increased, the bandwidth increment required by each communication link is obtained according to the maximum bandwidth of each communication link and the subjective video quality;
根据所述带宽增量,按照各通信链路的优先级从高到低的顺序,将网络剩余带宽依次分配给各通信链路。According to the bandwidth increment, the remaining bandwidth of the network is allocated to each communication link in sequence in descending order of the priority of each communication link.
本发明实施例提供了一种带宽分配装置,包括:An embodiment of the present invention provides a bandwidth allocation device, including:
监测模块,用于监测网络带宽资源,确定当前网络带宽资源状况;The monitoring module is used to monitor network bandwidth resources and determine the current status of network bandwidth resources;
最小值设置模块,用于获取监测模块的当前网络带宽资源状况,当网络带宽资源减少时,根据预设的带宽最小值,将各通信链路的带宽调整为与所述各通信链路对应的带宽最小值;The minimum value setting module is used to obtain the current network bandwidth resource status of the monitoring module. When the network bandwidth resource decreases, adjust the bandwidth of each communication link to the bandwidth corresponding to each communication link according to the preset bandwidth minimum value. bandwidth minimum;
第一获取模块,用于获取监测模块的当前网络带宽资源状况,在最小值设置模块调整后的网络带宽资源提高时,根据各通信链路的带宽当前值、带宽最大值以及视频主观质量,获取各通信链路需要的带宽增量;The first obtaining module is used to obtain the current network bandwidth resource status of the monitoring module. When the network bandwidth resource adjusted by the minimum value setting module increases, according to the current bandwidth value of each communication link, the maximum bandwidth value and the subjective video quality, obtain Bandwidth increments required for each communication link;
第一分配模块,用于根据所述第一获取模块的带宽增量,按照各通信链路的优先级从高到低的顺序,将网络剩余带宽依次分配给各通信链路。The first allocation module is configured to sequentially allocate the remaining bandwidth of the network to each communication link in descending order of the priority of each communication link according to the bandwidth increment of the first acquisition module.
本发明实施例提供了一种带宽分配系统,包括:发送方媒体网关、接收方媒体网关以及媒体网关控制器;所述媒体网关控制器包括:An embodiment of the present invention provides a bandwidth allocation system, including: a sending media gateway, a receiving media gateway, and a media gateway controller; the media gateway controller includes:
监测模块,用于监测所述发送方媒体网关和所述接收方媒体网关之间的网络带宽资源,确定当前网络带宽资源状况;A monitoring module, configured to monitor the network bandwidth resource between the media gateway of the sending party and the media gateway of the receiving party, and determine the current status of the network bandwidth resource;
最小值设置模块,用于获取监测模块的当前网络带宽资源状况,当网络带宽资源减少时,根据预设的带宽最小值,将各通信链路的带宽调整为与所述各通信链路对应的带宽最小值;The minimum value setting module is used to obtain the current network bandwidth resource status of the monitoring module. When the network bandwidth resource decreases, adjust the bandwidth of each communication link to the bandwidth corresponding to each communication link according to the preset bandwidth minimum value. bandwidth minimum;
第一获取模块,用于获取监测模块的当前网络带宽资源状况,在最小值设置模块调整后的网络带宽资源提高时,根据各通信链路的带宽当前值、带宽最大值以及视频主观质量,获取各通信链路需要的带宽增量;The first obtaining module is used to obtain the current network bandwidth resource status of the monitoring module. When the network bandwidth resource adjusted by the minimum value setting module increases, according to the current bandwidth value of each communication link, the maximum bandwidth value and the subjective video quality, obtain Bandwidth increments required for each communication link;
第一分配模块,用于根据所述第一获取模块的带宽增量,按照各通信链路的优先级从高到低的顺序,将网络剩余带宽依次分配给各通信链路。The first allocation module is configured to sequentially allocate the remaining bandwidth of the network to each communication link in descending order of the priority of each communication link according to the bandwidth increment of the first acquisition module.
本发明实施例提供的带宽分配方法、装置及系统,当监测到网络带宽资源减少时,首先将各通信链路的带宽调整为与所述各通信链路对应的带宽最小值,然后再根据能够提供的带宽资源情况,按照各通信链路的优先级从高到低的顺序,将网络剩余带宽依次分配给各通信链路,从而能够保证带宽资源整体分配最优化,进而保证网络服务质量。The bandwidth allocation method, device, and system provided by the embodiments of the present invention first adjust the bandwidth of each communication link to the minimum bandwidth corresponding to each communication link when it is detected that the network bandwidth resource is reduced, and then adjust the bandwidth according to the available According to the bandwidth resources provided, the remaining bandwidth of the network is allocated to each communication link in order according to the priority of each communication link from high to low, so as to ensure the optimization of the overall allocation of bandwidth resources and the quality of network services.
附图说明 Description of drawings
图1为本发明带宽分配方法实施例的流程图;Fig. 1 is the flow chart of the embodiment of the bandwidth allocation method of the present invention;
图2为本发明带宽分配方法实施例用户通信终端接入的流程图;2 is a flow chart of user communication terminal access in an embodiment of the bandwidth allocation method of the present invention;
图3为本发明带宽分配装置实施例的示意图;3 is a schematic diagram of an embodiment of a bandwidth allocation device of the present invention;
图4为本发明带宽分配系统实施例的结构图。Fig. 4 is a structural diagram of an embodiment of the bandwidth allocation system of the present invention.
具体实施方式 Detailed ways
下面通过附图和实施例,对本发明实施例的技术方案做进一步的详细描述。The technical solutions of the embodiments of the present invention will be described in further detail below with reference to the drawings and embodiments.
本发明实施例提出了保证带宽资源整体分配最优化的方案,当监测到发送方和接收方(例如两个媒体网关)之间的带宽资源突然减少而导致网络状况恶化时,首先根据预设的带宽最小值,将各通信链路的带宽调整为与各通信链路对应的带宽最小值;其次若调整后能够提供的带宽资源提高,则根据所述各通信链路的带宽最大值以及视频主观质量,获取各通信链路所需的带宽增量;根据带宽增量,按照各通信链路的优先级从高到低的顺序,将网络剩余带宽依次分配给各通信链路。The embodiment of the present invention proposes a solution to ensure the optimization of the overall allocation of bandwidth resources. When it is detected that the bandwidth resources between the sender and the receiver (for example, two media gateways) suddenly decrease and the network condition deteriorates, firstly, according to the preset Minimum bandwidth, adjust the bandwidth of each communication link to the minimum bandwidth corresponding to each communication link; secondly, if the bandwidth resources that can be provided after adjustment are improved, then according to the maximum bandwidth of each communication link and the subjective video Quality, to obtain the bandwidth increment required by each communication link; according to the bandwidth increment, according to the priority order of each communication link from high to low, allocate the remaining bandwidth of the network to each communication link in turn.
进一步的,在本发明实施例中引入视频主观质量客观化模型。所谓主观质量是指用户使用产品后的主观体验,视频主观质量是由随机选定的若干用户在特定的环境下对所看到的视频画面进行评比而得到的,目前视频质量划分为以下5种主观质量,见表1,为5个等级的视频主观质量。Furthermore, an objectification model of video subjective quality is introduced in the embodiment of the present invention. The so-called subjective quality refers to the subjective experience of the user after using the product. The subjective quality of the video is obtained by evaluating the video images seen by a number of randomly selected users in a specific environment. Currently, the video quality is divided into the following 5 types Subjective quality, see Table 1, is five levels of video subjective quality.
表1.5个等级的视频主观质量Table 1.5 levels of subjective video quality
但是,每一段视频都通过实验的方法获取视频主观质量是耗时且不可行的,因此,本发明实施例中通过引入视频主观质量客观化模型解决该问题。视频主观质量客观化模型利用网络质量统计参数和编码参数,如丢包率、帧率和比特率等,通过计算得到视频主观质量。视频主观质量客观化模型如下:However, it is time-consuming and infeasible to obtain the subjective quality of the video through experiments for each segment of the video. Therefore, the embodiment of the present invention solves this problem by introducing an objective model of the subjective quality of the video. The objective model of video subjective quality uses network quality statistical parameters and coding parameters, such as packet loss rate, frame rate and bit rate, etc., to obtain video subjective quality through calculation. The objective model of video subjective quality is as follows:
其中,Vq表示视频主观质量;Icoding表示基本视频质量(受编码失真影响),由视频编码比特率(用BrV来表示)和视频帧率(用FrV来表示)来确定;表示与丢包率相关的视频质量健壮度;Pplv表示丢包率;其中,Vq的值域范围为1≤Vq≤5。Wherein, V q represents the subjective quality of the video; I coding represents the basic video quality (affected by coding distortion), which is determined by the video coding bit rate (represented by Br V ) and the video frame rate (represented by Fr V ); Indicates the video quality robustness related to the packet loss rate; P plv indicates the packet loss rate; where, the value range of V q is 1≤V q ≤5.
Icoding可由下式表示:I coding can be expressed by the following formula:
其中,Ofr表示特定视频编码比特率下的最优化帧率,Among them, Ofr represents the optimal frame rate at a specific video encoding bit rate,
Ofr=v1+v2BrV,1≤Ofr≤30,v1,v2是常数;(2.3)Ofr=v 1 +v 2 Br V , 1≤Ofr≤30, v 1 and v 2 are constants; (2.3)
当视频帧率等于最优化帧率时,即FrV=Ofr时,Icoding=IOfr,IOfr表示特定视频编码比特率下可获得的最大视频质量,其表达式为:When the video frame rate is equal to the optimal frame rate, that is, when Fr V =Ofr, I coding = I Ofr , I Ofr represents the maximum video quality available under a specific video coding bit rate, and its expression is:
上式中0≤IOfr≤4,v3,v4,v5为常数;In the above formula, 0≤I Ofr ≤4, v 3 , v 4 , v 5 are constants;
表示与FrV相关的视频质量健壮度,其表达式为: Indicates the video quality robustness related to Fr V , and its expression is:
上式中
的表达式为: The expression is:
上式中
以上所述参数v1,v2,…,v11,v12的选取与编码类型、视频格式、帧刷新间隔以及视频显示尺寸等因素相关,可以根据上述公式,通过实验确定v1,v2,…,v11,v12。例如,首先,针对M(M为自然数)个不同的帧率FrV,通过实验的方法得出不同帧率下的视频主观质量Vq,得到表2;The selection of the above-mentioned parameters v 1 , v 2 ,..., v 11 , v 12 is related to factors such as encoding type, video format, frame refresh interval, and video display size, and v 1 , v 2 can be determined through experiments according to the above formula , ..., v 11 , v 12 . For example, firstly, for M (M is a natural number) different frame rates Fr V , the subjective video quality V q under different frame rates is obtained through experiments, and Table 2 is obtained;
表2.BrV、FrV、Vq三个参数之间的关系Table 2. Relationship among the three parameters of Br V , Fr V , and V q
然后,将表2中的数据代入(2.1)式,对于每一个bn,IOfr、Ofr、三个参数的值可以通过使用最小二乘法(LST)算法得到,从而得到表3;Then, substitute the data in Table 2 into formula (2.1), for each b n , I Ofr , Ofr, The values of the three parameters can be obtained by using the least squares (LST) algorithm, thereby obtaining Table 3;
表3.BrV、IOfr、Ofr、之间的关系Table 3. B r V, I Ofr , Ofr, The relationship between
之后,将表3中得到的bn、0n(n=1,2,…,N)代入式(2.3),使用LST算法可以得到v1,v2的估计值;将表3中得到的bn、In(n=1,2,…,N)代入式(2.4),使用LST算法可以得到v3,v4,v5的估计值;将表3中得到的bn、Dn(n=1,2,...,N)代入式(2.5),使用LST算法可以得到v6,v7的估计值;Afterwards, substituting the b n and 0 n (n=1, 2, ..., N) obtained in Table 3 into formula (2.3), and using the LST algorithm, the estimated values of v 1 and v 2 can be obtained; Substituting b n , I n (n=1, 2,..., N) into formula (2.4), the estimated values of v 3 , v 4 , and v 5 can be obtained by using the LST algorithm; b n , D n obtained in Table 3 (n=1, 2, ..., N) are substituted into formula (2.5), and the estimated values of v 6 and v 7 can be obtained by using the LST algorithm;
将表3中的值代入式(2.2),可以得到Icoding的取值,将Icoding和视频主观质量Vq代入式(2.1),则针对不同的帧率和码率,使用LST算法可以得到一组的估计值,如表4;Substituting the values in Table 3 into formula (2.2), the value of I coding can be obtained, and substituting I coding and video subjective quality V q into formula (2.1), then for different frame rates and code rates, using the LST algorithm can be obtained A group The estimated value of is shown in Table 4;
表4.BrV、FrV之间的关系Table 4. Relationship between Br V and Fr V
将fm和
将bn和
将v8,v9,
使用以上所示方法,H.264标准对应参数v1,v2,…,v11,v12的取值结果如下所示:v1=23.840,v2=0.003,v3=4.685,v4=231.652,v5=0.913,v6=1.957,v7=0.001,v8=0.373,v9=481.597,v10=49.73,v11=46.257,v12=82.30。Using the method shown above, the values of the H.264 standard corresponding parameters v 1 , v 2 , ..., v 11 , v 12 are as follows: v 1 =23.840, v 2 =0.003, v 3 =4.685, v 4 =231.652, v 5 =0.913, v 6 =1.957, v 7 =0.001, v 8 =0.373, v 9 =481.597, v 10 =49.73, v 11 =46.257, v 12 =82.30.
如图1所示,为本发明带宽分配方法实施例的流程图。在本实施例中,发送方和接收方(例如两个媒体网关)之间有n路不同的信号,按照优先级从高到低的顺序用编号i(i=1,2,...,n)来对不同的通信链路进行标识。不同的编号表示发送方和接收方之间不同优先级信号的通信链路,其中,通信链路编号越小,优先级越高,例如通信链路i的优先级高于通信链路i+1,通信链路i=1的优先级最高。As shown in FIG. 1 , it is a flowchart of an embodiment of the bandwidth allocation method of the present invention. In this embodiment, there are n different signals between the sender and the receiver (for example, two media gateways), and they are numbered i (i=1, 2, ..., n) to identify different communication links. Different numbers represent communication links of different priority signals between the sender and receiver, where the smaller the communication link number, the higher the priority, for example, the priority of communication link i is higher than that of communication link i+1 , the communication link i=1 has the highest priority.
步骤101、当监测到网络带宽减少时,根据预设的带宽最小值,将分配给各用户通信终端所使用的通信链路的带宽调整为与各通信链路对应的带宽最小值;网络的状态是随着时间变化的,比如最典型的变化是网络的瞬时带宽发生波动,例如带宽突然下降或上升,因此,媒体网关控制器(MediaGateway Controller,以下简称:MGC)根据各通信链路的统计信息,可以监测发送方与接收方之间的带宽,当监测到各路通信质量的变化是由于发送方与接收方之间的带宽减少而引起的,例如,用户的通信链路需要的带宽没有下降,但是发送方与接收方之间能够提供的带宽较小,不能满足通信链路的带宽需要,从而使通信链路的可用带宽减小,影响通信链路的质量,则将分配给各用户通信终端所使用的通信链路的带宽降为带宽最小值;
步骤102、经过步骤101的调整后,判断网络状况是否得到改善,若是,则针对优先级最高的通信链路,例如通信链路1,执行步骤103;否则,执行步骤110;其中,判断网络状况是否得到改善可以是,当调整之后如果发送方与接收方之间的能够提供的带宽提高,可以认为网络得到了改善,可以通过网络动态监测、报告机制对网络状况进行监测,两种可行方法:(1)发送探测报文,(2)根据某种报告协议比如RTCP(Real Time Control Protocol)反馈的报告信息,利用设置的估算模型来确定;
步骤103、针对一条通信链路,计算网络剩余带宽;其中,网络剩余带宽为,网络剩余的可用带宽,即用网络总的带宽减去已用带宽,已用带宽包括新分配给链路的带宽和链路已经占用进行通信的带宽;
步骤104、判断所针对的通信链路的带宽当前值是否达到带宽初始值,若是,执行步骤108;否则,执行步骤105;
本步骤中,若该条通信链路的带宽已经达到其通信链路带宽初始值,则可以认为该条通信链路所需的带宽增量为零,即该条通信链路不需要进行带宽增量的分配,可以直接执行步骤108;In this step, if the bandwidth of the communication link has reached the initial value of the communication link bandwidth, it can be considered that the bandwidth increment required by the communication link is zero, that is, the communication link does not need to increase the bandwidth. Quantity allocation can directly execute
步骤105、根据所针对的通信链路的带宽当前值、带宽最大值以及视频主观质量,获取所针对的通信链路所需的带宽增量;其中,可以根据所针对的通信链路的丢包率、视频帧率和视频编码比特率等参数,确定视频主观质量;
本步骤中,该条通信链路的带宽未达到其通信链路带宽初始值,则可以先通过最优化策略表达式计算得出该条通信链路所需的带宽,然后根据该条通信链路当前的带宽,确定带宽增量;In this step, if the bandwidth of the communication link has not reached the initial value of the communication link bandwidth, the bandwidth required for the communication link can be calculated through the optimization strategy expression first, and then according to the communication link The current bandwidth, determine the bandwidth increment;
步骤106、判断所针对的通信链路所需的带宽增量是否小于或等于网络剩余带宽,若是,则执行步骤107;否则,结束;
步骤107、给所针对的通信链路分配所需的带宽增量;调整所针对的通信链路的带宽为,原带宽和带宽增量之和;
步骤108,判断优先级次低于所针对的通信链路的下一条通信链路是否存在;若存在,则针对该下一条通信链路执行步骤103,例如如果所针对的通信链路是i,则其下一条通信链路为比i优先级低的通信链路i+1;若下一条通信链路不存在,则执行步骤109,例如所针对的通信链路已经是通信链路n,即优先级最低的最后一条通信链路;
步骤109、判断经过调整后,接收方的接收速率是否得到改善,例如接收速率是否得到了提高,若是,则针对优先级最高的通信链路,例如通信链路1,执行步骤103;否则,结束;
步骤110、按照价格策略分配带宽。
经过上述步骤,MGC完成对带宽资源的重新分配,针对发送方和接收方之间的多路视频传输链路,在发送方到接收方之间的带宽减少时,上述技术方案保证了多路视频传输带宽资源分配整体最优化,进而保证多路视频QoS的最优化。After the above steps, the MGC completes the reallocation of bandwidth resources. For the multi-channel video transmission link between the sender and the receiver, when the bandwidth between the sender and the receiver decreases, the above technical solution ensures that the multi-channel video The overall optimization of transmission bandwidth resource allocation ensures the optimization of multi-channel video QoS.
进一步的,步骤105中可以通过最优化策略表达式计算所针对的一条通信链路所需的带宽,其中最优化策略表达式可以为:Further, in
其中,Bi表示MGC需重新分配给通信链路i的带宽,Binormal表示通信链路i当前的带宽,Bimax表示通信链路i的带宽最大值,s表示正数常量,Vq表示前述定义的视频主观质量,参考(2.1)式;由于1≤Vq≤5,由(2.7)式可知,Vq越小,需重新分配给通信链路i的带宽越大,当Vq=1时,需重新分配给通信链路i的带宽为通信链路i的带宽最大值。Among them, B i represents the bandwidth that MGC needs to re-allocate to communication link i, B normal represents the current bandwidth of communication link i, B imax represents the maximum bandwidth of communication link i, s represents a positive constant, and V q represents the aforementioned For the defined subjective quality of video, refer to formula (2.1); since 1≤V q ≤5, it can be known from formula (2.7), the smaller V q is, the larger the bandwidth to be redistributed to communication link i is, when V q =1 When , the bandwidth to be reallocated to communication link i is the maximum bandwidth of communication link i.
MGC采用上述最优化策略表达式进行带宽调整,需首先根据通信链路i的接收方上报的该路数据信号当前的丢包率、时延等参数以及发送方上报的视频帧率、视频编码比特率等参数,计算得到视频主观质量,进一步根据带宽最大值和当前带宽值,计算得到需重新分配给通信链路i的带宽。The MGC adopts the above optimization strategy expression to adjust the bandwidth, firstly, according to the current packet loss rate, delay and other parameters of the data signal reported by the receiver of the communication link i, as well as the video frame rate and video coding bit reported by the sender Rate and other parameters, calculate the subjective video quality, and further calculate the bandwidth that needs to be redistributed to the communication link i according to the maximum bandwidth and the current bandwidth value.
当经过步骤101的调整后,还不能改善发送方和接收方之间的网络状况,在这种情况下,网络运营商不能同时满足所有用户通信终端的QoS需求,则执行步骤110,按照通信服务运营收益最大化的价格策略来分配带宽,包括:After the adjustment in
步骤1100、根据丢包率、视频帧率和视频编码比特率等参数,建立视频主观质量与通信链路带宽的函数关系式;Step 1100, according to parameters such as packet loss rate, video frame rate and video encoding bit rate, establish a functional relationship between video subjective quality and communication link bandwidth;
步骤1101、根据视频主观质量与价格函数的关系式,建立通信服务运营收益与通信链路带宽的函数关系式;Step 1101, according to the relational expression of video subjective quality and price function, establish the functional relational expression of communication service operating revenue and communication link bandwidth;
步骤1102、根据所述通信服务运营收益与通信链路带宽的函数关系式,获得通信服务运营收益最大化时通信链路的带宽。Step 1102, according to the functional relationship between the communication service operating income and the communication link bandwidth, obtain the bandwidth of the communication link when the communication service operating income is maximized.
在步骤1100中,可以通过如下方式建立视频主观质量与通信链路带宽的函数关系式:用Cbit/s来表示网络的总带宽,用λ1,λ2,...,λn来表示n个优先级的业务流的到达率,业务流的到达率满足泊松分布,用ωiC表示分配给通信链路i的带宽,其中ωi表示分配给通信链路i的带宽占总带宽的比例,对这些比例的约束条件为:
其中,(2.8)式中的下标i表示通信链路i对应的参数;设视频帧率FrVi等于特定视频编码比特率下的最优化帧率Ofri,并将(2.3)~(2.6)式代入(2.8)式可得:Among them, the subscript i in formula (2.8) represents the parameter corresponding to the communication link i; set the video frame rate Fr Vi equal to the optimal frame rate Ofr i under a specific video coding bit rate, and set (2.3)~(2.6) Substitute into (2.8) to get:
在不考虑底层传输方式的情况下,BrVi可以看作为通信链路i的带宽,即:Without considering the underlying transmission mode, Br Vi can be regarded as the bandwidth of communication link i, namely:
BrVi=ωiC (2.10)Br Vi = ω i C (2.10)
将式(2.10)代入式(2.9)可得:Substituting formula (2.10) into formula (2.9) can get:
由此建立视频主观质量与通信链路带宽的函数关系式。Thus, the functional relationship between the subjective quality of video and the bandwidth of the communication link is established.
本实施例中,采用线性价格函数表达式,以视频主观质量为服务性能参数,获取通信服务运营收益最大化前提下的带宽。假设用ri(Vqi)表示价格函数,则视频主观质量与价格函数的关系式可以为:In this embodiment, the linear price function expression is adopted, and the subjective video quality is used as the service performance parameter to obtain the bandwidth under the premise of maximizing the operating income of the communication service. Assuming that r i (V qi ) is used to represent the price function, the relationship between the video subjective quality and the price function can be:
ri(Vqi)=bi-ki/Vqi (2.12)r i (V qi ) = bi -k i /V qi (2.12)
其中bi和ki为价格函数的参数,bi>0,ki>0。通常若通信链路i的优先级高于通信链路j,则有,bi>bj,ki>kj,在该价格策略下,优先级越高的用户将支付越高的费用,同时,当网络运营商不能满足优先级越高的用户的QoS需求时,则将支付越高的赔偿金。Where bi and ki are parameters of the price function, bi >0, ki > 0. Usually, if the priority of communication link i is higher than that of communication link j, then b i > b j , ki > k j , under this price strategy, users with higher priority will pay higher fees, At the same time, when the network operator cannot meet the QoS requirements of users with higher priority, it will pay higher compensation.
其中,通信服务运营收益是采用单位时间的通信服务运营收益来度量的,用REV来表示网络运营商获得的通信服务运营收益,则通信服务运营收益与价格函数的关系式可以表示为:Among them, the communication service operating income is measured by the communication service operating income per unit time, and REV is used to represent the communication service operating income obtained by the network operator, then the relationship between the communication service operating income and the price function can be expressed as:
将式(2.11)代入式(2.12)中得到价格函数与通信链路带宽的函数关系式,然后将价格函数与通信链路带宽的函数关系式代入式(2.13)中,可以建立通信服务运营商收益与通信链路带宽的函数关系式。Substituting Equation (2.11) into Equation (2.12) to obtain the functional relationship between the price function and communication link bandwidth, and then substituting the functional relationship between the price function and communication link bandwidth into Equation (2.13), the communication service operator can be established Revenue as a function of communication link bandwidth.
利用式(2.13),得到最优化求解方程为:Using formula (2.13), the optimal solution equation is obtained as:
其中在最优点上满足:Which satisfies on the optimal point:
利用基于拉格朗日乘子的最优化算法,根据式(2.14)和(2.15),构造拉格朗日方程如下:Using the optimization algorithm based on Lagrangian multipliers, according to formulas (2.14) and (2.15), the Lagrangian equation is constructed as follows:
在式(2.16)中,对于每一个ωi,取p的偏微分并使p等于0,计算得到ωi和通信服务运营收益。当式(2.16)的二阶偏导数在(0,1)内严格大于0或严格小于0时,ωi在(0,1)内有唯一的最优解。因为ωi确定了在各个通信链路之间分配带宽的比例,所以根据确定的最优解可以进行带宽分配,进而设置通信链路的带宽,完成带宽分配。In equation (2.16), for each ω i , take the partial differential of p And make p equal to 0, calculate ω i and communication service operating income. When the second-order partial derivative of formula (2.16) is strictly greater than 0 or strictly smaller than 0 in (0, 1), ω i has a unique optimal solution in (0, 1). Because ω i determines the proportion of bandwidth allocated among the various communication links, the bandwidth allocation can be performed according to the determined optimal solution, and then the bandwidth of the communication link is set to complete the bandwidth allocation.
除了上述当监测到网络带宽资源减少时的带宽分配方案,在其他实施例中还可以包括用户通信终端接入时的带宽分配方案,如图2所示,为本发明带宽分配方法实施例用户通信终端接入的流程图,具体包括如下步骤:In addition to the above-mentioned bandwidth allocation scheme when network bandwidth resources are monitored to decrease, other embodiments may also include a bandwidth allocation scheme when a user communication terminal accesses, as shown in FIG. The flow chart of terminal access includes the following steps:
步骤201、当有新的用户通信终端请求接入网络时,接收用户通信终端的接入请求;
步骤202、根据用户通信终端的优先级,查询保存的接入控制表,得到需要分配给用户通信终端的带宽最小值、带宽最大值和带宽初始值;Step 202, according to the priority of the user communication terminal, query the stored access control table to obtain the minimum bandwidth, maximum bandwidth and initial bandwidth value that need to be allocated to the user communication terminal;
步骤203、根据网络带宽资源确定是否接受用户通信终端的接入请求;当网络剩余带宽不能满足用户通信终端的带宽需要时,则拒绝接入请求,当能够满足时,则允许接入请求,具体地说,当网络剩余带宽大于或等于需要分配给用户通信终端的带宽初始值时,允许接入请求。Step 203: Determine whether to accept the access request of the user communication terminal according to the network bandwidth resources; when the remaining bandwidth of the network cannot meet the bandwidth requirements of the user communication terminal, reject the access request, and allow the access request when it can be satisfied, specifically In other words, when the remaining bandwidth of the network is greater than or equal to the initial value of the bandwidth that needs to be allocated to the user communication terminal, the access request is allowed.
对于不同优先级的用户通信终端,需要不同的带宽资源,因此,在MGC中预先保存有接入控制表,MGC根据该接入控制表进行接入控制,上述步骤202包括:For user communication terminals with different priorities, different bandwidth resources are required. Therefore, an access control table is pre-stored in the MGC, and the MGC performs access control according to the access control table. The above step 202 includes:
步骤2021、根据接入请求,通过应用层查询用户通信终端的优先级;
步骤2022、从接入控制表中,根据用户通信终端的优先级获取对应的网络层的QoS参数,并根据QoS参数获取传输层参数;
步骤2023、根据传输层参数,获取需要分配给用户通信终端的带宽最小值、带宽最大值和带宽初始值。
上述MGC中预先保存的接入控制表包括用户通信终端优先级与网络层QoS参数的映射表(如表5所示)、网络层参数与传输层参数映射表(如表6所示)以及传输层参数与带宽值映射表(如表7所示)。The access control table pre-saved in the above MGC includes the mapping table of user communication terminal priority and network layer QoS parameters (as shown in Table 5), the mapping table of network layer parameters and transport layer parameters (as shown in Table 6), and the transmission Layer parameter and bandwidth value mapping table (as shown in Table 7).
表5.通信终端优先级与网络层QoS参数的映射表Table 5. Mapping table between communication terminal priority and network layer QoS parameters
表6.网络层参数与传输层参数映射表Table 6. Mapping table of network layer parameters and transport layer parameters
表7.传输层参数与带宽值映射表Table 7. Mapping table of transport layer parameters and bandwidth values
例如,MGC在接收到用户通信终端的接入请求后,首先通过应用层查询用户通信终端的优先级,应用层中保存了用户通信终端的优先级信息;根据用户通信终端的优先级,查询表5获取用户通信终端的优先级所对应的网络层QoS参数(LnDnCn);根据网络层参数,查询表6获取对应的传输层参数(COn);根据传输层参数,查询表7获取所需分配给用户通信终端的带宽最小值(Bnmin)、带宽最大值(Bnmax)和带宽初始值(Bninit),其中,用户通信终端的带宽最小值(Bnmin)、带宽最大值(Bnmax)和带宽初始值(Bninit)可以是根据用户等级等用户信息进行配置设定的。For example, after receiving an access request from a user communication terminal, the MGC first queries the priority of the user communication terminal through the application layer, which stores the priority information of the user communication terminal; according to the priority of the user communication terminal, the query table 5 Obtain the network layer QoS parameter (L n D n C n ) corresponding to the priority of the user communication terminal; According to the network layer parameter, the query table 6 obtains the corresponding transport layer parameter (CO n ); according to the transport layer parameter, the query table 7 Obtain the minimum bandwidth (B nmin ), maximum bandwidth (B nmax ) and initial bandwidth value (B ninit ) allocated to the user communication terminal, where the minimum bandwidth (B nmin ) and maximum bandwidth of the user communication terminal The value (B nmax ) and the bandwidth initial value (B ninit ) may be configured and set according to user information such as user level.
本实施例中,用户通信终端接入时的带宽分配方案利用MGC控制媒体网关(Media Gateway,MG),并给MG分配用户通信终端所需的带宽最小值、带宽最大值和带宽初始值,便于MG执行MGC的分配策略,实现MG的带宽分配。In this embodiment, the bandwidth allocation scheme when the user communication terminal accesses uses the MGC to control the media gateway (Media Gateway, MG), and assigns the minimum bandwidth value, the maximum bandwidth value, and the initial bandwidth value required by the user communication terminal to the MG, so as to facilitate The MG implements the allocation policy of the MGC to realize the bandwidth allocation of the MG.
在用户通信终端接入网络之后的通信过程中,MGC对用户通信终端的通信质量进行监测,当监测到某个用户通信终端的优先级较高,或者用户通信终端所使用的通信链路的丢包率较高,而该通信链路上的业务流的接收速率没有下降时,MGC判断出QoS的降低并不是带宽不足所造成的,则采用保证单路服务质量的策略分配带宽。具体地说,MGC可以要求发送方为该通信链路使用前向纠错(Forward Error Correction,以下简称:FEC)保护算法,用以提高用户的视频质量。由于发送方给每个通信链路分配的带宽是一定的,使用FEC保护算法会导致视频编码码率有所下降,即存在如下关系式:During the communication process after the user communication terminal accesses the network, the MGC monitors the communication quality of the user communication terminal. When the packet rate is high and the receiving rate of the service flow on the communication link does not drop, the MGC judges that the decrease in QoS is not caused by insufficient bandwidth, and then allocates bandwidth using a policy that guarantees the quality of service of a single channel. Specifically, the MGC may require the sender to use a forward error correction (Forward Error Correction, hereinafter referred to as: FEC) protection algorithm for the communication link to improve the user's video quality. Since the bandwidth allocated by the sender to each communication link is certain, using the FEC protection algorithm will result in a decrease in the video encoding bit rate, that is, the following relationship exists:
每路视频分配到的带宽=视频编码码率+FEC保护冗余码率Bandwidth allocated to each video channel = video encoding bit rate + FEC protection redundant bit rate
综上所述,本实施例在用户通信终端接入网络时,利用MGC控制MG,并给MG分配用户通信终端所需的带宽最小值、带宽最大值和带宽初始值,便于实现MG的自适应带宽分配;为了保证用户通信终端的QoS且保证网络带宽资源的分配整体最优化,在用户通信终端接入网络之后,MGC还要对用户通信终端的通信质量进行监测,当MGC监测到网络状况发生变化,特别是监测到因网络带宽资源不足而导致接收方的接收速率下降时,提供了保证带宽资源整体分配最优化的方案,即首先将各通信链路所占用的带宽降到用户通信终端所需带宽最小值,然后通过一定的策略逐步改变通信链路的带宽当前值,保证带宽资源的有效利用,为用户通信终端提供稳定的服务,从而保证用户通信终端的服务质量;进一步地说,本实施例以视频主观质量为服务性能参数,考虑了丢包率、视频帧率以及视频编码比特率等参数的影响,能综合反映实时视频通信服务质量;此外,当MGC判断出QoS的降低并不是带宽不足所造成的,则采用保证单路服务质量的策略分配带宽。本实施例的带宽分配方法广泛应用于各种分组网络环境下保证视频通信的QoS的情况。To sum up, in this embodiment, when a user communication terminal accesses the network, the MGC is used to control the MG, and the MG is assigned the minimum bandwidth, maximum bandwidth, and initial bandwidth required by the user communication terminal, so as to facilitate the self-adaptation of the MG. Bandwidth allocation: In order to ensure the QoS of user communication terminals and ensure the overall optimization of network bandwidth resource allocation, after user communication terminals access the network, MGC also monitors the communication quality of user communication terminals. Changes, especially when it is detected that the receiver’s receiving rate drops due to insufficient network bandwidth resources, a solution to ensure the overall optimal allocation of bandwidth resources is provided, that is, firstly, the bandwidth occupied by each communication link is reduced to that of the user’s communication terminal. The minimum value of the bandwidth is required, and then the current value of the bandwidth of the communication link is gradually changed through a certain strategy to ensure the effective use of bandwidth resources and provide stable services for the user communication terminal, thereby ensuring the service quality of the user communication terminal; further, this The embodiment takes the subjective quality of video as the service performance parameter, considers the impact of parameters such as packet loss rate, video frame rate, and video encoding bit rate, and can comprehensively reflect the service quality of real-time video communication; in addition, when the MGC judges that the reduction of QoS is not If it is caused by insufficient bandwidth, the strategy of guaranteeing the quality of service of a single channel is used to allocate bandwidth. The bandwidth allocation method of this embodiment is widely applied to the situation of guaranteeing the QoS of video communication in various packet network environments.
如图3所示,为本发明带宽分配装置实施例的示意图,具体包括:监测模块1,用于监测网络带宽资源,确定当前网络带宽资源状况;最小值设置模块2,用于获取监测模块1的当前网络带宽资源状况,当网络带宽资源减少时,根据预设的带宽最小值,将各通信链路的带宽调整为与各通信链路对应的带宽最小值;第一获取模块3,用于获取监测模块1的当前网络带宽资源状况,在最小值设置模块2调整后的网络带宽资源提高时,根据各通信链路的带宽当前值、带宽最大值以及视频主观质量,获取各通信链路需要的带宽增量;第一分配模块4,用于根据第一获取模块3的带宽增量,按照各通信链路的优先级从高到低的顺序,将网络剩余带宽依次分配给各通信链路。As shown in Figure 3, it is a schematic diagram of an embodiment of the bandwidth allocation device of the present invention, which specifically includes: a monitoring module 1 for monitoring network bandwidth resources and determining the current network bandwidth resource status; a minimum
其中第一获取模块3可以包括:判断单元31,用于判断通信链路的带宽当前值是否达到带宽初始值;增量单元32,用于根据所述判断单元31的结果,如果通信链路的带宽当前值未达到带宽初始值,根据通信链路的带宽当前值、带宽最大值以及视频主观质量,获取未达到带宽初始值的通信链路需要的带宽增量。Wherein the
本实施例还可以包括:第二获取模块5,用于获取监测模块1的当前网络带宽资源状况,在最小值设置模块2调整后的网络带宽资源没有提高时,按照价格策略,根据丢包率、视频帧率、视频编码比特率以及价格函数,确定通信服务运营收益最大化时通信链路的带宽;第二分配模块6,用于根据所述第二获取模块5确定的通信服务运营收益最大化时通信链路的带宽进行带宽分配。This embodiment can also include: a
本实施例还可以包括:接收模块7,用于接收用户通信终端的接入请求;参数获取模块8,用于根据所述请求接入的用户通信终端的优先级,查询保存的接入控制表,获取所述用户通信终端的带宽最小值、带宽最大值和带宽初始值;接入模块9,用于根据所述带宽最小值、带宽最大值、带宽初始值以及网络带宽资源确定是否接受所述用户通信终端的接入请求。This embodiment may also include: a receiving
其中参数获取模块8可以包括:应用层获取单元81,用于根据所述接入请求,通过应用层查询所述用户通信终端的优先级;网络层获取单元82,用于根据所述用户通信终端的优先级获取对应的网络层的服务质量参数;传输层获取单元83,用于根据服务质量参数获取传输层参数;带宽获取单元84,用于根据所述传输层参数,获取需要分配给所述用户通信终端的带宽最小值、带宽最大值和带宽初始值。The
综上所述,本实施例在用户通信终端接入网络时,通过参数获取模块8给用户通信终端分配其所需的带宽最小值、带宽最大值和带宽初始值,便于实现MG的自适应带宽分配;为了保证用户通信终端的QoS且保证网络带宽资源的分配整体最优化,在用户通信终端接入网络之后,还要对用户通信终端的通信质量进行监测,当监测到网络状况发生变化,特别是监测到因网络带宽资源不足而导致接收方的接收速率下降时,通过第一获取模块3和第一分配模块4能保证带宽资源整体分配最优化,保证带宽资源的有效利用,为用户通信终端提供稳定的服务,从而保证用户通信终端的服务质量;进一步的,本实施例以视频主观质量为服务性能参数,考虑了丢包率、视频帧率以及视频编码比特率等参数的影响,能综合反映实时视频通信服务质量。本实施例的带宽分配装置广泛应用于各种分组网络环境下保证视频通信的QoS的情况。To sum up, in this embodiment, when the user communication terminal accesses the network, the
如图4所示,为本发明带宽分配系统实施例的结构图,该系统包括:发送方媒体网关MG41、接收方媒体网关MG42以及媒体网关控制器MGC43,其中MGC43可以包括:监测模块431,用于监测发送方MG与接收方MG之间的网络带宽资源,确定当前网络带宽资源状况;最小值设置模块432,用于获取监测模块431的当前网络带宽资源状况,当网络带宽资源减少时,根据预设的带宽最小值,将发送方MG41与接收方MG42之间的各通信链路的带宽调整为与各通信链路对应的带宽最小值;第一获取模块433,用于获取监测模块431的当前网络带宽资源状况,在最小值设置模块432调整后的网络带宽资源提高时,根据各通信链路的带宽当前值、带宽最大值以及视频主观质量,获取各通信链路需要的带宽增量;第一分配模块434,用于根据第一获取模块433的带宽增量,按照各通信链路的优先级从高到低的顺序,将网络剩余带宽依次分配给各通信链路。As shown in Figure 4, it is a structural diagram of an embodiment of the bandwidth allocation system of the present invention, the system includes: the media gateway MG41 of the sending party, the media gateway MG42 of the receiving party, and the media gateway controller MGC43, wherein the MGC43 may include: a monitoring module 431, used To monitor the network bandwidth resource between the sender MG and the receiver MG, determine the current network bandwidth resource status; the minimum value setting module 432 is used to obtain the current network bandwidth resource status of the monitoring module 431, when the network bandwidth resource decreases, according to The preset bandwidth minimum value adjusts the bandwidth of each communication link between the sender MG41 and the receiver MG42 to the bandwidth minimum value corresponding to each communication link; the first acquisition module 433 is used to acquire the bandwidth of the monitoring module 431 Current network bandwidth resource status, when the network bandwidth resource adjusted by the minimum value setting module 432 increases, according to the bandwidth current value, maximum bandwidth and video subjective quality of each communication link, obtain the bandwidth increment required by each communication link; The first allocation module 434 is configured to sequentially allocate the remaining bandwidth of the network to each communication link in descending order of the priority of each communication link according to the bandwidth increment of the first acquisition module 433 .
本实施例中的MGC可以为本发明实施例带宽分配装置中所描述的任一带宽分配装置。The MGC in this embodiment may be any bandwidth allocation device described in the bandwidth allocation device in the embodiment of the present invention.
本实施例中,当监测模块监测到网络带宽资源减少时,首先将各通信链路的带宽调整为与所述各通信链路对应的带宽最小值,然后再根据能够提供的带宽资源情况,按照各通信链路的优先级从高到低的顺序,将网络剩余带宽依次分配给各通信链路,从而能够保证带宽资源整体分配最优化,进而保证网络服务质量。In this embodiment, when the monitoring module detects that the network bandwidth resource decreases, firstly adjust the bandwidth of each communication link to the minimum bandwidth value corresponding to each communication link, and then according to the bandwidth resources that can be provided, according to The priority of each communication link is from high to low, and the remaining bandwidth of the network is allocated to each communication link in turn, so as to ensure the optimization of the overall allocation of bandwidth resources, thereby ensuring the quality of network service.
本领域普通技术人员可以理解:实现上述方法实施例的全部或部分步骤可以通过程序指令相关的硬件来完成,前述的程序可以存储于一计算机可读取存储介质中,该程序在执行时,执行包括上述方法实施例的步骤,而前述的存储介质包括:ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。Those of ordinary skill in the art can understand that all or part of the steps for realizing the above-mentioned method embodiments can be completed by hardware related to program instructions, and the aforementioned program can be stored in a computer-readable storage medium. When the program is executed, the The steps of the above-mentioned method embodiments are included, and the aforementioned storage medium includes: ROM, RAM, magnetic disk or optical disk, and other various media that can store program codes.
最后应说明的是:以上实施例仅用以说明本发明实施例的技术方案,而非对其限制;尽管参照前述实施例对本发明实施例进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明实施例各实施例技术方案的精神和范围。Finally, it should be noted that: the above embodiments are only used to illustrate the technical solutions of the embodiments of the present invention, not to limit them; although the embodiments of the present invention have been described in detail with reference to the foregoing embodiments, those of ordinary skill in the art should understand : It is still possible to modify the technical solutions described in the foregoing embodiments, or perform equivalent replacements to some of the technical features; and these modifications or replacements do not make the essence of the corresponding technical solutions deviate from the technical aspects of the embodiments of the present invention. The spirit and scope of the programme.
Claims (14)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNA2008101059971A CN101577670A (en) | 2008-05-07 | 2008-05-07 | Method, device and system for bandwidth allocation |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNA2008101059971A CN101577670A (en) | 2008-05-07 | 2008-05-07 | Method, device and system for bandwidth allocation |
Publications (1)
Publication Number | Publication Date |
---|---|
CN101577670A true CN101577670A (en) | 2009-11-11 |
Family
ID=41272461
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNA2008101059971A Withdrawn CN101577670A (en) | 2008-05-07 | 2008-05-07 | Method, device and system for bandwidth allocation |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN101577670A (en) |
Cited By (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102231697A (en) * | 2011-06-17 | 2011-11-02 | 瑞斯康达科技发展股份有限公司 | Bandwidth dispatching method of message queues as well as message reporting method and device |
CN102469374A (en) * | 2010-11-12 | 2012-05-23 | 北京信威通信技术股份有限公司 | Method for optimizing video service across layers in wireless communication |
CN102883193A (en) * | 2012-10-09 | 2013-01-16 | 乐视网信息技术(北京)股份有限公司 | Content distribution flow control method |
CN103338164A (en) * | 2013-06-27 | 2013-10-02 | 华为技术有限公司 | Bandwidth allocation method and device |
CN103873853A (en) * | 2012-12-11 | 2014-06-18 | 江苏大学 | Image quality monitoring method of digital television playing terminal |
CN103997754A (en) * | 2014-04-08 | 2014-08-20 | 黄东 | Method for improving network transmission performance under condition of ensuring link reliability |
CN104093009A (en) * | 2014-07-17 | 2014-10-08 | 重庆邮电大学 | Video Transmission Method Based on Network Utility in Wireless Ad Hoc Networks |
CN104469242A (en) * | 2013-09-25 | 2015-03-25 | 联想(北京)有限公司 | Signal switching method and electronic device |
CN105471997A (en) * | 2015-12-04 | 2016-04-06 | 燕山大学 | Method for controlling flow in P2P file sharing network based on price mechanism |
CN105721573A (en) * | 2016-02-04 | 2016-06-29 | 燕山大学 | P2P file sharing network bandwidth fairness allocation algorithm based on utility optimization |
CN106101025A (en) * | 2016-05-19 | 2016-11-09 | 北京小米移动软件有限公司 | Flow allocation method and device |
CN107592273A (en) * | 2017-07-20 | 2018-01-16 | 中国商用飞机有限责任公司 | Method and system for scheduling, evaluating and transmitting service data of air-ground broadband wireless communication |
CN107888428A (en) * | 2017-12-04 | 2018-04-06 | 郑州云海信息技术有限公司 | A kind of bandwidth adjusting method, device, equipment and readable storage medium storing program for executing |
CN108429705A (en) * | 2017-02-15 | 2018-08-21 | 杭州海康威视数字技术股份有限公司 | A kind of link bandwidth assignment method and device |
CN109962862A (en) * | 2017-12-25 | 2019-07-02 | 航天信息股份有限公司 | Cloud platform, distribution method of dynamic bandwidth and device based on cloud platform |
CN112637853A (en) * | 2020-12-25 | 2021-04-09 | 杭州涂鸦信息技术有限公司 | Networking and network distribution method and related device |
CN113014435A (en) * | 2021-03-15 | 2021-06-22 | 杭州米络星科技(集团)有限公司 | Link detection method and device, electronic equipment and storage medium |
CN115150309A (en) * | 2021-03-31 | 2022-10-04 | 本田技研工业株式会社 | Information processing apparatus, vehicle, computer-readable storage medium, and information processing method |
CN115941490A (en) * | 2021-08-02 | 2023-04-07 | 中国电信股份有限公司 | Method and device for dynamically adjusting network line bandwidth, electronic equipment, storage medium |
-
2008
- 2008-05-07 CN CNA2008101059971A patent/CN101577670A/en not_active Withdrawn
Cited By (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102469374A (en) * | 2010-11-12 | 2012-05-23 | 北京信威通信技术股份有限公司 | Method for optimizing video service across layers in wireless communication |
CN102231697A (en) * | 2011-06-17 | 2011-11-02 | 瑞斯康达科技发展股份有限公司 | Bandwidth dispatching method of message queues as well as message reporting method and device |
CN102883193A (en) * | 2012-10-09 | 2013-01-16 | 乐视网信息技术(北京)股份有限公司 | Content distribution flow control method |
CN103873853A (en) * | 2012-12-11 | 2014-06-18 | 江苏大学 | Image quality monitoring method of digital television playing terminal |
CN103338164A (en) * | 2013-06-27 | 2013-10-02 | 华为技术有限公司 | Bandwidth allocation method and device |
CN103338164B (en) * | 2013-06-27 | 2017-03-08 | 华为技术有限公司 | Bandwidth allocation methods and device |
CN104469242A (en) * | 2013-09-25 | 2015-03-25 | 联想(北京)有限公司 | Signal switching method and electronic device |
CN103997754B (en) * | 2014-04-08 | 2017-10-27 | 黄东 | A kind of network transmission efficiency under the conditions of guarantee link reliability improves method |
CN103997754A (en) * | 2014-04-08 | 2014-08-20 | 黄东 | Method for improving network transmission performance under condition of ensuring link reliability |
CN104093009A (en) * | 2014-07-17 | 2014-10-08 | 重庆邮电大学 | Video Transmission Method Based on Network Utility in Wireless Ad Hoc Networks |
CN104093009B (en) * | 2014-07-17 | 2018-09-11 | 重庆邮电大学 | Video transmission method based on network utility in wireless self-organization network |
CN105471997A (en) * | 2015-12-04 | 2016-04-06 | 燕山大学 | Method for controlling flow in P2P file sharing network based on price mechanism |
CN105471997B (en) * | 2015-12-04 | 2019-02-22 | 燕山大学 | Method for controlling flow in P2P file sharing network based on price mechanism |
CN105721573A (en) * | 2016-02-04 | 2016-06-29 | 燕山大学 | P2P file sharing network bandwidth fairness allocation algorithm based on utility optimization |
CN105721573B (en) * | 2016-02-04 | 2019-06-25 | 燕山大学 | P2P file sharing network fair bandwidth sharing method based on optimization utility |
CN106101025A (en) * | 2016-05-19 | 2016-11-09 | 北京小米移动软件有限公司 | Flow allocation method and device |
CN108429705B (en) * | 2017-02-15 | 2021-12-17 | 杭州海康威视数字技术股份有限公司 | Link bandwidth allocation method and device |
CN108429705A (en) * | 2017-02-15 | 2018-08-21 | 杭州海康威视数字技术股份有限公司 | A kind of link bandwidth assignment method and device |
CN107592273A (en) * | 2017-07-20 | 2018-01-16 | 中国商用飞机有限责任公司 | Method and system for scheduling, evaluating and transmitting service data of air-ground broadband wireless communication |
CN107888428A (en) * | 2017-12-04 | 2018-04-06 | 郑州云海信息技术有限公司 | A kind of bandwidth adjusting method, device, equipment and readable storage medium storing program for executing |
CN109962862A (en) * | 2017-12-25 | 2019-07-02 | 航天信息股份有限公司 | Cloud platform, distribution method of dynamic bandwidth and device based on cloud platform |
CN112637853A (en) * | 2020-12-25 | 2021-04-09 | 杭州涂鸦信息技术有限公司 | Networking and network distribution method and related device |
CN112637853B (en) * | 2020-12-25 | 2023-05-12 | 杭州涂鸦信息技术有限公司 | Networking and distribution method and related device |
CN113014435A (en) * | 2021-03-15 | 2021-06-22 | 杭州米络星科技(集团)有限公司 | Link detection method and device, electronic equipment and storage medium |
CN115150309A (en) * | 2021-03-31 | 2022-10-04 | 本田技研工业株式会社 | Information processing apparatus, vehicle, computer-readable storage medium, and information processing method |
CN115150309B (en) * | 2021-03-31 | 2024-04-26 | 本田技研工业株式会社 | Information processing apparatus, vehicle, computer-readable storage medium, and information processing method |
US12137358B2 (en) | 2021-03-31 | 2024-11-05 | Honda Motor Co., Ltd. | Information processing apparatus, vehicle, computer readable storage medium and information processing method |
CN115941490A (en) * | 2021-08-02 | 2023-04-07 | 中国电信股份有限公司 | Method and device for dynamically adjusting network line bandwidth, electronic equipment, storage medium |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101577670A (en) | Method, device and system for bandwidth allocation | |
US8874712B2 (en) | System and method for differentiated services in adaptive streaming | |
Wan et al. | Adaptive unequal protection for wireless video transmission over IEEE 802.11 e networks | |
CN101686106B (en) | Self-adaptive forward error correction (FEC) method, device and system | |
CN102859943B (en) | Method and apparatus providing access network aware presence to applications | |
US8804509B2 (en) | System and method of communicating a media stream | |
CN101621351B (en) | Method, device and system for adjusting multimedia encoding rate | |
US9608923B2 (en) | Adaptive resource management for multi-screen video applications over cable Wi-Fi networks | |
CN101855873B (en) | Wireless transmission rate control method | |
US20110149145A1 (en) | Network and device aware video scaling system, method, software, and device | |
WO2001097557A1 (en) | Dynamic bandwidth allocation | |
JP2007221765A (en) | Apparatus and method for determining transmission policy for multiple applications of various types | |
US20070286114A1 (en) | Maintaining quality of service for wireless communications | |
CA2496446A1 (en) | Methods for performing medium dedication in order to ensure the quality of service for delivering real-time data across wireless network | |
Wan et al. | Adaptive scheduling for wireless video transmission in high-speed networks | |
Liu et al. | A novel QoE-based carrier scheduling scheme in LTE-Advanced networks with multi-service | |
Kim et al. | Edge computing assisted adaptive streaming scheme for mobile networks | |
Qadir et al. | A novel traffic rate measurement algorithm for quality of experience-aware video admission control | |
EP3366060B1 (en) | Allocating radio resources in a cellular network | |
Lan et al. | Video quality assessment and QoE-driven adjustment scheme in wireless networks | |
US20100319029A1 (en) | Method and apparatus for controlling channel for providing internet protocol television service | |
US20220021920A1 (en) | Communication entity and a method for transmitting a video data stream | |
Cui et al. | MM-ABR: An enhanced ABR algorithm with multi-metric information for QUIC-based video streaming | |
Zhang et al. | Retry limit based ULP for scalable video transmission over IEEE 802.11 e WLANs | |
US20070025251A1 (en) | Method for down-speeding in an IP communication network |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C04 | Withdrawal of patent application after publication (patent law 2001) | ||
WW01 | Invention patent application withdrawn after publication | ||
C04 | Withdrawal of patent application after publication (patent law 2001) | ||
WW01 | Invention patent application withdrawn after publication |