CN101572405B - Method for ranging computer distance protection of transmission line - Google Patents

Method for ranging computer distance protection of transmission line Download PDF

Info

Publication number
CN101572405B
CN101572405B CN2009100626194A CN200910062619A CN101572405B CN 101572405 B CN101572405 B CN 101572405B CN 2009100626194 A CN2009100626194 A CN 2009100626194A CN 200910062619 A CN200910062619 A CN 200910062619A CN 101572405 B CN101572405 B CN 101572405B
Authority
CN
China
Prior art keywords
fault
time period
value
transmission line
sampling instant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN2009100626194A
Other languages
Chinese (zh)
Other versions
CN101572405A (en
Inventor
文明浩
杨磊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huazhong University of Science and Technology
Original Assignee
Huazhong University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huazhong University of Science and Technology filed Critical Huazhong University of Science and Technology
Priority to CN2009100626194A priority Critical patent/CN101572405B/en
Publication of CN101572405A publication Critical patent/CN101572405A/en
Application granted granted Critical
Publication of CN101572405B publication Critical patent/CN101572405B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Emergency Protection Circuit Devices (AREA)
  • Locating Faults (AREA)

Abstract

The invention discloses a method for ranging computer distance protection of a transmission line. The method comprises the following steps: processing a sampling value of measuring current by a digital capacitance voltage transformator, if voltage is measured by a capacitance voltage transformator; supposing that a certain point on a protected circuit has a failure, calculating a voltage sampling value of the failure point; if the voltage is measured by the capacitance voltage transformator, processing the voltage sampling value of the failure point by the same digital capacitance voltage transformator; after processing the measuring voltage sampling value, the current sampling value and the failure voltage sampling value through low-pass filtering, introducing the measuring voltage sampling value, the current sampling value and the failure voltage sampling value into an algorithm for solving differential equation of the transmission line; improving velocity of convergence and range accuracy by adopting an iterative calculation method; and finally, determining that whether to trip protection or not according to a failure range result fulfilling an error range, if the failure range result reaching certain time cannot fulfill the error range, finish the ranging method of the round, wait and continue the iterative computation when a new failure occurs.

Description

The distance-finding method of a kind of transmission line of electricity microcomputer distance protection
Technical field
The invention belongs to the relay protection of power system technology, be specifically related to the distance-finding method of a kind of transmission line of electricity microcomputer distance protection.
Background technology
Extensively adopt the back-up protection of distance protection as circuit on UHV (ultra-high voltage) and extra-high voltage long distance transmission line, capacitance type potential transformer transient state process, initial higher hamonic wave and the aperiodic component of fault are to cause main cause super, that extra high voltage line distance protection transient state surmounts.
The impedance relay of distance protection normally obtains phasor by Fourier transform; this algorithm has 2 deficiencies; the DC component that the first is decayed influences very big, secondly is that regular time window width (being generally a power frequency period) causes the transient response time of this algorithm longer.
Separate Differential Equation Algorithm and be the algorithm that extensively adopts in the microcomputer distance protection, the influence that it is not subjected to DC component and the low frequency component that caused by the decay aperiodic component causes, and be not subjected to the influence of mains frequency fluctuation.The shortcoming of this algorithm is, because the differential equation has been ignored the distributed capacitance of transmission line of electricity, makes its high frequency characteristics relatively poor, and when containing high fdrequency component in electric current and the voltage, computational accuracy will be affected.
On UHV (ultra-high voltage) and the extra-high voltage long distance transmission line, the voltage of microcomputer distance protection obtains usually from capacitance type potential transformer.But compare with electromagnetic potential transformer, its transient characterisitics are relatively poor.When system breaks down; serious transient state process can take place in secondary side voltage; the measuring error that causes can cause surmounting of conventional distance protection; obtained researchist's concern; to the transient state process of CVT with surmount solution and done a large amount of research, but not solving transient state as yet fully surmounts problem.
Summary of the invention
The object of the present invention is to provide the distance-finding method of a kind of transmission line of electricity microcomputer distance protection, the transient state that this method can solve distance protection surmounts problem, realizes the range finding of distance protection hypervelocity.
The invention discloses the distance-finding method of a kind of transmission line of electricity microcomputer distance protection, its step comprises:
The 1st step was gathered measuring voltage sampled value, the measurement current sampling data of the transmission line of electricity that obtains each sampling instant in real time, if transmission line of electricity adopts capacitance type potential transformer, the measurement current sampling data of each sampling instant is handled through the digit capacitance voltage transformer (VT); To the measuring voltage of each sampling instant, measure current sampling data by identical low-pass filtering treatment, obtain new measuring voltage, the measurement current sampling data of each sampling instant;
The 2nd step definition t 0For fault takes place constantly, T 3For the required minimum time width of protection tripping operation after the fault, get 5~20ms; Definition t JsBe the current iterative computation moment, do not upgrade t when iterative computation finishes each time before the iterative computation end each time of this moment JsBe updated to the sampling instant of up-to-date sampled data;
If t Js-t 0〉=T 3, entered for the 3rd step, otherwise wait for;
The 3rd step was provided with fault distance iterative value D ', and iterative initial value is more than or equal to 0 and smaller or equal to the arbitrary value of transmission line length; The initial value of iterations Q is 0;
The 4th step was calculated t 0-T 1To t JsThe fault point voltage sampled value of each sampling instant in the time period, 40ms≤T 1≤ 500ms; t 0-T 1To t 0The fault point voltage sampled value of each sampling instant is by calculating t with it with measuring voltage constantly, measurement current sampling data and fault distance iterative value D ' in time period 0To t JsThe fault point voltage sampled value value of each sampling instant in the time period is 0;
If the 5th step transmission line of electricity adopts capacitance type potential transformer, with t 0-T 1To t JsThe fault point voltage sampled value of each sampling instant in the time period obtains t by digit capacitance voltage transformer (VT) and the low-pass filtering treatment identical with step (1) 0-T 1To t JsThe new fault point voltage sampled value of each sampling instant in time period; Otherwise with t 0-T 1To t JsThe fault point voltage sampled value of each sampling instant in the time period obtains t by going on foot identical low-pass filtering treatment with the 1st 0-T 1To t JsThe new fault point voltage sampled value of each sampling instant in the time period;
The 6th step is with t Js-T 3To t JsThe new measuring voltage of each sampling instant in the time period, measurement current sampling data and new fault point voltage sampled value substitution transmission line distance protecting are separated Differential Equation Algorithm, at t Js-T 3To t JsChoosing length in time period is T 2Time period, 5ms≤T 2≤ T 3Find the solution and obtain t Js-T 3To t JsFault distance D in time period 1And should interior range error E and T of time period 2Fault distance D in time period 2
If the 7th step t Js-t 0<T End, changed for the 8th step over to; T EndBe the maximum time width that whole iterative computation finish, value is 60~100ms;
If t Js-t 0〉=T End, t Js-T 3To t JsE>E in time period d, jumped to for the 10th step; E dBe the range error setting valve;
If t Js-t 0〉=T End, t Js-T 3To t JsE≤E in time period d, with D 1Value compose to fault distance end value D z, jumped to for the 9th step;
If the 8th step Q>S is with D 2Value is composed and is given D ' stand-by period T 4, this iterative computation finishes, with t JsBe updated to the sampling instant of up-to-date sampled data, Q is changed to zero, jumps to for the 4th step to carry out next iteration and calculate;
S is the iterations setting valve, T 4Stand-by period width for iterations during more than or equal to setting valve;
If Q≤S, t Js-T 3To t JsE>E in time period d, with D 2Value is composed and is given D ', makes Q=Q+1, proceeds this iterative computation, jumps to for the 4th step;
If Q≤S, t Js-T 3To t JsE≤E in time period d, should D in the time period 1Value compose to D z, changed for the 9th step over to;
The 9th step is according to fault distance end value D zJudge whether it is troubles inside the sample space.
If troubles inside the sample space then sends trip signal, changed for the 10th step then over to, otherwise directly changed for the 10th step over to;
The 10th step waited for that fault took place next time, when transmission line of electricity breaks down once more, changed for the 2nd step over to.
The preferred version of separating Differential Equation Algorithm in above-mentioned the 6th step is as follows:
T represents t Js-T 3To t JsArbitrary sampling instant of time period, set up suc as formula the differential equation shown in (I):
U (t)-u f(t)=D * Δ u (t)+i f(t) * r gFormula (I)
Wherein, D is a t fault distance constantly, r gBe transition resistance;
For phase fault, u (t) is the difference between two fault phase t new measuring voltage sampled value constantly, u f(t) be difference between the constantly new fault point voltage sampled value of two fault phase t, Δ u (t) is the difference between the voltage drop of transmission line of electricity unit length of two fault phases, i f(t) be t constantly fault mutually in arbitrary mutually new measurement current sampling data; For single-line to ground fault, u (t), u f(t) be respectively fault constantly new measuring voltage sampled value of t, new fault point voltage sampled value and the voltage drop of transmission line of electricity unit length mutually, i with Δ u (t) f(t) get 1/3rd of the t measurement current sampling data sum that three-phase is new constantly;
For t Js-T 3To t JsAll sampling instants of time period are all set up suc as formula the differential equation shown in (I), obtain differential equation group;
Write above-mentioned differential equation group as matrix form AX=C;
Wherein A = Δu ( t 1 ) i f ( t 1 ) · · · · Δu ( t n ) i f ( t n ) X = D 1 r g C=[u(t 1)-u f(t 1)...u(t n)-u f(t n)] T
Wherein, subscript T representing matrix transposition;
Fault distance D is obtained in calculating 1
Calculate fault distance D according to above-mentioned identical method 2
It is very serious that the transient state of present UHV (ultra-high voltage) and extra high voltage line distance protection surmounts phenomenon; the present invention is directed to the deficiencies in the prior art; a kind of distance-finding method of super, extra high voltage line microcomputer distance protection is proposed; this method can solve distance protection transient state and surmount problem, realizes that metallicity fault distance error in the 10ms is less than 5% performance index.
Description of drawings
Fig. 1 is the electric system line chart;
Fig. 2 is the capacitance type potential transformer principle assumption diagram;
Fig. 3 is the capacitance type potential transformer equivalent circuit diagram;
Fig. 4 is inductive element circuit figure, wherein, (a) is side circuit, (b) is the equivalent counting circuit of transient state;
Fig. 5 is the capacity cell circuit diagram, wherein, (a) is side circuit, (b) is the equivalent counting circuit of transient state;
The capacitance type potential transformer equivalent circuit diagram of Fig. 6 for representing with current source;
Fig. 7 is the capacitance type potential transformer equivalent circuit diagram behind the abbreviation;
Fig. 8 is the progress of disease link synoptic diagram of the needed electric parameters of this paper distance-finding method.
Embodiment
The present invention is further detailed explanation below in conjunction with accompanying drawing and example.
As shown in Figure 1, the inventive method comprises the steps:
(1) following three steps (a) (b) (c) are all carried out in each sampling instant in proper order.
(a) collection obtains measuring voltage sampled value, the measurement current sampling data of each sampling instant of transmission line of electricity;
Both-end power source model as shown in Figure 1, transmission line of electricity MS is a protected circuit.500kV and above electric pressure transmission line of electricity generally all adopt capacitance type potential transformer (CVT), as shown in Figure 2.Fig. 3 is the capacitance type potential transformer equivalent circuit diagram.The primary voltage of transmission line of electricity enters protective device through after the actual CVT progress of disease, enters protective device after the progress of disease of primary current process current transformer.The electric parameters signal that enters protective device forms the measuring voltage sampled value of each sampling instant and measures current sampling data through the inner little transducer of device and two progress of disease links of AD sampling again.The protective device sampling interval is Δ t.
T M end three-phase voltage sampled value constantly is expressed as u MA(t), u MB(t), u MC(t)
T M end three-phase current sampled value constantly is expressed as i MA(t), i MB(t), i MC(t)
(b) judge whether transmission line of electricity adopts capacitance type potential transformer, if, earlier the measurement current sampling data of each sampling instant is handled through digital CVT, enter step (c) again, otherwise directly enter step (c);
The measurement current sampling data of each sampling instant is handled through digital CVT, the differential equation and the integral equation discretize that are exactly the electric capacity that will characterize capacitance type potential transformer, inductance and resistive element voltage and current relation are handled, the differential equation represents that with difference formula integral equation is represented with trapezoidal sum formula.To measure current sampling data is input quantity, and the later digital CVT linear circuit of discretize is found the solution in sampling instant one by one, obtains the measurement current sampling data through each sampling instant of digital CVT processing.
For make the measuring voltage sampled value voltage that protective device obtains and measure current sampling data the progress of disease link of process consistent, after the measurement current sampling data that protective device is obtained passes through the digital CVT progress of disease, the calculating of protecting again.The digital CVT circuit of measurement current sampling data process and the actual CVT equivalent circuit of voltage process are identical, as shown in Figure 3.CVT partly is made up of dividing potential drop electric capacity, compensation reactor, middle reactor, damper etc.
U 1=[C 1/(C 1+C 2)]U Ce=C 1+C 2(1)
U is actual CVT input voltage, i.e. phase voltage one sub-value, U 1Be CVT equivalent circuit input voltage; C 1, C 2Be actual CVT dividing potential drop electric capacity; Ce is equivalent dividing potential drop electric capacity; L 1Be the leakage inductance sum of compensating inductance and intermediate transformer, R 1Be corresponding resistance; R f, C f, L fAnd r fParameter for the mode of resonance damper; L bAnd R bThen be load inductance and resistance; Lm and Rm then are excitatory branch road inductance and resistance (CVT intermediate transformer iron core is unsaturated usually).
The concrete steps that to be carried out digital CVT processing by the measurement current sampling data that protective device AD sampling obtains are as follows:
At first four inductance elements and two electric capacity in the circuit are done following processing with methods of numerical:
The inductance differential equation is: Ldi Jk/ dt=u j-u k(2)
Use the trapezoidal integration formula, turn to difference equation.
i jk ( t ) = 1 R L [ u j ( t ) - u k ( t ) ] + I L ( t - Δt ) - - - ( 3 )
R wherein L=2L/ Δ t
I L ( t - Δt ) = i jk ( t - Δt ) + 1 R L [ u j ( t - Δt ) - u k ( t - Δt ) ] - - - ( 4 )
The voltage and current relation of t moment inductive branch can replace with equivalent circuit shown in Figure 4 like this.
Make t capacitive branch equivalent circuit constantly with similar method, as shown in Figure 5.
The electric capacity differential equation is: Cd (u j-u k)/dt=i Jk(5)
Use the trapezoidal integration formula, turn to difference equation.
i jk ( t ) = 1 R C [ u j ( t ) - u k ( t ) ] + I C ( t - Δt ) - - - ( 6 )
R wherein C=Δ t/2C
I C ( t - Δt ) = - i jk ( t - Δt ) - 1 R C [ u j ( t - Δt ) - u k ( t - Δt ) - - - ( 7 )
Just become the simple straight circuit that includes only three kinds of electrical equipments at each sampling instant CVT transient state equivalent circuit like this: input voltage source, the current source of inductance capacitance equivalent circuit, resistance.Input voltage source U 1=[C 1/ (C 1+ C 2)] U, the numerical value of each sampling instant of U equals the measurement current sampling data of each phase of input protection device.Inductance, electric capacity equivalent circuit current source, its initial value can be made as zero, the numerical value of current source is pressed (4) formula and is calculated by voltage, the current value of previous moment inductance equivalent circuit in each inductance equivalent circuit constantly later on, and the numerical value of current source is calculated by (7) formula by voltage, the current value of previous moment electric capacity equivalent circuit in each electric capacity equivalent circuit constantly.
To measure the current sampling data calculation procedure constantly as follows for t after the digital CVT progress of disease, and protected circuit M end three-phase is measured current sampling data and all carried out following three steps in each sampling instant, and measuring current sampling data mutually with M end A is example:
(I) sampled value of measuring electric current mutually according to t A is constantly calculated t input voltage source U constantly 1Numerical value;
U 1=[C 1/(C 1+C 2)]×i MA(t)
(II) according to the known t numerical value of current source in input voltage source and electric capacity, the inductance equivalent circuit constantly, find the solution the t equivalent DC circuit of CVT transient state constantly, obtain t each node voltage and branch current, wherein CVT load branch pressure drop u constantly Fz(t) be that A measures current sampling data mutually through the measurement current sampling data constantly of t after the digital CVT progress of disease.
The CVT Equivalent Model of representing with current source according to (3), (4), (6), the described method of (7) formula is shown in figure (6).Concrete computing formula is as follows:
Current source equivalent transformation in each inductance, the electric capacity equivalent circuit is become voltage source, and formula is as follows:
u ce(t)=i ce(t-Δt)×r ce,u lf(t)=i lf(t-Δt)×r lf,u l1(t)=i l1(t-Δt)×r l1,u cf(t)=i cf(t-Δt)×r cf
R wherein Cf=Δ t/2C f, r Lf=2L f/ Δ t, r L1=2L 1/ Δ t, r Ce=Δ t/2C e, u Ce(t), u Cf(t), u L1(t), u Lf(t) be respectively t capacitor C constantly e, C fAnd inductance L 1, L fVoltage source after the current source conversion in the equivalent circuit, i Ce(t-Δ t), i Cf(t-Δ t), i L1(t-Δ t), i Lf(t-Δ t) is respectively t capacitor C constantly e, C fAnd inductance L 1, L fEquivalent circuit in current source.
The CVT equivalent circuit that to scheme (6) carries out abbreviation, and the CVT equivalent circuit diagram behind the abbreviation is shown in figure (7), and concrete simplifying method is as follows:
u 11(t)=U 1+u ce(t)+u l1(t),i 11(t)=u 11(t)/r 11,r 11=r ce+r l1+R 1
i 22(t)=u Lf(t)/r 22, r wherein 22=r Lf+ r f
i 33(t)=i 22(t)+i Cf(t-Δ t), u 33(t)=r 33* i 33(t), r wherein 33=1/ (1/r 22+ 1/r Cf);
i 44(t)=u 33(t)/r 44, r wherein 44=r 33+ R f
u 55=i Lb(t-Δ t) * r Lb, i 55(t)=u 55(t)/r 55, r wherein 55=r Lb+ R b
i w(t)=i 11(t)-i lm(t)-i 44(t)-i 55(t),r w=1/(1/r 11+1/R m+1/r lm+1/r 44+1/r 55),
Can measure current sampling data u mutually in the hope of the A after handling through digital CVT by above-mentioned formula Fz(t).
u fz(t)=r w×i w(t)
(III) by obtaining the t voltage and the branch current of each inductance, electric capacity equivalent circuit constantly in (II), calculate the t+ Δ t value of each inductance, electric capacity equivalent circuit current source constantly respectively according to (4) formula and (7) formula.Concrete computing formula is as follows:
T flows through capacitor C constantly eCurrent i 66(t)=(U 1+ u Ce(t)+u L1(t)-u Fz(t))/r 11, flow through inductance L bElectric current: i 77(t)=(u Fz(t)+u 55(t))/r 55, flow through capacitor C fElectric current: i 88(t)=(u Fz(t)+u 33(t))/r 33
T is capacitor C constantly eBoth end voltage:
duce(t)=(U 1+u l1(t)-i 66(t)×(r l1+R 1)-u fz(t));
T is inductance L constantly 1Both end voltage: dul1 (t)=(U 1+ u Ce(t)-i 66(t) * (r Ce+ R 1)-u Fz(t));
T is inductance L constantly mThe voltage at two ends: dulm (t)=u Fz(t);
T is inductance L constantly bThe voltage at two ends: dulb (t)=u Fz(t)-r b* i 77(t);
T is capacitor C constantly fThe voltage at two ends: ducf (t)=u Fz(t)-i 88(t) * R f
T flows through inductance L constantly fElectric current be: i 99(t)=(ducf (t)+u Lf(t))/r 22, inductance L fThe voltage at two ends is: dulf (t)=ducf (t)-i 99(t) * r f
Can get t+ Δ t inductance L constantly by (3) and (4) formula 1, L b, L mAnd L fThe value of equivalent circuit current source be respectively:
i l1(t)=-i l1(t-Δt)-2×dul1(t)/r l1
i lb(t)=-i lb(t-Δt)-2×dulb(t)/r lb
i lm(t)=-i lm(t-Δt)-2×dulm(t)/r lm
i lf(t)=-i lf(t-Δt)-2×dulf(t)/r lf
i Lb(t-Δ t), i Lm(t-Δ t) is respectively t inductance L constantly b, L mThe current source of equivalent circuit.
Can get t+ Δ t capacitor C constantly by (6) and (7) formula e, C fThe value of equivalent circuit current source, as follows respectively:
i ce(t)=-i ce(t-Δt)-2×duce(t)/r ce
i cf(t)=-i cf(t-Δt)-2×ducf(t)/r cf
(c) with the measuring voltage sampled value of each sampling instant with handle through digital CVT after the measurement current sampling data of each sampling instant by identical low-pass filtering treatment, obtain new measuring voltage, the measurement current sampling data of each sampling instant of protected circuit after the filtering.Step (c) can be carried out before step (b) order.
Low-pass filtering treatment is exactly with measuring voltage, measures current sampling data with conventional wave digital lowpass filter Filtering Processing, is example with the Butterworth filter, sampling rate is every power frequency period 96 points, cutoff frequency is 100Hz, and initial value is made as zero, is example with M end t moment A phase current sampling value:
at=0.00392;bt=-1.81534;ct=0.83101;
i MA(t)=at×i MA_X(t)+2×at×i MA_X(t-Δt)+at×i MA_X(t-2Δt)
-bt×i MA(t-Δt)-ct×i MA(t-2Δt);
I wherein MA(t) be the output valve of Butterworth filter at t moment M end A phase current;
i MA_X(t) be the input value of Butterworth filter at t moment M end A phase current;
(2) definition t 0For fault takes place constantly, according to the relay protection algorithm acquisition of routine, T 3For the required minimum time width of protection tripping operation after the fault, get 5~20ms; Definition t JsBe the current iterative computation moment, do not upgrade before the iterative computation end each time of this moment, be updated to the sampling instant of up-to-date sampled data when iterative computation finishes each time;
If t Js-t 0〉=T 3, enter step (3), otherwise wait for;
(3) fault distance iterative value D ' is set, iterative initial value is more than or equal to 0 and smaller or equal to the arbitrary value of transmission line of electricity MS length; The initial value of iterations Q is 0;
(4) calculate t 0-T 1To t JsThe fault point voltage sampled value of each sampling instant in the time period, 40ms≤T 1≤ 500ms;
t 0-T 1To t JsThe fault point voltage sampled value of interior each sampling instant before the time period internal fault takes place is by calculating t with it with measuring voltage constantly, measurement current sampling data and fault distance iterative value D ' 0-T 1To t JsThe fault point voltage sampled value value of each sampling instant after the time period internal fault takes place is 0;
t 0-T 1To t JsThe concrete computing method of fault point voltage sampled value of each sampling instant before the time period internal fault takes place are as follows, to calculate t A phase fault point voltage sampled value u constantly FA(t) be example:
u fA(t)=u MA(t)-D′×Δu MA(t)
Voltage drop Δ u on the transmission line of electricity MS section t moment A phase unit length MA(t) computing formula is as follows:
Δu MA(t)=r s×i MA(t)+r m×i MB(t)+r m×i MC(t)
+l s×di MA(t)/dt+l m×di MB(t)/dt+l m×di MC(t)/dt
Rs and rm are respectively the self-resistance and the mutual resistance of transmission line of electricity unit length, and ls and lm are respectively the self-inductance and the mutual inductance of transmission line of electricity unit length, di MA(t)/dt, di MB(t)/dt, di MC(t)/dt represents i respectively MA(t), i MB(t), i MC(t) carry out differential calculation.
(5) if transmission line of electricity adopts capacitance type potential transformer, with t 0-T 1To t JsThe fault point voltage sampled value of each sampling instant in the time period obtains t by digit capacitance voltage transformer (VT) and the low-pass filtering treatment identical with step (1) 0-T 1To t JsThe new fault point voltage sampled value of each sampling instant in the time period; Otherwise with t 0-T 1To t JsThe fault point voltage sampled value of each sampling instant in the time period by with the identical low-pass filtering treatment of step (1), obtain t 0-T 1To t JsThe new fault point voltage sampled value of each sampling instant in the time period.
Step (1) to the progress of disease link of the electric parameters of step (5) shown in figure (8).
(6) with t Js-T 3To t JsThe new measuring voltage of each sampling instant in the time period, measurement current sampling data and new fault point voltage sampled value substitution transmission line distance protecting are separated Differential Equation Algorithm, at t Js-T 3To t JsChoosing length in time period is T 2Time period, 5ms≤T 2≤ T 3Find the solution and obtain t Js-T 3To t JsFault distance D in time period 1And should interior range error E and T of time period 2Fault distance D in time period 2
That routine is separated the Differential Equation Algorithm employing is t Js-T 3To t JsThe measuring voltage sampled value of each sampling instant in the time period is separated Differential Equation Algorithm and is replaced with t in this step Js-T 3To t JsThe difference of measuring voltage sampled value that each sampling instant in the time period is new and new fault point voltage sampled value;
The present invention can be preferably as follows and separate Differential Equation Algorithm, is example to calculate t moment fault distance D:
u(t)-u f(t)=D×Δu(t)+i f(t)×r g
The concrete computing method of Δ u (t) are seen step (4), but different with the measurement current sampling data of step (4) calculating employing, and it is new measurement current sampling data that this step is calculated the magnitude of current that adopts.
Find the solution this differential equation, at t Js-T 3To t JsGet n different new measuring voltage, measurement current sampling data and new fault point voltage sampled value constantly in time period, list n independent equation, can obtain fault distance, i.e. t=t 1, t 2..., t n, its system of equations is:
u(t 1)-u f(t 1)=Δu(t 1)×D+i f(t 1)×r g(8)
u(t 2)-u f(t 2)=Δu(t 2)×D+i f(t 2)×r g(9)
u(t n)-u f(t n)=Δu(t n)×D+i f(t n)×r g(10)
Write as matrix form AX=C
Wherein A = Δu ( t 1 ) i f ( t 1 ) · · · · Δu ( t n ) i f ( t n ) , X = D 1 r g C=[u(t 1)-u f(t 1)...u(t n)-u f(t n)] T
With the least square method is example, and its least square solution is X=(A TA) -1A TC (11)
Error E = Σ i = 1 n [ ( u ( t i ) - u f ( t i ) ) - ( Δu ( t i ) × D 1 + i f ( t i ) × r g ) ] 2 / Σ i = 1 n ( u ( t i ) - u f ( t i ) ) 2 - - - ( 12 )
Can obtain fault distance D by (11) formula 1With transition resistance r g, by the size of (12) formula error can failure judgement whether near actual value.Can try to achieve fault distance D with quadrat method 2
(7) if t Js-t 0<T End, change step (8) over to; T EndBe the maximum time width that whole iterative computation finish, value is 60~100ms usually;
If t Js-t 0〉=T End, t Js-T 3To t JsE>E in time period d, jump to step (10); E dFor the range error setting valve, adjust by the user;
If t Js-t 0〉=T End, t Js-T eTo t JsE≤E in time period d, with D 1Value compose to fault distance end value D z, jump to step (9);
(8) if Q>S, with D 2Value compose to D ', T waits for a period of time 4, with t JsBe updated to the sampling instant of up-to-date sampled data, this iterative computation finishes, and Q is changed to zero, jumps to step (4) and carries out next iteration calculating;
S is the iterations setting valve, and value is 2~10 usually; T 4Stand-by period width for iterations during more than or equal to setting valve, value is 1~5ms usually;
If Q≤S, t Js-T 3To t JsE>E in time period d, with D 2Value compose to D ', make Q=Q+1, proceed this iterative computation, jump to step (4);
If Q≤S, t Js-T 3To t JsE≤E in time period d, with D 1Value compose to D z, change step (9) over to;
(9) according to fault distance end value D zJudge whether it is troubles inside the sample space.
If fault distance end value D zLess than setting valve (setting valve get protected circuit MS length 90%~95%), then be judged as troubles inside the sample space, send trip signal, if be singlephase earth fault, send the fault phase trip signal; Otherwise send the whole trip signals of three-phase, change step (10) then over to; If not troubles inside the sample space, then directly change step (10) over to;
(10) the epicycle range finding finishes.Wait for that fault takes place next time,, continue to wait for, otherwise change step (2) over to if transmission line of electricity does not break down.
Above-mentioned treatment step is the example calculating of finding range with transmission line of electricity one end (M end) all, equally also can adopt the data of the other end (S end) to find range.
The above is preferred embodiment of the present invention, but the present invention should not be confined to the disclosed content of this embodiment and accompanying drawing.So everyly do not break away from the equivalence of finishing under the spirit disclosed in this invention or revise, all fall into the scope of protection of the invention.

Claims (2)

1. the distance-finding method of transmission line of electricity microcomputer distance protection, its step comprises:
The 1st step was gathered measuring voltage sampled value, the measurement current sampling data of the transmission line of electricity that obtains each sampling instant in real time, if transmission line of electricity adopts capacitance type potential transformer, the measurement current sampling data of each sampling instant is handled through the digit capacitance voltage transformer (VT); To the measuring voltage of each sampling instant, measure current sampling data by identical low-pass filtering treatment, obtain new measuring voltage, the measurement current sampling data of each sampling instant;
The 2nd step definition t 0For fault takes place constantly, T 3For the required minimum time width of protection tripping operation after the fault, get 5~20ms; Definition t JsBe the current iterative computation moment, do not upgrade t when iterative computation finishes each time before the iterative computation end each time of this moment JsBe updated to the sampling instant of up-to-date sampled data;
If t Js-t 0〉=T 3, entered for the 3rd step, otherwise wait for;
The 3rd step was provided with fault distance iterative value D ', and iterative initial value is more than or equal to 0 and smaller or equal to the arbitrary value of transmission line length; The initial value of iterations Q is 0;
The 4th step was calculated t 0-T 1To t JsThe fault point voltage sampled value of each sampling instant in the time period, 40ms≤T 1≤ 500ms; t 0-T 1To t 0The fault point voltage sampled value of each sampling instant is by calculating t with it with measuring voltage constantly, measurement current sampling data and fault distance iterative value D ' in time period 0To t JsThe fault point voltage sampled value value of each sampling instant in the time period is 0;
If the 5th step transmission line of electricity adopts capacitance type potential transformer, with t 0-T 1To t JsThe fault point voltage sampled value of each sampling instant in the time period obtains t by going on foot identical digit capacitance voltage transformer (VT) and low-pass filtering treatment with the 1st 0-T 1To t JsThe new fault point voltage sampled value of each sampling instant in time period; Otherwise with t 0-T 1To t JsThe fault point voltage sampled value of each sampling instant in the time period obtains t by going on foot identical low-pass filtering treatment with the 1st 0-T 1To t JsThe new fault point voltage sampled value of each sampling instant in the time period;
The 6th step is with t Js-T 3To t JsThe new measuring voltage of each sampling instant in the time period, measurement current sampling data and new fault point voltage sampled value substitution transmission line distance protecting are separated Differential Equation Algorithm, at t Js-T 3To t JsChoosing length in time period is T 2Time period, 5ms≤T 2≤ T 3Find the solution and obtain t Js-T 2To t JsFault distance D in time period 1And should interior range error E and T of time period 2Fault distance D in time period 2
If the 7th step t Js-t 0<T End, changed for the 8th step over to; T EndBe the maximum time width that whole iterative computation finish, value is 60~100ms;
If t Js-t 0〉=T End, t Js-T 3To t JsE>E in time period d, jumped to for the 10th step; E dBe the range error setting valve;
If t Js-t 0〉=T End, t Js-T 3To t JsE≤E in time period d, with D 1Value compose to fault distance end value D z, jumped to for the 9th step;
If the 8th step Q>S is with D 2Value is composed and is given D ', stand-by period T 4, this iterative computation finishes, with t JsBe updated to the sampling instant of up-to-date sampled data, Q is changed to zero, jumps to for the 4th step to carry out next iteration and calculate;
S is the iterations setting valve, T 4Stand-by period width for iterations during more than or equal to setting valve;
If Q≤S, t Js-T 3To t JsE>E in time period d, with D 2Value is composed and is given D ', makes Q=Q+1, proceeds this iterative computation, jumps to for the 4th step;
If Q≤S, t Js-T 3To t JsE≤E in time period d, should D in the time period 1Value compose to D z, changed for the 9th step over to;
The 9th step is according to fault distance end value D zJudge whether it is troubles inside the sample space,, changed for the 10th step then over to, otherwise directly changed for the 10th step over to if troubles inside the sample space then sends trip signal;
The 10th step waited for that fault took place next time, when transmission line of electricity breaks down once more, changed for the 2nd step over to.
2. method according to claim 1 is characterized in that: it is as follows to separate Differential Equation Algorithm in the 6th step:
T represents t Js-T 3To t JsArbitrary sampling instant of time period, set up suc as formula the differential equation shown in (I):
U (t)-u f(t)=D * Δ u (t)+i f(t) * r gFormula (I)
Wherein, D is a t fault distance constantly, r gBe transition resistance;
For phase fault, u (t) is the difference between two fault phase t new measuring voltage sampled value constantly, u f(t) be difference between the constantly new fault point voltage sampled value of two fault phase t, Δ u (t) is the difference between the voltage drop of transmission line of electricity unit length of two fault phases, i f(t) be t constantly fault mutually in arbitrary mutually new measurement current sampling data; For single-line to ground fault, u (t), u f(t) be respectively fault constantly new measuring voltage sampled value of t, new fault point voltage sampled value and the voltage drop of transmission line of electricity unit length mutually, i with Δ u (t) f(t) get 1/3rd of the t measurement current sampling data sum that three-phase is new constantly;
For t Js-T 3To t JsAll sampling instants of time period are all set up suc as formula the differential equation shown in (I), obtain differential equation group;
Write above-mentioned differential equation group as matrix form AX=C;
Wherein
Figure FDA0000028342590000031
Figure FDA0000028342590000032
C=[u (t 1)-u f(t 1) ... u (t n)-u f(t n)] T
Wherein, subscript T representing matrix transposition;
Fault distance D is obtained in calculating 1
Calculate fault distance D according to above-mentioned identical method 2
CN2009100626194A 2009-06-09 2009-06-09 Method for ranging computer distance protection of transmission line Active CN101572405B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2009100626194A CN101572405B (en) 2009-06-09 2009-06-09 Method for ranging computer distance protection of transmission line

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2009100626194A CN101572405B (en) 2009-06-09 2009-06-09 Method for ranging computer distance protection of transmission line

Publications (2)

Publication Number Publication Date
CN101572405A CN101572405A (en) 2009-11-04
CN101572405B true CN101572405B (en) 2011-01-26

Family

ID=41231673

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2009100626194A Active CN101572405B (en) 2009-06-09 2009-06-09 Method for ranging computer distance protection of transmission line

Country Status (1)

Country Link
CN (1) CN101572405B (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103630798B (en) * 2013-09-12 2016-02-24 清华大学 Transmission line one-phase earth fault method of single end distance measurement
CN103592572B (en) * 2013-11-13 2016-06-08 昆明理工大学 A kind of direct current grounding pole circuit fault distance measurement utilizing DC component and harmonic component intersection location
CN104198889B (en) * 2014-09-12 2017-02-15 清华大学 Successive action based single-terminal location method for instant ground fault of high-voltage line
WO2019060841A1 (en) * 2017-09-22 2019-03-28 Schweitzer Engineering Laboratories, Inc. High-fidelity voltage measurement using resistive divider in a capacitance-coupled voltage transformer
CN110175360B (en) * 2019-04-23 2020-09-18 华中科技大学 Method for simulating transient output characteristic of capacitor voltage transformer and distance protection method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4268886A (en) * 1977-09-30 1981-05-19 Bbc Brown, Boveri & Co., Ltd. Distance protection apparatus for electrical lines
CN101047314A (en) * 2007-04-28 2007-10-03 华中科技大学 Equi-transmission instantaneous value differential protection method of microcomputer protection for remote transmission line
CN101232177A (en) * 2008-01-29 2008-07-30 西安交通大学 HVDC transmission line distance protecting method
CN101242094A (en) * 2008-02-03 2008-08-13 西安西瑞保护控制设备有限责任公司 A distance protection method based on distributed parameter model

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4268886A (en) * 1977-09-30 1981-05-19 Bbc Brown, Boveri & Co., Ltd. Distance protection apparatus for electrical lines
CN101047314A (en) * 2007-04-28 2007-10-03 华中科技大学 Equi-transmission instantaneous value differential protection method of microcomputer protection for remote transmission line
CN101232177A (en) * 2008-01-29 2008-07-30 西安交通大学 HVDC transmission line distance protecting method
CN101242094A (en) * 2008-02-03 2008-08-13 西安西瑞保护控制设备有限责任公司 A distance protection method based on distributed parameter model

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
文明浩.基于3个空间模量的能量平衡保护选相方法.《电力系统自动化》.2006,第30卷(第19期),34-36,103. *
文明浩.基于虚拟电容式电压互感器的能量平衡保护.《中国电机工程学报》.2007,第27卷(第24期),11-16. *
文明浩等.远距离输电线路等传变瞬时值差动保护.《中国电机工程学报》.2007,第27卷(第28期),59-65. *
金明亮等.一种提高110 kV 线路距离保护性能的改进方案研究.《继电器》.2007,第35卷54-58. *

Also Published As

Publication number Publication date
CN101572405A (en) 2009-11-04

Similar Documents

Publication Publication Date Title
CN101572405B (en) Method for ranging computer distance protection of transmission line
CN101419253B (en) Uhv transmission line positive sequence and zero sequence parameter measurement method and system
CN100487479C (en) Capacitive voltage transformer transient error digital correcting method
US9876352B2 (en) Voltage stability monitoring in power systems
CN103630798B (en) Transmission line one-phase earth fault method of single end distance measurement
CN103278756B (en) A kind of method assessing transformer oil paper insulation ageing state
CN101419254B (en) Uhv transmission line parameter measuring systems and method
CN103675445B (en) Method for high-voltage harmonic measurement through capacitive voltage mutual inductor
CN103235172B (en) Current measuring method and measuring device
CN102721898A (en) On-line measurement method and on-line measurement system for deformation of transformer winding
CN101170254A (en) Unbalanced protection method and device for high-voltage serial connection compensation capacitor group
CN205910263U (en) Earth -free distribution network capacitance current measurement system of neutral point
CN102967779B (en) Identifying method of distribution parameters of transmission line
CN101615783A (en) Zero-sequence current longitudinal differential protection method based on star-connection delta line transformer
CN106199118B (en) Capacitor voltage-dividing type zero sequence voltage transformer with power output
CN107832488A (en) A kind of parameter extracting method and device of saturable reactor equivalent model
CN103149478B (en) Method for detecting working point of current transformer under direct current magnetic biasing condition
CN100477440C (en) Equal-transmission instantaneous value differential protection method of microcomputer protection for remote transmission line
CN104380124A (en) Apparatus and method of fault detection and location determination
CN102435829B (en) Self-calibration method for optical voltage sensor
CN103630797A (en) Interturn short circuit detecting device of transformer
CN106980041A (en) A kind of current acquisition method of battery management system
CN106646029A (en) Capacitor measurement device and reactor characteristic testing method
CN105404610A (en) Electromagnetic transient calculation method based on two-stage three-order single diagonally implicit Runge-Kutta method
CN103913654B (en) The recognition methods of System for HVDC System Earth Pole fault signature and equipment

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant