CN101571442A - Calibration method for six-dimension force sensor calibration device with medium measurement range - Google Patents
Calibration method for six-dimension force sensor calibration device with medium measurement range Download PDFInfo
- Publication number
- CN101571442A CN101571442A CNA2008100249199A CN200810024919A CN101571442A CN 101571442 A CN101571442 A CN 101571442A CN A2008100249199 A CNA2008100249199 A CN A2008100249199A CN 200810024919 A CN200810024919 A CN 200810024919A CN 101571442 A CN101571442 A CN 101571442A
- Authority
- CN
- China
- Prior art keywords
- force sensor
- dimensional force
- turntable
- calibration
- loading
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 21
- 238000005259 measurement Methods 0.000 title description 3
- 238000011068 loading method Methods 0.000 claims abstract description 171
- 230000002787 reinforcement Effects 0.000 claims abstract description 40
- 239000011159 matrix material Substances 0.000 claims abstract description 32
- 230000008878 coupling Effects 0.000 claims abstract description 17
- 238000010168 coupling process Methods 0.000 claims abstract description 17
- 238000005859 coupling reaction Methods 0.000 claims abstract description 17
- 239000000725 suspension Substances 0.000 claims description 48
- 230000005484 gravity Effects 0.000 claims description 24
- 239000002131 composite material Substances 0.000 claims description 8
- 238000012360 testing method Methods 0.000 abstract description 7
- 238000004364 calculation method Methods 0.000 abstract description 3
- 150000001875 compounds Chemical class 0.000 abstract 1
- 238000010586 diagram Methods 0.000 description 15
- 230000003014 reinforcing effect Effects 0.000 description 10
- 230000005540 biological transmission Effects 0.000 description 5
- 230000003068 static effect Effects 0.000 description 5
- 238000013461 design Methods 0.000 description 3
- 238000009434 installation Methods 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 239000003638 chemical reducing agent Substances 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- 229910001018 Cast iron Inorganic materials 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000011900 installation process Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000013139 quantization Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 239000003351 stiffener Substances 0.000 description 1
- 230000009897 systematic effect Effects 0.000 description 1
Images
Landscapes
- Force Measurement Appropriate To Specific Purposes (AREA)
Abstract
本发明涉及用于中等量程的六维力传感器标定装置的标定方法。标定时,转动回转台手柄,回转台转盘带动其上的转接板、六维力传感器和加载板一同转动,转动的角度由回转台手柄控制,并从回转台转盘上的刻度读出,将不同质量和数量的砝码通过吊钩分别挂在加载板的背面加力杆、正面加力杆和中心加力杆上,通过加载位置的改变实现对六维力传感器的Fx、Fy、Fz、Mx、My、Mz六个力/力矩分量的独立加载和复合加载,得到六维力传感器加载矩阵和对应的输出矩阵,进行解耦计算,得到耦合矩阵,即完成对六维力传感器的标定。本发明提供一种使用简单、操作方便、标定精度高的标定方法,适用于中等量程六维力传感器的标定和测试。
The invention relates to a calibration method for a six-dimensional force sensor calibration device used in a medium range. During calibration, turn the handle of the turntable, and the turntable will drive the adapter plate, six-dimensional force sensor and loading plate on it to rotate together. The rotation angle is controlled by the handle of the turntable and read from the scale on the turntable. Weights of different quality and quantity are respectively hung on the back reinforcement rod, front reinforcement rod and center reinforcement rod of the loading plate through hooks, and the Fx, Fy, Fz, Fx, Fy, Fz, The independent loading and compound loading of the six force/torque components of Mx, My, and Mz can obtain the loading matrix of the six-dimensional force sensor and the corresponding output matrix, and perform decoupling calculations to obtain the coupling matrix, which is to complete the calibration of the six-dimensional force sensor. The invention provides a calibration method with simple use, convenient operation and high calibration precision, which is suitable for calibration and testing of medium-range six-dimensional force sensors.
Description
技术领域 technical field
本发明涉及自动化领域,特别涉及传感器领域中的一种适用于中等量程六维力传感器标定装置的标定方法。The invention relates to the field of automation, in particular to a calibration method suitable for a medium-range six-dimensional force sensor calibration device in the sensor field.
背景技术 Background technique
六维力传感器能够同时检测三维空间的全力信息,即三维力信息(Fx,Fy,Fz)和三维力矩信息(Mx,My,Mz),主要应用在力及力/位置控制场合,如轮廓跟踪、精密装配、双手协调、试验系统中的六维力信息检测等。The six-dimensional force sensor can simultaneously detect full force information in three-dimensional space, namely three-dimensional force information (Fx, Fy, Fz) and three-dimensional torque information (Mx, My, Mz), and is mainly used in force and force/position control occasions, such as contour tracking , precision assembly, coordination of both hands, six-dimensional force information detection in the test system, etc.
传感器的测量精度是评定传感器最重要的性能指标之一,其误差包括随机误差和系统误差。对于六维力传感器来说,其随机误差主要是由内部信号处理电路、量化误差、外界干扰等因素引起;系统误差则主要是由标定系统的标定精度所决定,六维力传感器由于其本身机械结构的复杂性,以及传感器在制造、粘贴应变片等加工工艺环节存在误差,传感器的各输入输出通道之间存在相互耦合的问题,需要通过标定确定各个方向输入输出的耦合关系,计算其耦合矩阵,并通过解耦补偿各维之间耦合带来的影响。因此传感器标定装置的设计和标定方法的研究至关重要,其标定精度将直接影响其使用时的测量精度。The measurement accuracy of the sensor is one of the most important performance indicators for evaluating the sensor, and its errors include random errors and systematic errors. For the six-dimensional force sensor, its random error is mainly caused by internal signal processing circuit, quantization error, external interference and other factors; the system error is mainly determined by the calibration accuracy of the calibration system, the six-dimensional force sensor is due to its own mechanical Due to the complexity of the structure and the errors in the manufacturing process of the sensor and the pasting of strain gauges, there is a problem of mutual coupling between the input and output channels of the sensor. It is necessary to determine the coupling relationship between the input and output in each direction through calibration and calculate its coupling matrix. , and compensate the influence of the coupling between dimensions through decoupling. Therefore, the design of the sensor calibration device and the research of the calibration method are very important, and its calibration accuracy will directly affect the measurement accuracy when it is used.
六维力传感器的标定就是通过对六维力传感器施加空间坐标系中独立的力/力矩,或是线性无关的多个力/力矩,读取六维力传感器在各种状态下标定时的输出,计算得到解耦矩阵。根据实际应用需求,六维力传感器的标定分为静态标定和动态标定,静态标定主要用于检测传感器的静态性能指标,如静态灵敏度、非线性、回差、重复性等;动态标定主要用于检测传感器的动态特性,如动态灵敏度、频率响应和固有频率等。The calibration of the six-dimensional force sensor is to read the output of the six-dimensional force sensor when it is calibrated in various states by applying an independent force/torque in the space coordinate system or multiple linearly independent forces/torques to the six-dimensional force sensor , calculate the decoupling matrix. According to actual application requirements, the calibration of the six-dimensional force sensor is divided into static calibration and dynamic calibration. Static calibration is mainly used to detect the static performance indicators of the sensor, such as static sensitivity, nonlinearity, hysteresis, repeatability, etc.; dynamic calibration is mainly used for Detect the dynamic characteristics of the sensor, such as dynamic sensitivity, frequency response and natural frequency, etc.
目前六维力传感器静态标定所采用的加载方式主要有测力环式和砝码式两种。其中测力环式加载采用顶杆方式,由测力环读出加载力值,这种加载允许有较大的加载力,但读数精度较低,高精度的测力环则价格昂贵。砝码式标定是采用等级砝码提供标准加载力,直接用等级砝码作为基准,力值精度较高,在中等量程、小量程六维力传感器的标定中使用比较普遍。At present, the loading methods used in the static calibration of the six-dimensional force sensor mainly include the force measuring ring type and the weight type. Among them, the force-measuring ring type loading adopts the push rod method, and the loading force value is read from the force-measuring ring. This kind of loading allows a large loading force, but the reading accuracy is low, and the high-precision force-measuring ring is expensive. Weight-type calibration uses graded weights to provide standard loading force, directly uses graded weights as a reference, and has high force value accuracy. It is commonly used in the calibration of medium-range and small-range six-dimensional force sensors.
在现有技术中有多种结构的传感器标定测试装置,专利号为CN1715856的“无级升降式六维力传感器标定装置”和专利号为CN100337105C的“并联六维力传感器标定装置”等,经检索查新,其中专利号为CN100337105C的专利是最接近的专利技术。它具体公开了一种并联六维力传感器标定装置,包括长短框组成的龙门式支撑框架、加载减速机、标准单向力传感器、加载坐标十字架、标定装置固定平台、载荷传递绳索和滑轮组,标定装置采用大速比减速机来施加载荷,采用龙门式结构作支撑框架。In the prior art, there are sensor calibration test devices with various structures, the patent number is CN1715856 "stepless lifting six-dimensional force sensor calibration device" and the patent number is CN100337105C "parallel six-dimensional force sensor calibration device", etc. Novelty search, wherein the patent No. CN100337105C is the closest patented technology. It specifically discloses a parallel six-dimensional force sensor calibration device, including a gantry support frame composed of long and short frames, a loading reducer, a standard unidirectional force sensor, a loading coordinate cross, a fixed platform for the calibration device, load transmission ropes and a pulley block. The device uses a large speed ratio reducer to apply the load, and uses a gantry structure as a supporting frame.
现有技术中的一种并联六维力传感器标定装置存在的不足之处是:The shortcomings of a parallel six-dimensional force sensor calibration device in the prior art are:
其一,标定装置通过调整载荷传递绳索与水平面之间的角度来改变施加载荷的方向,在体积较大或者绳索较长时,调整载荷传递绳索与水平面之间的角度很难保证足够的精度,从而使施加的载荷具有较大的方向误差,将直接影响标定精度;其二,标定装置中采用滑轮来施加载荷,而滑轮具有摩擦力,此摩擦力会造成比较大的加载误差,从而影响标定精度;其三,标定装置中对六维力传感器施加的是复合力/力矩,无法实现对各维力/力矩分量的独立加载。First, the calibration device changes the direction of the applied load by adjusting the angle between the load transmission rope and the horizontal plane. When the volume is large or the rope is long, it is difficult to ensure sufficient accuracy by adjusting the angle between the load transmission rope and the horizontal plane. As a result, the applied load has a large direction error, which will directly affect the calibration accuracy; second, the pulley is used to apply the load in the calibration device, and the pulley has friction, which will cause a relatively large loading error, thus affecting the calibration Accuracy; Third, the six-dimensional force sensor in the calibration device is a composite force/torque, which cannot achieve independent loading of each dimensional force/torque component.
发明内容 Contents of the invention
本发明的目的是:避免上述现有技术中六维力传感器标定测试装置及标定方法的不足之处,提供一种使用简单、操作方便、标定精度高的标定方法,适用于中等量程六维力传感器的标定和测试。The object of the present invention is to avoid the shortcomings of the six-dimensional force sensor calibration test device and calibration method in the prior art, and provide a calibration method that is simple to use, easy to operate, and high in calibration accuracy, and is suitable for medium-range six-dimensional force sensors. Calibration and testing of sensors.
本发明的技术方案是:一种用于中等量程的六维力传感器标定装置的标定方法,使用砝码对六维力传感器进行加载,标定时,转动回转台手柄,回转台转盘带动其上的转接板、六维力传感器和加载板一同转动,转动的角度由回转台手柄控制,并从回转台转盘上的刻度读出,将不同质量和数量的砝码通过吊钩分别挂在加载板的背面加力杆、正面加力杆和中心加力杆上,通过加载板上加载位置的改变实现对六维力传感器的Fx、Fy、Fz、Mx、My、Mz六个力/力矩分量的独立加载和复合加载,该标定方法是按以下步骤完成的:The technical solution of the present invention is: a calibration method for a medium-range six-dimensional force sensor calibration device, which uses weights to load the six-dimensional force sensor. The adapter plate, the six-dimensional force sensor and the loading plate rotate together. The angle of rotation is controlled by the handle of the turntable and read from the scale on the turntable of the turntable. Weights of different masses and quantities are hung on the loading plate through the hooks respectively. On the rear reinforcement rod, front reinforcement rod and center reinforcement rod, the six force/moment components Fx, Fy, Fz, Mx, My, and Mz of the six-dimensional force sensor can be realized by changing the loading position on the loading plate Independent loading and composite loading, the calibration method is completed according to the following steps:
先将六维力传感器标定装置安装好,用水平仪对工作台的水平面进行校准,使工作台处于水平状态,检测工作台和回转台基座的垂直度,并检测回转台转盘、转接板、六维力传感器和加载板之间的平行度;First install the six-dimensional force sensor calibration device, use a spirit level to calibrate the horizontal plane of the workbench, make the workbench in a horizontal state, check the verticality of the workbench and the base of the turntable, and check the turntable, adapter plate, Parallelism between the six-dimensional force sensor and the loading plate;
使用重力校准六维力传感器的标定坐标系的X轴或Y轴;Use gravity to calibrate the X-axis or Y-axis of the calibration coordinate system of the six-dimensional force sensor;
将连接有六维力传感器和加载板的转接板安装在回转台转盘上,转动回转台手柄,调整转动的角度,使六维力传感器的X轴正方向与重力方向重合,此时,X轴正方向垂直向下,Y轴正方向水平向右,将不同质量和数量的砝码通过吊钩分别挂在加载板的背面加力杆、正面加力杆和中心加力杆上,对六维力传感器施加Fx、My、Mz,并记录数据;Install the adapter plate connected with the six-dimensional force sensor and the loading plate on the turntable of the turntable, turn the handle of the turntable, and adjust the angle of rotation so that the positive direction of the X-axis of the six-dimensional force sensor coincides with the direction of gravity. At this time, X The positive direction of the axis is vertically downward, and the positive direction of the Y-axis is horizontal to the right. Weights of different masses and quantities are hung on the back force bar, front force bar and central force bar of the loading plate respectively through the hooks. The force sensor applies Fx, My, Mz, and records the data;
转动和控制回转台手柄,使回转台转盘带动其上的转接板、六维力传感器和加载板一同逆时针转动90度,将不同质量和数量的砝码通过吊钩分别挂在加载板的背面加力杆、正面加力杆和中心加力杆上,对六维力传感器施加Fy、Mx、Mz,并记录数据;Turn and control the handle of the turntable, so that the turntable of the turntable drives the adapter plate, six-dimensional force sensor and loading plate on it to rotate 90 degrees counterclockwise, and hang weights of different qualities and quantities on the loading plate through the hooks. Apply Fy, Mx, Mz to the six-dimensional force sensor on the rear afterburner, front afterburner and central afterburner, and record the data;
再转动和控制回转台手柄,使回转台转盘带动其上的转接板、六维力传感器和加载板一同逆时针转动90度,重复上述步骤分别对六维力传感器的Fx、Fy、Mx、My、Mz进行正、反方向的加载标定;Then turn and control the handle of the turntable, so that the turntable of the turntable drives the adapter plate, the six-dimensional force sensor and the loading plate on it to rotate counterclockwise 90 degrees, and repeat the above steps to adjust the Fx, Fy, Mx, My and Mz carry out forward and reverse loading calibration;
将连接有六维力传感器和加载板的转接板从回转台转盘上取下,放置在工作台的圆形光孔里,圆形光孔的直径大于六维力传感器的直径以及加载板的直径,并且圆形光孔的直径小于转接板的直径,转接板置于工作台的上面,六维力传感器和加载板置于工作台的下面。六维力传感器标定坐标系的Z轴垂直向下,将不同质量和数量的砝码通过吊钩挂在加载板的中心加力杆上,对六维力传感器施加Fz方向的载荷,载荷的大小由砝码的质量和数量决定,逐步施加不同的载荷,记录数据,直至完成对六维力传感器的Fz加载标定;Remove the adapter plate connected with the six-dimensional force sensor and the loading plate from the turntable, and place it in the circular light hole of the workbench. The diameter of the circular light hole is larger than the diameter of the six-dimensional force sensor and the diameter of the loading plate. diameter, and the diameter of the circular light hole is smaller than the diameter of the adapter plate, the adapter plate is placed above the workbench, and the six-dimensional force sensor and the loading plate are placed below the workbench. The Z-axis of the calibration coordinate system of the six-dimensional force sensor is vertically downward, and the weights of different masses and quantities are hung on the central force bar of the loading plate through the hook, and the load in the Fz direction is applied to the six-dimensional force sensor. Determined by the quality and quantity of the weights, different loads are gradually applied, and the data is recorded until the Fz loading calibration of the six-dimensional force sensor is completed;
计算六维力传感器的加载矩阵和传感器输出矩阵;Calculate the loading matrix and sensor output matrix of the six-dimensional force sensor;
根据公式,计算六维力传感器的耦合矩阵;Calculate the coupling matrix of the six-dimensional force sensor according to the formula;
检验六维力传感器的耦合矩阵是否符合要求,如果不符合要求,需要重新按照上述步骤对六维力传感器进行标定,否则标定结束。Check whether the coupling matrix of the six-dimensional force sensor meets the requirements. If it does not meet the requirements, it is necessary to re-calibrate the six-dimensional force sensor according to the above steps, otherwise the calibration ends.
作为对现有技术的进一步改进,通过加载板上加载位置的改变实现对六维力传感器的Fx、Fy、Fz、Mx、My、Mz六个力/力矩分量的独立加载和复合加载,是先对六维力传感器的Fx、Fy、Mx、My、Mz进行加载标定,后对六维力传感器的Fz进行加载标定;或先对六维力传感器的Fz进行加载标定,后对六维力传感器的Fx、Fy、Mx、My、Mz进行加载标定。As a further improvement to the existing technology, the independent loading and composite loading of the six force/moment components Fx, Fy, Fz, Mx, My, and Mz of the six-dimensional force sensor can be achieved by changing the loading position on the loading plate. Load and calibrate the Fx, Fy, Mx, My, Mz of the six-dimensional force sensor, and then load and calibrate the Fz of the six-dimensional force sensor; or first load and calibrate the Fz of the six-dimensional force sensor, and then calibrate the six-dimensional force sensor Fx, Fy, Mx, My, Mz of Fx, Fy, Mz for loading calibration.
本发明的有益效果是:相对于现有技术,该发明方法的发明点在于:The beneficial effect of the present invention is: with respect to prior art, the inventive point of this inventive method is:
用水平仪对六维力传感器标定装置工作台的水平面进行校准,使工作台处于水平状态,检测工作台和回转台基座的垂直度,检测回转台转盘、转接板、六维力传感器和加载板之间的平行度,使用重力校准六维力传感器的标定坐标系的X轴或Y轴;Use a spirit level to calibrate the horizontal plane of the workbench of the six-dimensional force sensor calibration device, so that the workbench is in a horizontal state, detect the verticality of the workbench and the base of the turntable, and detect the turntable, adapter plate, six-dimensional force sensor and loading of the turntable Parallelism between plates, using gravity to calibrate the X-axis or Y-axis of the calibration coordinate system of the six-dimensional force sensor;
将连接有六维力传感器和加载板的转接板安装在回转台转盘上,转动回转台手柄,调整转动的角度,使六维力传感器的X轴正方向与重力方向重合,此时,X轴正方向垂直向下,Y轴正方向水平向右,将不同质量和数量的砝码通过吊钩分别挂在加载板的背面加力杆、正面加力杆和中心加力杆上,对六维力传感器施加Fx、My、Mz,并记录数据;Install the adapter plate connected with the six-dimensional force sensor and the loading plate on the turntable of the turntable, turn the handle of the turntable, and adjust the angle of rotation so that the positive direction of the X-axis of the six-dimensional force sensor coincides with the direction of gravity. At this time, X The positive direction of the axis is vertically downward, and the positive direction of the Y-axis is horizontal to the right. Weights of different masses and quantities are hung on the back force bar, front force bar and central force bar of the loading plate respectively through the hooks. The force sensor applies Fx, My, Mz, and records the data;
转动和控制回转台手柄,使回转台转盘带动其上的转接板、六维力传感器和加载板一同逆时针转动90度,将不同质量和数量的砝码通过吊钩分别挂在加载板的背面加力杆、正面加力杆和中心加力杆上,对六维力传感器施加Fy、Mx、Mz,并记录数据;Turn and control the handle of the turntable, so that the turntable of the turntable drives the adapter plate, six-dimensional force sensor and loading plate on it to rotate 90 degrees counterclockwise, and hang weights of different qualities and quantities on the loading plate through the hooks. Apply Fy, Mx, Mz to the six-dimensional force sensor on the rear afterburner, front afterburner and central afterburner, and record the data;
再转动和控制回转台手柄,使回转台转盘带动其上的转接板、六维力传感器和加载板一同逆时针转动90度,重复上述步骤分别对六维力传感器的Fx、Fy、Mx、My、Mz进行正、反方向的加载标定;Then turn and control the handle of the turntable, so that the turntable of the turntable drives the adapter plate, the six-dimensional force sensor and the loading plate on it to rotate counterclockwise 90 degrees, and repeat the above steps to adjust the Fx, Fy, Mx, My and Mz carry out forward and reverse loading calibration;
将连接有六维力传感器和加载板的转接板从回转台转盘上取下,放置在工作台的圆形光孔里,六维力传感器标定坐标系的Z轴垂直向下,将不同质量和数量的砝码通过吊钩挂在加载板的中心加力杆上,对六维力传感器施加Fz方向的载荷,载荷的大小由砝码的质量和数量决定,逐步施加不同的载荷,记录数据,直至完成对六维力传感器的Fz加载标定;Remove the adapter plate connected with the six-dimensional force sensor and the loading plate from the turntable of the turntable and place it in the circular light hole of the workbench. The Z-axis of the calibration coordinate system of the six-dimensional force sensor is vertically downward. The weights and quantity are hung on the central force bar of the loading plate through the hook, and the load in the Fz direction is applied to the six-dimensional force sensor. The size of the load is determined by the quality and quantity of the weights. Different loads are applied step by step, and the data is recorded. , until the Fz loading calibration of the six-dimensional force sensor is completed;
计算六维力传感器的加载矩阵和传感器输出矩阵,根据公式,计算六维力传感器的耦合矩阵,检验六维力传感器的耦合矩阵是否符合要求,如果不符合要求,需要重新按照上述步骤对六维力传感器进行标定,否则标定结束。Calculate the loading matrix and sensor output matrix of the six-dimensional force sensor, calculate the coupling matrix of the six-dimensional force sensor according to the formula, and check whether the coupling matrix of the six-dimensional force sensor meets the requirements. The force sensor is calibrated, otherwise the calibration ends.
通过加载板上加载位置的改变实现对六维力传感器的Fx、Fy、Fz、Mx、My、Mz六个力/力矩分量的独立加载和复合加载,或先对六维力传感器的Fz进行加载标定,后对六维力传感器的Fx、Fy、Mx、My、Mz进行加载标定。By changing the loading position on the loading plate, the independent loading and composite loading of the six force/moment components Fx, Fy, Fz, Mx, My, and Mz of the six-dimensional force sensor can be realized, or the Fz of the six-dimensional force sensor can be loaded first Calibrate, and then load and calibrate the Fx, Fy, Mx, My, and Mz of the six-dimensional force sensor.
本发明方法对六维力传感器的各维力/力矩分量进行正、反方向的独立加载或者复合加载,加载过程简单,计算耦合矩阵方便、快捷。本发明方法不仅使用简单、操作方便,而且加载力值准确,无中间传递环节,标定精度高,适用于中等量程六维力传感器的标定和测试。The method of the invention performs independent loading or combined loading in forward and reverse directions on each dimension force/moment component of the six-dimensional force sensor, the loading process is simple, and the calculation of the coupling matrix is convenient and fast. The method of the invention is not only simple to use and convenient to operate, but also has accurate loading force value, no intermediate transmission links, high calibration accuracy, and is suitable for calibration and testing of medium-range six-dimensional force sensors.
附图说明 Description of drawings
图1为本发明的标定方法流程图。Fig. 1 is a flowchart of the calibration method of the present invention.
图2为中等量程的六维力传感器标定装置的结构示意图。Fig. 2 is a schematic structural diagram of a six-dimensional force sensor calibration device with a medium range.
图3为中等量程的六维力传感器标定装置的立体图。Fig. 3 is a perspective view of a medium-range six-dimensional force sensor calibration device.
图4为本发明中转接板6、六维力传感器7和加载板8的装配示意图。Fig. 4 is a schematic diagram of the assembly of the
图5为本发明中施加力+Fx的标定示意图。Fig. 5 is a schematic diagram of calibration of applied force + Fx in the present invention.
图6为本发明中施加力+Fy的标定示意图。Fig. 6 is a schematic diagram of calibration of applied force +Fy in the present invention.
图7为本发明中施加力+Fz的标定示意图。Fig. 7 is a schematic diagram of the calibration of the applied force + Fz in the present invention.
图8为本发明中施加力-Fx和力矩-My的标定示意图。Fig. 8 is a schematic diagram of calibration of applied force-Fx and moment-My in the present invention.
图9为本发明中施加力-Fx和力矩-My、+Mz的标定示意图。Fig. 9 is a schematic diagram of calibration of applied force -Fx and moment -My, +Mz in the present invention.
图10为本发明中施加力-Fx和力矩-My、-Mz的标定示意图。Fig. 10 is a schematic diagram of calibration of applied force -Fx and moments -My, -Mz in the present invention.
图11为本发明中对六维力传感器的Fx、Fy、Mx、My、Mz进行加载标定的流程图。FIG. 11 is a flow chart of loading and calibrating Fx, Fy, Mx, My, and Mz of the six-dimensional force sensor in the present invention.
图12为本发明中对六维力传感器的Fz进行加载标定的流程图。Fig. 12 is a flow chart of loading and calibrating the Fz of the six-dimensional force sensor in the present invention.
具体实施方式 Detailed ways
下面结合附图和实施例对本发明作进一步的详细说明。The present invention will be further described in detail below in conjunction with the accompanying drawings and embodiments.
图1为本发明的标定方法流程图。本发明使用砝码14对六维力传感器7进行加载,标定时,转动回转台手柄5,回转台转盘4带动其上的转接板6、六维力传感器7和加载板8一同转动,转动的角度由回转台手柄5控制,并从回转台转盘4上的刻度读出,加载板8上有背面加力杆9、正面加力杆10和中心加力杆11,吊钩13通过绳索12挂在加力杆上,砝码14放置在吊钩13上,加载力的大小由砝码14的质量和数量决定,通过加载位置的改变实现对六维力传感器7各个力/力矩分量的独立加载以及复合加载。具体标定过程如下:Fig. 1 is a flowchart of the calibration method of the present invention. The present invention uses the
首先将六维力传感器7准备好,开始进行标定(步骤100);安装六维力传感器标定装置(步骤110),用水平仪对工作台2的水平面进行校准,使工作台2处于水平状态,检测工作台2和回转台基座3之间的垂直度,并检测回转台转盘4、转接板6、六维力传感器7和加载板8之间的平行度,使用重力校准六维力传感器7的标定坐标系(步骤120);At first the six-
使用吊钩13、绳索12、砝码14和背面加力杆9、正面加力杆10和中心加力杆11对六维力传感器7的Fx、Fy、Mx、My、Mz进行加载标定(步骤130);记录对Fx、Fy、Mx、My、Mz方向进行加载时六维力传感器7输出的数据(步骤140),检测Fx、Fy、Mx、My、Mz载荷施加是否完毕吗(步骤150)?Use
否则转到步骤130进行循环,是则使用吊钩13、绳索12、砝码14和中心加力杆11对六维力传感器7的Fz进行加载标定(步骤160),并记录对Fz方向进行加载时六维力传感器7输出的数据(步骤170),检测Fz载荷施加是否完毕吗(步骤180)?Otherwise, go to step 130 for circulation, and then use the
否则转到步骤160进行循环,是则计算六维力传感器7的加载矩阵和传感器输出矩阵(步骤190),根据公式,计算六维力传感器7的耦合矩阵(步骤200);Otherwise go to step 160 to circulate, then calculate the loading matrix and the sensor output matrix (step 190) of the six-
对六维力传感器7的耦合矩阵进行检验(步骤210),检测耦合矩阵是否满足要求吗?(步骤220),否则需要重新对六维力传感器7进行标定,即返回步骤120进行循环,是则标定结束(步骤230)。Check the coupling matrix of the six-dimensional force sensor 7 (step 210), check whether the coupling matrix meets the requirements? (step 220), otherwise, the six-
在图2、图3和图4中:1是工作台支座;2是工作台;3是回转台基座;4是回转台转盘;5是回转台手柄;6是转接板;7是六维力传感器;8是加载板;9是背面加力杆;10是正面加力杆;11是中心加力杆;12是绳索;13是吊钩;14是砝码;15是圆形光孔;16是转接板安装孔;17是转接板传感器安装孔;18是转接板传感器定位销;19是传感器定位销;20是加载板定位孔;21是加载板传感器安装孔。In Figure 2, Figure 3 and Figure 4: 1 is the workbench support; 2 is the workbench; 3 is the base of the turntable; 4 is the turntable of the turntable; 5 is the handle of the turntable; 6 is the adapter plate; 7 is Six-dimensional force sensor; 8 is the loading plate; 9 is the rear afterburner; 10 is the front afterburner; 11 is the center afterburner; 12 is the rope; 13 is the hook; 14 is the weight; 15 is the circular light Hole; 16 is the adapter plate mounting hole; 17 is the adapter plate sensor mounting hole; 18 is the adapter plate sensor positioning pin; 19 is the sensor positioning pin; 20 is the loading plate positioning hole; 21 is the loading plate sensor mounting hole.
回转台基座3、回转台转盘4和回转台手柄5组成一个回转台,回转台基座3垂直安装在工作台2的一端,工作台2安装在工作台支座1上。转接板6通过一组转接板安装孔16安装在回转台转盘4上,六维力传感器7安装在转接板6的转接板传感器安装孔17上,六维力传感器7和转接板6之间通过转接板传感器定位销18进行定位,加载板8通过一组加载板传感器安装孔21安装在六维力传感器7上,加载板8和六维力传感器7之间通过传感器定位销19和加载板定位孔20进行定位。The
加载板8上有一组背面加力杆9、一组正面加力杆10和一个中心加力杆11。正面加力杆10与背面加力杆9分别位于标定坐标系的X轴和Y轴上,并且分布在不同的圆周上。On the
绳索12挂在背面加力杆9或正面加力杆10或中心加力杆11上,吊钩13挂在绳索12上,砝码14放置在吊钩13上。
工作台2和回转台基座3在机械设计、加工和安装时要保证足够的垂直度,回转台转盘4、转接板6、六维力传感器7和加载板8在机械设计和加工中与回转台基座3要保证足够的平行度。The
利用背面加力杆9、正面加力杆10、中心加力杆11、绳索12、吊钩13以及砝码14对六维力传感器7进行加载,通过加载位置的改变实现各个力/力矩分量的独立加载和复合加载。The six-
回转台转盘4、回转台手柄5和回转台基座3构成一个立式回转台,回转台转盘4上有刻度,转动回转台手柄5时,回转台基座3不转动,但是回转台转盘4带动其上的转接板6、六维力传感器7和加载板8一同转动,转动的角度由回转台手柄5控制,并回转台转盘4上的刻度读出。绳索12挂在正面加力杆10上,吊钩13挂在绳索12上,砝码14放置在吊钩13上。绳索12是钢丝,或是鱼线,砝码14是标准等级砝码,砝码14是铜砝码,或是不锈钢砝码,或是铸铁砝码。The
加载板8的正面有一组正面加力杆10和一个中心加力杆11,四个正面加力杆10对称分布于加载板8的圆周,并分别位于标定坐标系的X轴和Y轴上,中心加力杆11位于加载板8的中心。The front of the
工作台2上有一个圆形光孔15,圆形光孔15的直径大于六维力传感器7的直径以及加载板8的直径,并且圆形光孔15的直径小于转接板6的直径。回转台基座3垂直安装在工作台2的一端,工作台2安装在工作台支座1上。回转台转盘4的前面置有转接板6,转接板6的前面置有六维力传感器7,六维力传感器7的前面置有加载板8。加载板8上有一组背面加力杆9、一组正面加力杆10和一个中心加力杆11。There is a circular
图4为本发明中转接板6、六维力传感器7和加载板8的装配示意图。转接板6通过1组转接板安装孔16安装在回转台转盘4上,六维力传感器7安装在转接板6的转接板传感器安装孔17上,六维力传感器7和转接板6之间通过转接板传感器定位销18进行定位,加载板8通过1组加载板传感器安装孔21安装在六维力传感器7上,加载板8和六维力传感器7之间通过传感器定位销19和加载板定位孔20进行定位。加载板8一面置有一组背面加力杆9和加载板定位孔20,另一面置有一组正面加力杆10和一个中心加力杆11。加载板8上的背面加力杆9、正面加力杆10和中心加力杆11上均有刻槽,用来悬挂绳索12和吊钩13。Fig. 4 is a schematic diagram of the assembly of the
图5为本发明中施加力+Fx的标定示意图。按照标定坐标系的定义,转动回转台手柄5,回转台转盘4带动转接板6、六维力传感器7和加载板8一同转动,调整转动的角度,使X轴正方向与重力方向重合,此时,X轴正方向垂直向下,Y轴正方向水平向右。将绳索12挂在加载板8背面的一组背面加力杆9中最下面的加力杆的刻槽里,然后将吊钩13挂在绳索12上,最后将砝码14放置在吊钩13上,即可对六维力传感器7施加力+Fx,力的大小由砝码14的质量和数量决定。Fig. 5 is a schematic diagram of calibration of applied force + Fx in the present invention. According to the definition of the calibration coordinate system, turn the
转动回转台手柄5,回转台转盘4带动转接板6、六维力传感器7和加载板8一同转动,调整转动的角度,使X轴负方向与重力方向重合,此时,X轴正方向垂直向上,Y轴正方向水平向左。将绳索12挂在加载板8背面的一组背面加力杆9中最下面的加力杆的刻槽里,然后将吊钩13挂在绳索12上,最后将砝码14放置在吊钩13上,即可对六维力传感器7施加力-Fx,力的大小由砝码14的质量和数量决定。Turn the
图6为本发明中施加力+Fy的标定示意图。按照标定坐标系的定义,转动回转台手柄5,回转台转盘4带动转接板6、六维力传感器7和加载板8一同转动,调整转动的角度,使Y轴正方向与重力方向重合,此时,X轴正方向水平向左,Y轴正方向垂直向下。将绳索12挂在加载板8背面的一组背面加力杆9中最下面的加力杆的刻槽里,然后将吊钩13挂在绳索12上,最后将砝码14放置在吊钩13上,即可对六维力传感器7施加力+Fy,力的大小由砝码14的质量和数量决定。Fig. 6 is a schematic diagram of calibration of applied force +Fy in the present invention. According to the definition of the calibration coordinate system, turn the
转动回转台手柄5,回转台转盘4带动转接板6、六维力传感器7和加载板8一同转动,调整转动的角度,使Y轴负方向与重力方向重合,此时,X轴正方向水平向右,Y轴正方向垂直向上。将绳索12挂在加载板8背面的一组背面加力杆9中最下面的加力杆的刻槽里,然后将吊钩13挂在绳索12上,最后将砝码14放置在吊钩13上,即可对六维力传感器7施加力-Fy,力的大小由砝码14的质量和数量决定。Turn the
图7为本发明中施加力+Fz的标定示意图。将转接板6、六维力传感器7和加载板8从回转台转盘4上取下,将置有六维力传感器7和加载板8的转接板6放置在工作台2的圆形光孔15里,圆形光孔15的直径大于六维力传感器7的直径以及加载板8的直径,并且圆形光孔15的直径小于转接板6的直径,转接板6置于工作台2的上面,六维力传感器7和加载板8置于工作台2的下面。加载板8上有一个中心加力杆11,将绳索12悬挂在中心加力杆11上,吊钩13悬挂在绳索12上,砝码14放置在吊钩13上,即对六维力传感器7施加力+Fz。Fig. 7 is a schematic diagram of the calibration of the applied force + Fz in the present invention. Remove the
图8为本发明中施加力-Fx和力矩-My的标定示意图。按照标定坐标系的定义,转动回转台手柄5,回转台转盘4带动转接板6、六维力传感器7和加载板8一同转动,调整转动的角度,使X轴负方向与重力方向重合,此时,X轴正方向垂直向上,Y轴正方向水平向左。将绳索12挂在加载板8正面的中心加力杆11的刻槽里,然后将吊钩13挂在绳索12上,最后将砝码14放置在吊钩13上,即可对六维力传感器7施加力-Fx和力矩-My,力的大小由砝码14的质量和数量决定,力矩的大小由中心加力杆11的加力位置到坐标系中XYO平面的距离、砝码14的质量和数量决定。Fig. 8 is a schematic diagram of calibration of applied force-Fx and moment-My in the present invention. According to the definition of the calibration coordinate system, turn the
图9为本发明中施加力-Fx和力矩-My、+Mz的标定示意图。按照标定坐标系的定义,转动回转台手柄5,回转台转盘4带动转接板6、六维力传感器7和加载板8一同转动,调整转动的角度,使X轴负方向与重力方向重合,此时,X轴正方向垂直向上,Y轴正方向水平向左。将绳索12挂在加载板8正面一组正面加力杆10中左边的加力杆的刻槽里,然后将吊钩13悬挂在绳索12上,最后将砝码14放置在吊钩13上,即可对六维力传感器7施加力-Fx和力矩-My、+Mz,力的大小由砝码14的质量和数量决定,力矩的大小由正面加力杆10的加力位置到坐标系中XYO平面的距离、正面加力杆10的加力位置到加载板8中心的距离、砝码14的质量和数量决定。Fig. 9 is a schematic diagram of calibration of applied force -Fx and moment -My, +Mz in the present invention. According to the definition of the calibration coordinate system, turn the
图10为本发明中施加力-Fx和力矩-My、-Mz的标定示意图。按照标定坐标系的定义,转动回转台手柄5,回转台转盘4带动转接板6、六维力传感器7和加载板8一同转动,调整转动的角度,使X轴负方向与重力方向重合,此时,X轴正方向垂直向上,Y轴正方向水平向左。将绳索12挂在加载板8正面一组正面加力杆10中右边的加力杆的刻槽里,然后将吊钩13挂在绳索12上,最后将砝码14放置在吊钩13上,即可对六维力传感器7施加力-Fx和力矩-My、-Mz,力的大小由砝码14的质量和数量决定,力矩的大小由正面加力杆10的加力位置到坐标系中XYO平面的距离、正面加力杆10的加力位置到加载板8中心的距离、砝码14的质量和数量决定。Fig. 10 is a schematic diagram of calibration of applied force -Fx and moments -My, -Mz in the present invention. According to the definition of the calibration coordinate system, turn the
转动回转台手柄5,回转台转盘4带动转接板6、六维力传感器7和加载板8一同转动,调整转动的角度,使Y轴负方向与重力方向重合,此时,X轴正方向水平向右,Y轴正方向垂直向上。将绳索12挂在加载板8正面中心加力杆11的刻槽里,将吊钩13挂在绳索12上,最后将砝码14放置在吊钩13上,即可对六维力传感器7施加力-Fy和力矩+Mx,力的大小由砝码14的质量和数量决定,力矩的大小由中心加力杆11的加力位置到坐标系中XYO平面的距离、砝码14的质量和数量决定。将绳索12挂在加载板8正面一组正面加力杆10中左边的加力杆的刻槽里,将吊钩13挂在绳索12上,最后将砝码14放置在吊钩13上,即可对六维力传感器7施加力-Fy和力矩+Mx、+Mz,力的大小由砝码14的质量和数量决定,力矩的大小由正面加力杆10的加力位置到坐标系中XYO平面的距离、正面加力杆10的加力位置到加载板8中心的距离、砝码14的质量和数量决定。将绳索12挂在加载板8正面一组正面加力杆10中右边的加力杆的刻槽里,然后将吊钩13挂在绳索12上,最后将砝码14放置在吊钩13上,即可对六维力传感器7施加力-Fy和力矩+Mx、-Mz,力的大小由砝码14的质量和数量决定,力矩的大小由正面加力杆10的加力位置到坐标系中XYO平面的距离、正面加力杆10的加力位置到加载板8中心的距离、砝码14的质量和数量决定。Turn the
图11为本发明中对六维力传感器7的Fx、Fy、Mx、My、Mz进行加载标定的流程图。FIG. 11 is a flow chart of loading and calibrating Fx, Fy, Mx, My, and Mz of the six-
使用吊钩13、绳索12、砝码14和背面加力杆9、正面加力杆10、中心加力杆11对六维力传感器7的Fx、Fy、Mx、My、Mz开始进行加载标定(步骤300);Use
将连接有六维力传感器7和加载板8的转接板6安装在回转台转盘4上(步骤310),使六维力传感器7标定坐标系的Y轴垂直向上,使用重力校准六维力传感器7标定坐标系的X轴或者Y轴(步骤320);Install the
从背面加力杆9、正面加力杆10和中心加力杆11中选择一个加力杆来对六维力传感器7进行施加载荷(步骤330),对六维力传感器7进行清零(步骤340),将挂有吊钩13和砝码14的绳索12挂在选择的加力杆的刻槽里,对六维力传感器7施加不同的载荷(步骤350),载荷的大小由砝码14的质量和数量决定,记录六维力传感器7的输出数据(步骤360);Select an afterburner rod from the
检测载荷是否施加完毕(步骤370)?否则返回步骤350进行循环,是则检测背面加力杆9、正面加力杆10和中心加力杆11是否都施加载荷了(步骤380)?否则返回步骤330进行循环,是则检测是否将连接有六维力传感器7和加载板8的转接板6逆时针转动了三次(步骤390)?Check whether the load has been applied (step 370)? Otherwise, return to step 350 and perform a loop, and then detect whether the
否则转动和控制回转台手柄5(步骤400),使回转台转盘4带动其上的转接板6、六维力传感器7和加载板8一同逆时针转动90度(步骤410),再返回步骤320进行循环,是则结束对Fx、Fy、Mx、My、Mz的加载标定(步骤420)。Otherwise, turn and control the turntable handle 5 (step 400), so that the
图12为本发明中对六维力传感器7的Fz进行加载标定的流程图。FIG. 12 is a flow chart of loading and calibrating the Fz of the six-
使用吊钩13、绳索12、砝码14和中心加力杆11对六维力传感器7的Fz开始进行加载标定(步骤500),将连接有六维力传感器7和加载板8的转接板6从回转台转盘4上取下,放置在工作台2的圆形光孔15里,六维力传感器7标定坐标系的Z轴垂直向下(步骤510),用水平仪对工作台2的水平面进行校准,使工作台2处于水平状态(步骤520);Use
对六维力传感器7进行清零(步骤530);Clear the six-dimensional force sensor 7 (step 530);
将绳索12挂在中心加力杆11上,吊钩13挂在绳索12上,砝码14放置在吊钩13上(步骤540);使用砝码14对六维力传感器7施加载荷(步骤550),载荷的大小由砝码14的质量和数量决定,记录六维力传感器7的输出数据(步骤560);
检测载荷施加完毕了吗(步骤570)?否则返回步骤540进行循环,是则结束对六维力传感器7的Fz加载标定(步骤580)。Has the test load been applied (step 570)? Otherwise, return to step 540 for looping, and if yes, end the Fz load calibration of the six-dimensional force sensor 7 (step 580).
实施例:Example:
首先,将六维力传感器标定装置的工作台支座1安放在平坦的地面上,将工作台2水平放置在工作台支座1上,用水平仪对工作台2的水平面进行校准,确保工作台2处于水平状态。回转台基座3垂直安装在工作台2的一端,将回转台基座3、回转台转盘4和回转台手柄5组成一个立式回转台。First, place the
将加载板8通过一组加载板传感器安装孔21安装在六维力传感器7上,六维力传感器7安装在转接板6的转接板传感器安装孔17上,转接板6通过一组转接板安装孔16安装在回转台转盘4上。将吊钩13挂在绳索12上,砝码14放置在吊钩13上,绳索12挂在背面加力杆9上,或正面加力杆10上,或中心加力杆11上。The
在六维力传感器标定装置的安装过程中,需要保证工作台2和回转台基座3的垂直度,回转台转盘4、转接板6、六维力传感器7和加载板8与回转台基座3之间的平行度。六维力传感器标定装置通过机械设计、加工和安装的精度来保证标定时加载力作用点的位置和方向的准确,实现力的准确传递,提高标定精度。During the installation process of the six-dimensional force sensor calibration device, it is necessary to ensure the verticality of the
上述安装完成后,检查标定装置中的每个零配件,确保每个零配件安装准确、牢靠,六维力传感器标定装置安装完毕。After the above installation is completed, check each spare part in the calibration device to ensure that each spare part is installed accurately and securely, and the six-dimensional force sensor calibration device is installed.
然后,使用六维力传感器标定装置对中等量程的六维力传感器7进行标定。根据六维力传感器7的量程来确定标定点的数量和标定点之间的间隔,一般采用等间隔进行标定,使用砝码14对六维力传感器7的各个通道依次施加载荷。Then, use the six-dimensional force sensor calibration device to calibrate the medium-range six-
标定时,将连接有六维力传感器7和加载板8的转接板6安装在回转台转盘4上,转动回转台手柄5,回转台转盘4带动转接板6、六维力传感器7和加载板8一同转动,调整转动的角度,使Y轴负方向与重力方向重合,此时,X轴正方向水平向右,Y轴正方向垂直向上。使用重力校准六维力传感器7标定坐标系的Y轴,对六维力传感器7进行清零;During calibration, install the
将绳索12挂在背面加力杆9中最下面的加力杆的刻槽里,吊钩13挂在绳索12上,砝码14放置在吊钩13上,载荷的大小由砝码14的质量和数量决定,此时对六维力传感器7施加力-Fy,记录六维力传感器7的输出数据;
将将绳索12挂在正面加力杆10中最下面的加力杆的刻槽里,吊钩13挂在绳索12上,砝码14放置在吊钩13上,载荷的大小由砝码14的质量和数量决定,此时对六维力传感器7施加力-Fy和力矩+Mx,记录六维力传感器7的输出数据;
将绳索12挂在正面加力杆10中左面的加力杆的刻槽里,吊钩13挂在绳索12上,砝码14放置在吊钩13上,载荷的大小由砝码14的质量和数量决定,此时对六维力传感器7施加力-Fy和力矩+Mx、+Mz,记录六维力传感器7的输出数据;
再将绳索12挂在正面加力杆10中右面的加力杆的刻槽里,吊钩13挂在绳索12上,砝码14放置在吊钩13上,载荷的大小由砝码14的质量和数量决定,此时对六维力传感器7施加力-Fy和力矩+Mx、-Mz,记录六维力传感器7的输出数据;
转动和控制回转台手柄5,使回转台转盘4带动其上的转接板6、六维力传感器7和加载板8一同逆时针转动90度,使X轴负方向与重力方向重合,此时,X轴正方向垂直向上,Y轴正方向水平向左。使用重力校准六维力传感器7标定坐标系的X轴,对六维力传感器7进行清零,将绳索12挂在加载板8背面的一组背面加力杆9中最下面的加力杆的刻槽里,然后将吊钩13挂在绳索12上,最后将砝码14放置在吊钩13上,载荷的大小由砝码14的质量和数量决定,此时对六维力传感器7施加力-Fx,记录六维力传感器7的输出数据;Turn and control the
将绳索12挂在正面加力杆10中最下面的加力杆的刻槽里,吊钩13挂在绳索12上,砝码14放置在吊钩13上,载荷的大小由砝码14的质量和数量决定,此时对六维力传感器7施加力-Fx和力矩-My,记录六维力传感器7的输出数据;
将绳索12挂在正面加力杆10中左面的加力杆的刻槽里,吊钩13挂在绳索12上,砝码14放置在吊钩13上,载荷的大小由砝码14的质量和数量决定,此时对六维力传感器7施加力-Fx和力矩-My、+Mz,记录六维力传感器7的输出数据;
再将绳索12挂在正面加力杆10中右面的加力杆的刻槽里,吊钩13挂在绳索12上,砝码14放置在吊钩13上,载荷的大小由砝码14的质量和数量决定,此时对六维力传感器7施加力-Fx和力矩-My、-Mz,记录六维力传感器7的输出数据;
继续转动和控制回转台手柄5,使回转台转盘4带动其上的转接板6、六维力传感器7和加载板8一同逆时针转动90度,使Y轴正方向与重力方向重合,此时,X轴正方向水平向左,Y轴正方向垂直向下。使用重力校准六维力传感器7标定坐标系的Y轴,对六维力传感器7进行清零,将绳索12挂在背面加力杆9中最下面的加力杆的刻槽里,吊钩13挂在绳索12上,砝码14放置在吊钩13上,载荷的大小由砝码14的质量和数量决定,此时对六维力传感器7施加力+Fy,记录六维力传感器7的输出数据;再将将绳索12挂在正面加力杆10中最下面的加力杆的刻槽里,吊钩13挂在绳索12上,砝码14放置在吊钩13上,载荷的大小由砝码14的质量和数量决定,此时对六维力传感器7施加力+Fy和力矩-Mx,记录六维力传感器7的输出数据;Continue to turn and control the
将绳索12挂在正面加力杆10中左面的加力杆的刻槽里,吊钩13挂在绳索12上,砝码14放置在吊钩13上,载荷的大小由砝码14的质量和数量决定,此时对六维力传感器7施加力+Fy和力矩-Mx、+Mz,记录六维力传感器7的输出数据;
将绳索12挂在正面加力杆10中右面的加力杆的刻槽里,吊钩13挂在绳索12上,砝码14放置在吊钩13上,载荷的大小由砝码14的质量和数量决定,此时对六维力传感器7施加力+Fy和力矩-Mx、-Mz,记录六维力传感器7的输出数据;
继续转动和控制回转台手柄5,使回转台转盘4带动其上的转接板6、六维力传感器7和加载板8一同逆时针转动90度,使X轴正方向与重力方向重合,此时,X轴正方向垂直向下,Y轴正方向水平向右。使用重力校准六维力传感器7标定坐标系的X轴,对六维力传感器7进行清零,将绳索12挂在加载板8背面的一组背面加力杆9中最下面的加力杆的刻槽里,然后将吊钩13挂在绳索12上,最后将砝码14放置在吊钩13上,载荷的大小由砝码14的质量和数量决定,此时对六维力传感器7施加力+Fx,记录六维力传感器7的输出数据;Continue to rotate and control the
将绳索12挂在正面加力杆10中最下面的加力杆的刻槽里,吊钩13挂在绳索12上,砝码14放置在吊钩13上,载荷的大小由砝码14的质量和数量决定,此时对六维力传感器7施加力+Fx和力矩+My,记录六维力传感器7的输出数据;再将绳索12挂在正面加力杆10中左面的加力杆的刻槽里,吊钩13挂在绳索12上,砝码14放置在吊钩13上,载荷的大小由砝码14的质量和数量决定,此时对六维力传感器7施加力+Fx和力矩+My、+Mz,记录六维力传感器7的输出数据;
再将绳索12挂在正面加力杆10中右面的加力杆的刻槽里,吊钩13挂在绳索12上,砝码14放置在吊钩13上,载荷的大小由砝码14的质量和数量决定,此时对六维力传感器7施加力+Fx和力矩+My、-Mz,记录六维力传感器7的输出数据;
按照上述步骤完成对六维力传感器7的Fx、Fy、Mx、My、Mz的加载和标定。The loading and calibration of Fx, Fy, Mx, My, and Mz of the six-
将连接有六维力传感器7和加载板8的转接板6从回转台转盘4上取下,放置在工作台2的圆形光孔15里,圆形光孔15的直径大于六维力传感器7的直径以及加载板8的直径,并且圆形光孔的直径小于转接板6的直径,转接板6位于工作台2的上面,六维力传感器7和加载板8位于工作台2的圆形光孔15里。六维力传感器7标定坐标系的Z轴垂直向下。用水平仪对工作台2的水平面进行校准,使工作台2处于水平状态,对六维力传感器7进行清零,将绳索12挂在中心加力杆11上,吊钩13挂在绳索12上,砝码14放置在吊钩13上,使用砝码14对六维力传感器7施加载荷,此时对六维力传感器7施加力+Fz,载荷的大小由砝码14的质量和数量决定,记录六维力传感器7的输出数据,逐步施加不同的载荷,直至完成对六维力传感器7的+Fz加载标定。Remove the
最后,在完成对六维力传感器7各个受力状态标定的基础上,六维力传感器7分别得到对应的输出,对各种标定状态进行组合,得到六维力传感器7的加载矩阵F和六维力传感器的输出矩阵V。六维力传感器7的加载矩阵F的秩为6的线性无关矩阵,F的逆矩阵存在,加载矩阵F为:Finally, on the basis of completing the calibration of each stress state of the six-
六维力传感器7的输出矩阵V为:The output matrix V of the six-
根据公式According to the formula
C=F·V-1 C=F·V -1
进行计算,得到耦合矩阵C;Perform calculations to obtain the coupling matrix C;
检验六维力传感器7的耦合矩阵C是否符合要求,如果不符合要求,需要按照上述步骤重新对六维力传感器7进行标定,否则标定结束。Check whether the coupling matrix C of the six-
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2008100249199A CN101571442B (en) | 2008-05-01 | 2008-05-01 | Calibration method for six-dimension force sensor calibration device with medium measurement range |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2008100249199A CN101571442B (en) | 2008-05-01 | 2008-05-01 | Calibration method for six-dimension force sensor calibration device with medium measurement range |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101571442A true CN101571442A (en) | 2009-11-04 |
CN101571442B CN101571442B (en) | 2010-12-29 |
Family
ID=41230854
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2008100249199A Expired - Fee Related CN101571442B (en) | 2008-05-01 | 2008-05-01 | Calibration method for six-dimension force sensor calibration device with medium measurement range |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN101571442B (en) |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103604561A (en) * | 2013-11-27 | 2014-02-26 | 东南大学 | Calibration device and method of six-axis force/torque sensor |
CN105675206A (en) * | 2016-02-25 | 2016-06-15 | 上海交通大学 | Generalized force-loading multidimensional fore-measuring bench calibration device and calibration method |
CN105841883A (en) * | 2016-06-06 | 2016-08-10 | 北京航空航天大学 | High-range static and dynamic force loading mechanism suitable for sensitivity calibration of piezoelectric dynamic force sensor |
CN106153248A (en) * | 2016-08-09 | 2016-11-23 | 浙江大学 | A kind of high accuracy static three-dimensional force sensor caliberating device |
CN107687950A (en) * | 2017-09-30 | 2018-02-13 | 广西玉柴机器股份有限公司 | A kind of convenient detection method and device of load sensor dynamic property |
CN109580089A (en) * | 2019-01-10 | 2019-04-05 | 东南大学 | A kind of six-dimension force sensor calibration device and its method of calibration |
CN109682533A (en) * | 2019-01-08 | 2019-04-26 | 吉林大学 | Double mode six-dimensional force/torque sensor caliberating device and scaling method |
CN109827705A (en) * | 2019-04-08 | 2019-05-31 | 中国工程物理研究院总体工程研究所 | A kind of caliberating device for the detection of moment of flexure sensor performance |
CN110631765A (en) * | 2019-10-30 | 2019-12-31 | 南京神源生智能科技有限公司 | A six-dimensional force sensor calibration device and calibration method |
CN112378575A (en) * | 2020-06-23 | 2021-02-19 | 襄阳达安汽车检测中心有限公司 | Method for calibrating inter-axis crosstalk of dummy multi-axis force sensor for automobile crash test |
CN112857667A (en) * | 2021-03-15 | 2021-05-28 | 合肥工业大学 | Hybrid excitation dynamic calibration method of strain type six-dimensional force sensor |
CN113358274A (en) * | 2021-06-10 | 2021-09-07 | 广西大学 | Double-force-source six-dimensional force sensor static calibration device and calibration method |
CN114509206A (en) * | 2022-02-14 | 2022-05-17 | 武汉理工大学 | A calibration device and calibration method for a strain-type S-deformation six-component force sensor |
CN117109804A (en) * | 2023-08-21 | 2023-11-24 | 北京科技大学 | Calibration device and calibration method for large-deformation six-dimensional force sensor |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5020357A (en) * | 1989-08-18 | 1991-06-04 | N. K. Biotechnical Engineering Company | Calibration stand for sensor |
CN100337105C (en) * | 2005-07-22 | 2007-09-12 | 浙江大学 | Device for calibrating parallel force transducer in six dimensions |
CN100348961C (en) * | 2005-07-25 | 2007-11-14 | 浙江大学 | Stepless lifting type six dimension force sensor caliberating device |
-
2008
- 2008-05-01 CN CN2008100249199A patent/CN101571442B/en not_active Expired - Fee Related
Cited By (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103604561B (en) * | 2013-11-27 | 2015-04-08 | 东南大学 | Calibration device and method of six-axis force/torque sensor |
CN103604561A (en) * | 2013-11-27 | 2014-02-26 | 东南大学 | Calibration device and method of six-axis force/torque sensor |
CN105675206B (en) * | 2016-02-25 | 2018-04-10 | 上海交通大学 | Generalized force loads multidimensional ergograph caliberating device and its scaling method |
CN105675206A (en) * | 2016-02-25 | 2016-06-15 | 上海交通大学 | Generalized force-loading multidimensional fore-measuring bench calibration device and calibration method |
CN105841883A (en) * | 2016-06-06 | 2016-08-10 | 北京航空航天大学 | High-range static and dynamic force loading mechanism suitable for sensitivity calibration of piezoelectric dynamic force sensor |
CN105841883B (en) * | 2016-06-06 | 2018-09-25 | 北京航空航天大学 | A kind of high range force model load maintainer suitable for the calibration of piezoelectricity dynamic force transducer sensitivity |
CN106153248A (en) * | 2016-08-09 | 2016-11-23 | 浙江大学 | A kind of high accuracy static three-dimensional force sensor caliberating device |
CN107687950A (en) * | 2017-09-30 | 2018-02-13 | 广西玉柴机器股份有限公司 | A kind of convenient detection method and device of load sensor dynamic property |
CN109682533A (en) * | 2019-01-08 | 2019-04-26 | 吉林大学 | Double mode six-dimensional force/torque sensor caliberating device and scaling method |
CN109682533B (en) * | 2019-01-08 | 2024-04-30 | 吉林大学 | Dual-mode six-dimensional force/torque sensor calibration device and calibration method |
CN109580089A (en) * | 2019-01-10 | 2019-04-05 | 东南大学 | A kind of six-dimension force sensor calibration device and its method of calibration |
CN109827705A (en) * | 2019-04-08 | 2019-05-31 | 中国工程物理研究院总体工程研究所 | A kind of caliberating device for the detection of moment of flexure sensor performance |
CN109827705B (en) * | 2019-04-08 | 2023-10-03 | 中国工程物理研究院总体工程研究所 | Calibration device for detecting performance of bending moment sensor |
CN110631765A (en) * | 2019-10-30 | 2019-12-31 | 南京神源生智能科技有限公司 | A six-dimensional force sensor calibration device and calibration method |
CN110631765B (en) * | 2019-10-30 | 2023-10-24 | 南京神源生智能科技有限公司 | Six-dimensional force sensor calibration device and calibration method |
CN112378575A (en) * | 2020-06-23 | 2021-02-19 | 襄阳达安汽车检测中心有限公司 | Method for calibrating inter-axis crosstalk of dummy multi-axis force sensor for automobile crash test |
CN112378575B (en) * | 2020-06-23 | 2022-02-08 | 襄阳达安汽车检测中心有限公司 | Method for calibrating inter-axis crosstalk of dummy multi-axis force sensor for automobile crash test |
CN112857667B (en) * | 2021-03-15 | 2022-10-14 | 合肥工业大学 | A hybrid excitation dynamic calibration method for a strain-type six-dimensional force sensor |
CN112857667A (en) * | 2021-03-15 | 2021-05-28 | 合肥工业大学 | Hybrid excitation dynamic calibration method of strain type six-dimensional force sensor |
CN113358274B (en) * | 2021-06-10 | 2022-09-13 | 广西大学 | Double-force-source six-dimensional force sensor static calibration device and calibration method |
CN113358274A (en) * | 2021-06-10 | 2021-09-07 | 广西大学 | Double-force-source six-dimensional force sensor static calibration device and calibration method |
CN114509206A (en) * | 2022-02-14 | 2022-05-17 | 武汉理工大学 | A calibration device and calibration method for a strain-type S-deformation six-component force sensor |
CN114509206B (en) * | 2022-02-14 | 2023-02-28 | 武汉理工大学 | Calibration device and calibration method for strain S-deformation six-component sensor |
CN117109804A (en) * | 2023-08-21 | 2023-11-24 | 北京科技大学 | Calibration device and calibration method for large-deformation six-dimensional force sensor |
CN117109804B (en) * | 2023-08-21 | 2024-05-07 | 北京科技大学 | Calibration device and calibration method for large deformation six-dimensional force sensor |
Also Published As
Publication number | Publication date |
---|---|
CN101571442B (en) | 2010-12-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101571442B (en) | Calibration method for six-dimension force sensor calibration device with medium measurement range | |
CN101226094A (en) | A calibration method for a six-dimensional force sensor calibration device | |
CN101571441B (en) | A medium-range six-dimensional force sensor calibration device | |
CN101936797B (en) | Calibration device and method of six-dimensional force sensor | |
CN113340526B (en) | Static and dynamic calibration device and calibration method for six-dimensional force sensor | |
CN110631765B (en) | Six-dimensional force sensor calibration device and calibration method | |
CN110595685B (en) | Calibration device and calibration method for contrast type six-dimensional force sensor | |
WO2017193713A1 (en) | Device for automatic measurement and adjustment of inertia of marine structure test model along multiple axes, and method for using same | |
CN105466630B (en) | A kind of torque sensor calibrating method | |
CN101451897A (en) | Electromagnetic balance type small force value standard device | |
CN106153247A (en) | A kind of three-dimensional force sensor dynamic response caliberating device loaded based on servo-drive | |
CN110501125A (en) | A simple test device and test method for torsional stiffness parameters of a flexible support | |
CN204202812U (en) | The caliberating device of simple and easy force cell | |
CN103104573B (en) | Device and method for testing high-frequency on-load frequency characteristic of large-size hydraulic cylinder | |
CN210603720U (en) | Contrast type calibration device for six-dimensional force sensor | |
CN105136418B (en) | Micro- disturbance torque simulation system vibration characteristics device for testing and analyzing | |
CN110726466B (en) | Multi-station creep calibration device and method | |
CN211085606U (en) | A Simple Test Device for Torsional Stiffness Parameters of Flexible Supports | |
CN106153248A (en) | A kind of high accuracy static three-dimensional force sensor caliberating device | |
WO2007112074A2 (en) | Counterbalance for a platform balance | |
CN205138788U (en) | Transmission shaft torque calibration device | |
CN205642730U (en) | Calibration arrangement for three fens force transducer | |
CN210625934U (en) | Six-dimensional force sensor calibration device | |
CN117091801B (en) | Balance calibration method based on two-degree-of-freedom calibration equipment | |
CN202133503U (en) | Calibration device for mini-type three-dimensional force sensor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
ASS | Succession or assignment of patent right |
Owner name: ANHUI LANGKUN INTERNET OF THINGS CO., LTD. Free format text: FORMER OWNER: HEFEI INST. OF MATTER SCIENCES, CHINESE ACADEMY OF SCIENCES Effective date: 20120302 |
|
C41 | Transfer of patent application or patent right or utility model | ||
COR | Change of bibliographic data |
Free format text: CORRECT: ADDRESS; FROM: 230031 HEFEI, ANHUI PROVINCE TO: 230088 HEFEI, ANHUI PROVINCE |
|
TR01 | Transfer of patent right |
Effective date of registration: 20120302 Address after: 230088 No. 11, Tianzhu Road, hi tech Zone, Anhui, Hefei Patentee after: ANHUI LONGCOM INTERNET OF THINGS Co.,Ltd. Address before: 230031 mailbox intelligent office, Dong Dong 1130, Hefei City, Anhui Province Patentee before: HEFEI INSTITUTES OF PHYSICAL SCIENCE, CHINESE ACADEMY OF SCIENCES |
|
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20101229 |
|
CF01 | Termination of patent right due to non-payment of annual fee |