CN101561245A - Bridge strain detection sensor based on wireless sensor network interface - Google Patents
Bridge strain detection sensor based on wireless sensor network interface Download PDFInfo
- Publication number
- CN101561245A CN101561245A CNA2009100225150A CN200910022515A CN101561245A CN 101561245 A CN101561245 A CN 101561245A CN A2009100225150 A CNA2009100225150 A CN A2009100225150A CN 200910022515 A CN200910022515 A CN 200910022515A CN 101561245 A CN101561245 A CN 101561245A
- Authority
- CN
- China
- Prior art keywords
- module
- wireless
- data
- bridge
- data processing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000001514 detection method Methods 0.000 title claims abstract description 25
- 230000005540 biological transmission Effects 0.000 claims abstract description 48
- 238000012545 processing Methods 0.000 claims abstract description 27
- 230000003750 conditioning effect Effects 0.000 claims abstract description 26
- 238000006243 chemical reaction Methods 0.000 claims abstract description 10
- 238000004891 communication Methods 0.000 claims description 16
- 230000003321 amplification Effects 0.000 claims description 7
- 238000003199 nucleic acid amplification method Methods 0.000 claims description 7
- 235000015429 Mirabilis expansa Nutrition 0.000 claims description 2
- 244000294411 Mirabilis expansa Species 0.000 claims description 2
- 235000013536 miso Nutrition 0.000 claims description 2
- 239000011888 foil Substances 0.000 claims 3
- 238000009966 trimming Methods 0.000 claims 2
- 238000012360 testing method Methods 0.000 abstract description 7
- 238000013461 design Methods 0.000 abstract description 3
- 238000012544 monitoring process Methods 0.000 abstract 1
- 239000013078 crystal Substances 0.000 description 8
- 238000010586 diagram Methods 0.000 description 7
- 238000000034 method Methods 0.000 description 7
- 230000002093 peripheral effect Effects 0.000 description 4
- 239000003990 capacitor Substances 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 230000008859 change Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 238000004146 energy storage Methods 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 230000003862 health status Effects 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 230000008054 signal transmission Effects 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
Images
Landscapes
- Arrangements For Transmission Of Measured Signals (AREA)
Abstract
Description
技术领域 technical field
本发明涉及一种桥梁荷载检测技术,特别涉及一种基于无线传感网络接口的桥梁应变检测传感器。The invention relates to a bridge load detection technology, in particular to a bridge strain detection sensor based on a wireless sensor network interface.
背景技术 Background technique
桥梁应变检测在桥梁的科研、设计及施工、验收等方面都起着重要的作用。目前常用的桥梁应变检测方法是基于有线线缆传输的桥梁应变检测。Bridge strain detection plays an important role in the research, design, construction and acceptance of bridges. At present, the commonly used bridge strain detection method is bridge strain detection based on cable transmission.
有线线缆传输的桥梁应变检测中,传输均采用有线电缆方式完成。首先,虽然此技术手段具有数据传输效率高和技术成熟的优点,但是在大跨度桥梁结构测试中,随着桥梁跨径的不断增大,从而传感器数量和有线电缆用量随之剧增,导致现场布置和撤离有线电缆工作量大、测试周期长、效率低,甚至可能导致几千米的有线电缆布线工作量难以实施。众多的有线电缆分布复杂凌乱,容易接错线位,为后期的数据处理带来难以补救的损失等。其次,传统有线线缆传输方式中采用模拟信号传输,使得线缆之间容易产生串扰。不仅如此,信号受温度、电磁波的干扰尤为明显。从而造成数据不能正确反应桥梁应变检测信息。最后,目前现有的桥梁应变检测传感器价格昂贵,从而不适合我国国民消费水平。In the bridge strain detection of wired cable transmission, the transmission is completed by wired cable. First of all, although this technical method has the advantages of high data transmission efficiency and mature technology, in the test of long-span bridge structures, as the span of the bridge continues to increase, the number of sensors and the amount of wired cables increase sharply, resulting in on-site Arranging and evacuating wired cables requires a lot of work, a long test cycle, and low efficiency, which may even make it difficult to implement the wiring workload of several kilometers of wired cables. The distribution of many wired cables is complicated and messy, and it is easy to connect the wrong wires, which will bring irreparable losses to the later data processing. Secondly, analog signal transmission is used in the traditional wired cable transmission mode, which makes crosstalk between cables easy to occur. Not only that, but the signal is especially disturbed by temperature and electromagnetic waves. As a result, the data cannot correctly reflect the bridge strain detection information. Finally, the current existing bridge strain detection sensors are expensive, so they are not suitable for the national consumption level of our country.
发明内容 Contents of the invention
本发明的目的在于克服现有技术的不足,提供一种基于无线传感网络接口的桥梁应变检测传感器。由于传感器与Sink节点之间数据传输采用数字信号,这就有效的提高了数据的抗干扰性。以及本发明将采集、处理、无线传输高度集成在一起,从而该节点的集成度大大提高。The purpose of the present invention is to overcome the deficiencies of the prior art and provide a bridge strain detection sensor based on a wireless sensor network interface. Since the data transmission between the sensor and the Sink node uses digital signals, this effectively improves the anti-interference of the data. And the present invention highly integrates collection, processing, and wireless transmission together, so that the integration degree of this node is greatly improved.
本发明的技术方案是这样实现的:Technical scheme of the present invention is realized like this:
一种基于无线传感网络接口的桥梁应变检测传感器,包括数据采集模块、弱信号调理放大器模块、数据处理模块、无线传输模块、无线接收模块、5V供电模块与3.3V供电模块七部分组成,该传感器的数据采集模块与弱信号调理放大模块连接,这两部分由5V供电模块供电。弱信号调理放大模块与数据处理模块连接,数据处理模块与无线传输模块连接,无线传输模块与无线接收模块连接,最后无线接收模块通过SPI总线连接PC终端。无线传输模块和无线接收模块是由3.3V供电模块提供电压。A bridge strain detection sensor based on a wireless sensor network interface, including a data acquisition module, a weak signal conditioning amplifier module, a data processing module, a wireless transmission module, a wireless receiving module, a 5V power supply module and a 3.3V power supply module. The data acquisition module of the sensor is connected with the weak signal conditioning amplifier module, and the two parts are powered by the 5V power supply module. The weak signal conditioning amplification module is connected to the data processing module, the data processing module is connected to the wireless transmission module, the wireless transmission module is connected to the wireless receiving module, and finally the wireless receiving module is connected to the PC terminal through the SPI bus. The wireless transmission module and the wireless receiving module are powered by a 3.3V power supply module.
其中数据处理模块中的单片机芯片ATmega128L具有八通道的十位的ADC转换端口,据此该应变检测传感器可以检测八通道的应变信号,从而由无线传输模块的射频芯片CC2420进行无线发送。The single chip chip ATmega128L in the data processing module has an eight-channel ten-bit ADC conversion port, so the strain detection sensor can detect eight-channel strain signals, which are sent wirelessly by the radio frequency chip CC2420 of the wireless transmission module.
数据采集模块是由一个平衡电桥组成,电桥中包含两个1K的应变片从Q1和Q2分别接入,两个精密微调的电位器R1和R2,电桥的半个桥臂由一个应变片和一个精密微调电位器串联构成,在两个电位器的非接地端,引出两根信号线作为放大模块的差分输入信号,当应变片因受力产生形变时,电桥失去平衡,从而产生差分信号,此差分信号与弱信号调理放大器模块相连接,接入弱信号调理放大器模块的仪表放大器AD620AN的2,3脚。The data acquisition module is composed of a balanced electric bridge, which contains two 1K strain gauges connected from Q1 and Q2 respectively, and two precision fine-tuning potentiometers R1 and R2, half of the bridge arm is controlled by a strain gauge The plate and a precision fine-tuning potentiometer are connected in series. At the non-ground ends of the two potentiometers, two signal lines are drawn out as the differential input signal of the amplifier module. When the strain gauge is deformed by force, the bridge loses balance, resulting in Differential signal, the differential signal is connected to the weak signal conditioning amplifier module, and connected to
偏置电压实质上是一个分压器,由一个1K的电阻和一个2K的精密微调电位器串联组成,并在其两端加入+5V的电压,然后从电阻和电位器的连接点引出一条信号线接入仪表放大器AD620AN的5管脚,用以将负电压变为正电压。引脚6输出放大后电压。将此电压信号与数据处理模块相连的单片机芯片ATMega128L的模数转化(ADC)端口。电压信号经过A/D转换成为数字信号,将此数字信号与无线传输模块的射频芯片CC2420相连。The bias voltage is essentially a voltage divider, which is composed of a 1K resistor and a 2K precision trimmer in series, and a voltage of +5V is added to both ends of it, and then a signal is drawn from the connection point of the resistor and the potentiometer The line is connected to the 5-pin of the instrumentation amplifier AD620AN to change the negative voltage into a positive voltage.
数据处理模块和无线传输模块的数据通信是基于SPI总线的,无线传输模块中的射频芯片CC2420对应端口SI、SO、CSN、SCLK分别和数据处理模块中的单片机芯片ATMega128L的MOSI、MISO、SS、SCK端口相连以实现数据通信。此无线传输的信号是数字信号,CC2420传输频率在2.4G~2.4835GHz,共有16个传输信道,传输的路径由路由仿真平台生成的路由信息而确定,从而实现数据的多跳无线传输。The data communication between the data processing module and the wireless transmission module is based on the SPI bus. The radio frequency chip CC2420 in the wireless transmission module corresponds to the ports SI, SO, CSN, and SCLK respectively and the MOSI, MISO, SS, The SCK port is connected for data communication. The wireless transmission signal is a digital signal. The transmission frequency of CC2420 is 2.4G~2.4835GHz, and there are 16 transmission channels in total. The transmission path is determined by the routing information generated by the routing simulation platform, so as to realize the multi-hop wireless transmission of data.
数据处理模块与无线传输模块的组合实现了数据的处理与无线发送。他们的组合与无线接收模块结构是一样的,其区别在于:数据处理模块是与弱信号调理放大器模块相连接,实现数据的AD转换,然后由射频芯片将数据进行无线发送;而无线接收模块是整个无线传感网络总的汇节点。是用于与上位机连接,实现接收了来自于传输模块所发送的数据。The combination of the data processing module and the wireless transmission module realizes data processing and wireless transmission. Their combination is the same as the structure of the wireless receiving module, the difference is that the data processing module is connected with the weak signal conditioning amplifier module to realize the AD conversion of the data, and then the data is sent wirelessly by the radio frequency chip; while the wireless receiving module is The total sink node of the whole wireless sensor network. It is used to connect with the host computer to realize receiving the data sent from the transmission module.
无线接收模块是由AVR单片机芯片ATMega128L、存储器AT45DB041和射频芯片CC2420以及外围电路组成的,它将无线接收到的数字信号,通过SPI总线与PC终端进行串行通信。ATmega128L中AVCC、VCC端口与3.3V供电模块的8端口相连。将ATmega128L的28、30、48和27引脚分别与存储器AT45DB041的1、2、4和8引脚相互连接,以实现单片机和辅助存储器之间的通信。引脚10、11、12和13端口分别与CC2420的31、32、33和34引脚相互连接,以实现单片机与射频芯片之间的数据通信。ATmega128L的引脚51、50和49分别接入三个发光二极管,用来表示数据发送状态、数据接收状态和路由接收状态。引脚2和3与上位机的串口相连,用以实现Sink节点与上位机之间的通信。ATmega128L引脚18和19外接一个32.768KHz的有源晶振,引脚23和24外接一个7.3728MHz的无源晶振,ATmega128L的两个晶振分别用于节点的工作状态和休眠状态。CC2420只需要极少的外围元器件,它的外围电路包括晶振时钟电路、射频输入/输出匹配电路和微控制器接口电路三个部分。CC2420的38,39引脚外接16MHz晶体振荡器和两个22pF负载电容。射频输入/输出匹配电路主要用来匹配芯片的输入输出阻抗,使其输入输出阻抗为50Ω,同时为芯片内部的PA及LNA提供直流偏置。CC2420可以通过4线SPI总线(SI、SO、SCLK、CSn)设置芯片的工作模式 并实现读/写缓存数据读/写状态寄存器等。通过控制FIFO和FIFOP管脚接口的状态可设置发射/接收缓存器。The wireless receiving module is composed of AVR microcontroller chip ATMega128L, memory AT45DB041, radio frequency chip CC2420 and peripheral circuits. It communicates the digital signal received wirelessly with the PC terminal through the SPI bus. The AVCC and VCC ports in ATmega128L are connected to the 8 ports of the 3.3V power supply module. Connect the 28, 30, 48 and 27 pins of ATmega128L to the 1, 2, 4 and 8 pins of the memory AT45DB041 respectively to realize the communication between the microcontroller and the auxiliary memory.
首先数据采集模块是通过在桥梁的最不利正弯矩截面上布置分布式等距多个应变片与相同个数的精密可调电位器形成惠斯登电桥,从而可以测量到实时的代表桥梁物理特性的差分信号——压力形变信号。然后将该信号接入弱信号调理放大器中,通过AD620AN芯片,将采集到的模拟信号进行适度放大,系统通过数据处理核心芯片AVR单片机将接收的数据进行A/D转换,然后通过专门的射频芯片CC2420将该数字信号转换为数据帧,并以802.15.4协议方式发送到Sink节点。最后无线接收模块通过SPI总线与上位机进行通信。上位机通过解析帧格式得到检测数据。从而对桥梁结构的健康状况和损伤状况作出实时准确的分析和判断。First of all, the data acquisition module forms a Wheatstone bridge by arranging distributed equidistant multiple strain gauges and the same number of precision adjustable potentiometers on the most unfavorable positive bending moment section of the bridge, so that real-time representative bridges can be measured Differential signal of physical properties - pressure deformation signal. Then the signal is connected to the weak signal conditioning amplifier, through the AD620AN chip, the collected analog signal is appropriately amplified, and the system performs A/D conversion on the received data through the data processing core chip AVR microcontroller, and then through the special radio frequency chip CC2420 converts the digital signal into a data frame and sends it to the Sink node in the form of 802.15.4 protocol. Finally, the wireless receiving module communicates with the host computer through the SPI bus. The host computer obtains the detection data by analyzing the frame format. In this way, real-time and accurate analysis and judgment can be made on the health status and damage status of the bridge structure.
本发明具有以下优点:The present invention has the following advantages:
1、本桥梁应变检测传感器采用IEEE802.15.4/Zigbee协议进行数据传输。避免了传统桥梁应变检测设备大规模布线,实现了检测过程无需布线,检测周期缩短,效率提高等优点。1. The bridge strain detection sensor adopts IEEE802.15.4/Zigbee protocol for data transmission. It avoids large-scale wiring of traditional bridge strain testing equipment, realizes the advantages of no wiring in the testing process, shortened testing cycle, and improved efficiency.
2、传感器采用数字信号无线传输,避免了有线传输中模拟信号易产生各线缆串扰以及易受温度、电磁波干扰等问题。从而有效的提高了抗干扰能力。2. The sensor adopts digital signal wireless transmission, which avoids the problems of cable crosstalk, temperature and electromagnetic wave interference caused by analog signals in wired transmission. Thereby effectively improving the anti-interference ability.
3、本桥梁应变检测传感器具有体积小、方便携带、以及能耗低等优点。由于数据采集、信号调理、数据处理以及数据无线传输模块均采用低功耗芯片,加之单片机具有独特的睡眠模式,从而有效的保证了传感器和网络的低功耗和高寿命的特点。3. The bridge strain detection sensor has the advantages of small size, portability, and low energy consumption. Because data acquisition, signal conditioning, data processing and data wireless transmission modules all use low-power chips, and the single-chip microcomputer has a unique sleep mode, which effectively guarantees the characteristics of low power consumption and long life of sensors and networks.
4、传感器之间采用不低于250kbps的传输速率与Sink节点进行通信,并且传输采用中级多跳模式,从而提高数据传输的安全性,延长了传输距离,适合于大跨度桥梁的检测。4. The sensors communicate with the Sink node at a transmission rate of not less than 250kbps, and the transmission adopts an intermediate multi-hop mode, thereby improving the security of data transmission and extending the transmission distance, which is suitable for the detection of long-span bridges.
本发明中节点实现了无需布线、抗干扰性强、传输速率高,检测桥梁跨径大、测试周期缩短等技术难点,完成了一个高精度,高实时性,高性价比的具有无线传感网络接口的多通道桥梁应变检测传感器的开发。In the invention, the node realizes technical difficulties such as no need for wiring, strong anti-interference, high transmission rate, large bridge span detection, shortened test cycle, etc., and completes a high-precision, high real-time, and cost-effective wireless sensor network interface Development of a multi-channel bridge strain detection sensor.
附图说明 Description of drawings
图1是系统结构流程图Figure 1 is a flow chart of the system structure
图2是电路设计图Figure 2 is a circuit design diagram
(a)数据采集模块与弱信号调理放大器连接电路图(a) Connection circuit diagram of data acquisition module and weak signal conditioning amplifier
(b)数据处理模块中的单片机芯片电路图(b) SCM chip circuit diagram in the data processing module
(c)无线传输模块与无线接收模块中的射频芯片电路图(c) Circuit diagram of the radio frequency chip in the wireless transmission module and the wireless receiving module
(d)5V供电模块电路图(d) 5V power supply module circuit diagram
(e)3.3V供电模块电路图(e) 3.3V power supply module circuit diagram
图3是本发明的功能框图;Fig. 3 is a functional block diagram of the present invention;
图4是无线传感网络的下位机软件流程图。Figure 4 is a flow chart of the lower computer software of the wireless sensor network.
下面结合附图对本发明的内容作进一步详细说明。The content of the present invention will be described in further detail below in conjunction with the accompanying drawings.
具体实施方式 Detailed ways
本发明的具有无线传感网络接口的多通道桥梁应变检测传感器由粘贴式应变片电桥,电源供电电路、放大调理滤波电路、单片机芯片ATmega128L、CC2420射频电路与计算机等组成。The multi-channel bridge strain detection sensor with a wireless sensor network interface of the present invention is composed of an adhesive strain gauge bridge, a power supply circuit, an amplification conditioning filter circuit, a single-chip microcomputer chip ATmega128L, a CC2420 radio frequency circuit and a computer.
参照图1所示,数据采集模块与弱信号调理放大模块相连,用于采集桥梁受压时的形变。该数据采集模块是由应变片和精密微调电位器组成的电桥电路。信号调理将采集的毫伏级电压通过放大滤波至0~3.3V范围,然后传送至数据处理模块进行A/D转换。数据处理模块由ATmega128L芯片以及其供电模块组成。该单片机具有8通道的10位ADC端口,保证了A/D转换精度精确高的特点。数据处理模块与无线传输模块相连,用于将转换后的数字信号通过内置PCB天线进行无线发送。该无线传输模块可以向Sink节点发送数据,同时也可以接收由Sink发送的无线路由。数据帧以基于802.15.4的协议方式通过PCB天线发送到Sink节点。无线接收模块与PC终端相连。Sink节点将接收到的数据帧进行帧解析,提取出所需要的检测数据。由于此时采集到的数据是电压信息,这就需要通过应变仪进行物理量标定。从而PC机可以显示采集到的桥梁荷载参数。Referring to Figure 1, the data acquisition module is connected to the weak signal conditioning and amplification module to collect the deformation of the bridge when it is under pressure. The data acquisition module is a bridge circuit composed of strain gauges and precision trimmer potentiometers. Signal conditioning amplifies and filters the collected millivolt level voltage to the range of 0-3.3V, and then sends it to the data processing module for A/D conversion. The data processing module is composed of ATmega128L chip and its power supply module. This one-chip computer has 10 ADC ports of 8 channels, has guaranteed the characteristic that A/D changes the precision and is high. The data processing module is connected with the wireless transmission module, and is used for wirelessly sending the converted digital signal through the built-in PCB antenna. The wireless transmission module can send data to the Sink node, and can also receive the wireless route sent by the Sink. The data frame is sent to the Sink node through the PCB antenna based on the 802.15.4 protocol. The wireless receiving module is connected with the PC terminal. The Sink node parses the received data frame and extracts the required detection data. Since the data collected at this time is voltage information, it is necessary to calibrate the physical quantity through the strain gauge. Thus the PC can display the collected bridge load parameters.
参照图2所示,数据采集模块是由一个平衡电桥组成,数据采集和弱信号调理放大器模块由5V供电模块提供这部分电路连接工作电压,该图中的VCC端连接5V供电模块的5端口。电桥中包含两个1K的应变片(从Q1和Q2分别接入),两个精密微调的电位器(R1和R2),电桥的半个桥臂由一个应变片和一个精密微调电位器串联构成,在两个电位器的非接地端,引出两根信号线作为放大模块的差分输入信号。当应变片因受力产生形变时,电桥失去平衡,从而产生差分信号。此差分信号与弱信号调理放大器模块相连接,接入弱信号调理放大器模块的仪表放大器AD620AN的2,3脚进行放大调理。弱信号调理放大器模块主要由仪表放大器芯片AD620AN组成。由引脚5提供输出偏置电压,引脚6输出调理放大后的电压。As shown in Figure 2, the data acquisition module is composed of a balanced bridge, the data acquisition and weak signal conditioning amplifier module is provided by the 5V power supply module to connect the working voltage of this part of the circuit, and the VCC terminal in the figure is connected to the 5 port of the 5V power supply module . The bridge contains two 1K strain gauges (respectively connected from Q1 and Q2), two fine-tuning potentiometers (R1 and R2), half of the bridge arm is composed of a strain gauge and a fine-tuning potentiometer It is formed in series, and at the non-ground ends of the two potentiometers, two signal lines are drawn out as the differential input signals of the amplifier module. When the strain gauges are deformed by force, the bridge is out of balance and a differential signal is generated. The differential signal is connected to the weak signal conditioning amplifier module, and connected to
由于单片机的ADC端口只能识别正电压,而差分信号的放大输出有正负,因此在弱信号调理放大器模块中加入偏置电压。偏置电压是一个分压器,由一个1K的电阻和一个2K的精密微调电位器串联组成,目的使放大输出的信号始终为正值。AD620AN放大输出引脚(6脚)与AVR单片机的A/D转换脚(59脚)相连。Since the ADC port of the single chip microcomputer can only recognize positive voltage, and the amplified output of the differential signal has positive and negative signals, a bias voltage is added to the weak signal conditioning amplifier module. The bias voltage is a voltage divider, which is composed of a 1K resistor and a 2K precision trimmer in series, so that the amplified output signal is always positive. The AD620AN amplified output pin (pin 6) is connected with the A/D conversion pin (pin 59) of the AVR microcontroller.
参照图2(b)所示,芯片中AVCC、VCC端口与3.3V供电模块的8端口相连。将该芯片的28、30、48和27引脚分别与存储器AT45DB041的1、2、4和8引脚相互连接,以实现单片机和辅助存储器之间的通信。引脚10、11、12和13端口分别与CC2420的31、32、33和34引脚相互连接,以实现单片机与射频芯片之间的数据通信。引脚51、50和49分别接入三个发光二极管,用来表示数据发送状态、数据接收状态和路由接收状态。引脚2和3与上位机的串口相连,用以实现Sink节点与上位机之间的通信。引脚18和19外接一个32.768KHz的有源晶振,引脚23和24外接一个7.3728MHz的无源晶振,该系统的两个晶振分别用于节点的工作状态和休眠状态。由于在无线传输的过程中为了延长传输的距离,特采用了多跳中继的方式,这种方式会使某个节点的处理器汇集大量的数据,而处理器内部的存储空间是十分有限的,在此加入了辅助存储器模块——AT45DB041,该存储器模块包含2048个页面,每个页面有264个字节的空间,从而大大的增加了每个处理节点的存储容量。单片机与辅助存储器之间的通信是基于SPI总线的,单片机根据辅助存储器的读写操作码,在严格的时钟控制下,完成对辅助存储器的读写操作。Referring to Figure 2(b), the AVCC and VCC ports in the chip are connected to the 8 ports of the 3.3V power supply module. The 28, 30, 48 and 27 pins of the chip are connected with the 1, 2, 4 and 8 pins of the memory AT45DB041 respectively to realize the communication between the single-chip microcomputer and the auxiliary memory.
参照图2(c)所示,3.3V供电模块的8端口与CC2420芯片的DVDD_3.3V端口相连,提供芯片工作电压。复位(21脚)、帧起始分隔符(27脚)、信道空闲标志位(28脚)、FIFO(29脚)、FIFOP(30脚)、片选信号(31脚)、SPI时钟信号(32脚)、SPI输入(33脚)、SPI输出(34脚)、电压调整器使能(41脚)与ATmega128L相连。它采用SPI接口,当CS变低,CC2420的SPI通信周期开始。在芯片“被选”以后,开始驱动SCLK时钟信号。在SCLK信号上升沿,CC2420对SI、SO上的数据进行取样。在SCLK信号下降沿,如果SO的操作模式是输出,CC2420将改变SO上的数据。当这一周期完成时,停止SCLK的驱动并将CS信号变高。CC2420的30端口与单片机的端口17相连,FIFO(30引脚)为高电平时表示接收缓冲区有数据,低电平时表示缓冲区为空。CC2420的FIFOP(29引脚)为高电平时表示接收缓冲区溢出,否则没有溢出。CCA(28引脚)为高电平时表示数据传送信道空闲,否则信道繁忙。SFD(27引脚)为高电平时表示帧起始符接收完毕,开始接收数据(包含地址信息),该端口会一直保持高电平,直到数据接收完毕为止。在接收数据过程中,如果地址识别出现错误的,SFD的电平会跳转到低电平,从而终止数据的接收。Referring to Figure 2(c), the 8 ports of the 3.3V power supply module are connected to the DVDD_3.3V port of the CC2420 chip to provide the working voltage of the chip. Reset (pin 21), frame start delimiter (pin 27), channel idle flag (pin 28), FIFO (pin 29), FIFOP (pin 30), chip select signal (pin 31), SPI clock signal (
参照图2(d)所示,它主要为数据采集模块与弱信号调理放大器模块提供5V的工作电压。首先利用两节干电池为MAX631芯片提供1.5V~3.0V的输入电压,MAX631的4端口作为电池电压的输入,1、3和7端口接地,然后它的5端口作为升压后的输出端口,在电池供电正常的情况,该端口的输出电压为+5V。同时,MAX631的外围电路十分简单,在4端口和电池正极之间接上一个330mH的储能电感,在5端口和地之间接上一个100uF的电解电容,用以去除噪声。图中所示的VCC即接的是MAX631的5端口。Referring to Figure 2(d), it mainly provides a working voltage of 5V for the data acquisition module and the weak signal conditioning amplifier module. First, two dry batteries are used to provide an input voltage of 1.5V to 3.0V for the MAX631 chip.
参照图2(e)所示,该供电模块主要是用来给数据处理模块的单片机芯片ATMega128L、无线传输模块与无线接收模块中的射频芯片CC2420供电。该供电模块采用的是MAX1678芯片,两节干电池的正极输入与它的1、4、7端口连接,5、6端口跟电池的负极相连,8端口输出升压后的3.3V电压,在1和7端口之间连入一个47uH的电感,8端口与地之间接一个10uF的电解电容。该8端口与图2(b)中的AVCC、VCC相连,提供ATMega128L芯片的工作电压;该8端口与图2(c)中的DVDD_3.3V相连,提供射频芯片CC2420的工作电压。Referring to Fig. 2(e), the power supply module is mainly used to supply power to the single-chip microcomputer chip ATMega128L of the data processing module, the radio frequency chip CC2420 in the wireless transmission module and the wireless receiving module. The power supply module uses the MAX1678 chip. The positive input of two dry batteries is connected to its
参照图3所示,指示灯组件主要控制三个指示灯的亮灭及闪烁,用来指示系统当前的工作状态;时钟组件实现定时器的控制,关闭、打开定时器,设定定时间隔,以及产生定时中断;串口组件实现嵌入式节点与上位机之间的通信,进行数据传输以及产生调试信息;EEPROM组件控制EEPROM的读写操作;数据采样组件,负责模拟量采集及模数转换,产生转换中断;无线通信组件,控制通信的信道,射频芯片的工作状态,进行数据的无线收发,从而实现网络间的通信。整个嵌入式系统由上述模块间互相调用及配合,实现无线检测的整体功能。As shown in Figure 3, the indicator light component mainly controls the on-off and flickering of the three indicator lights to indicate the current working state of the system; the clock component realizes the control of the timer, closes and opens the timer, sets the timing interval, and Generate timing interrupts; the serial port component realizes the communication between the embedded node and the host computer, performs data transmission and generates debugging information; the EEPROM component controls the read and write operations of the EEPROM; the data sampling component is responsible for analog acquisition and analog-to-digital conversion, and generates conversion Interrupt; the wireless communication component controls the communication channel, the working status of the radio frequency chip, and performs wireless data transmission and reception, thereby realizing communication between networks. The entire embedded system realizes the overall function of wireless detection by calling and cooperating among the above modules.
参照图4所示,程序启动后,开始初始化单片机各端口、寄存器及射频芯片等,初始化完成后,检测节点是否存在网络之中,若没有路由路径,则等待上位机发送路由信息;若有路由路径,则开始采集数据及准备接收数据,当节点采集完数据或收到数据包后,判断是否为控制命令信息,若是则执行命令,休眠或唤醒节点;若不是命令信息,则判断本节点号是否为0,若不是,则按路由路径转发;若是,则通过串口发送给上位机。Referring to Figure 4, after the program is started, it starts to initialize the ports, registers and radio frequency chips of the single-chip microcomputer. After the initialization is completed, check whether the node exists in the network. path, start to collect data and prepare to receive data, when the node collects data or receives data packets, judge whether it is control command information, if so, execute the command, sleep or wake up the node; if it is not command information, then judge the node number Whether it is 0, if not, it will be forwarded according to the routing path; if it is, it will be sent to the host computer through the serial port.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNA2009100225150A CN101561245A (en) | 2009-05-14 | 2009-05-14 | Bridge strain detection sensor based on wireless sensor network interface |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNA2009100225150A CN101561245A (en) | 2009-05-14 | 2009-05-14 | Bridge strain detection sensor based on wireless sensor network interface |
Publications (1)
Publication Number | Publication Date |
---|---|
CN101561245A true CN101561245A (en) | 2009-10-21 |
Family
ID=41220148
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNA2009100225150A Pending CN101561245A (en) | 2009-05-14 | 2009-05-14 | Bridge strain detection sensor based on wireless sensor network interface |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN101561245A (en) |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101894454A (en) * | 2010-06-24 | 2010-11-24 | 上海应用技术学院 | Oil Derrick Stress Measurement and Data Acquisition System Based on Wireless Sensor Network |
CN102118883A (en) * | 2011-03-03 | 2011-07-06 | 东南大学 | Wireless sensor network node device |
CN102270380A (en) * | 2010-06-01 | 2011-12-07 | 青建集团股份公司 | Wireless monitoring system for large-span structure |
CN102288319A (en) * | 2010-06-18 | 2011-12-21 | 陈瑞杰 | Wireless sensor network-based high-precision thermal resistance wireless temperature sensor |
CN102680155A (en) * | 2012-06-11 | 2012-09-19 | 中国矿业大学 | Stress and vibration measurement device for rotary machine |
CN102708522A (en) * | 2012-06-19 | 2012-10-03 | 招商局重庆交通科研设计院有限公司 | Bridge inspection and evaluation system based on mobile terminal |
CN102759422A (en) * | 2011-04-24 | 2012-10-31 | 山东大成电气有限公司 | Intelligent mine pressure monitoring substation and calibration method thereof |
CN102759420A (en) * | 2011-04-24 | 2012-10-31 | 山东大成电气有限公司 | Intelligent borehole stress sensor and meter calibration method thereof |
CN102759325A (en) * | 2011-04-24 | 2012-10-31 | 山东大成电气有限公司 | Intelligent roof displacement sensor and meter calibration method thereof |
CN102842212A (en) * | 2011-06-24 | 2012-12-26 | 深圳市华奥通通信技术有限公司 | Wireless collection system and data collection terminal |
CN104266580A (en) * | 2014-10-16 | 2015-01-07 | 国家电网公司 | Steel beam bending point measuring device and method |
CN105444801A (en) * | 2014-08-27 | 2016-03-30 | 武汉普创数码科技有限公司 | High-temperature and low-power-consumption data acquisition device based on ZigBee |
CN106323156A (en) * | 2016-08-06 | 2017-01-11 | 太原理工大学 | Frequency-hopping spread-spectrum communication-based bridge circuit-adjustable wireless strain sensing device |
CN106504496A (en) * | 2016-11-09 | 2017-03-15 | 无锡宝露重工有限公司 | A kind of intelligent work piece measurement data wireless acquisition system |
CN107246861A (en) * | 2017-07-11 | 2017-10-13 | 汉正检测技术有限公司 | A kind of strain detection testing device |
CN109001153A (en) * | 2018-10-12 | 2018-12-14 | 四川长虹电器股份有限公司 | Near infrared spectrometer based on radio communication |
CN113848239A (en) * | 2021-10-22 | 2021-12-28 | 西安交通大学 | Resistance measurement and damage imaging device and method based on single chip microcomputer |
-
2009
- 2009-05-14 CN CNA2009100225150A patent/CN101561245A/en active Pending
Cited By (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102270380A (en) * | 2010-06-01 | 2011-12-07 | 青建集团股份公司 | Wireless monitoring system for large-span structure |
CN102288319A (en) * | 2010-06-18 | 2011-12-21 | 陈瑞杰 | Wireless sensor network-based high-precision thermal resistance wireless temperature sensor |
CN101894454A (en) * | 2010-06-24 | 2010-11-24 | 上海应用技术学院 | Oil Derrick Stress Measurement and Data Acquisition System Based on Wireless Sensor Network |
CN101894454B (en) * | 2010-06-24 | 2012-05-09 | 上海应用技术学院 | Oil derrick stress measurement and data acquisition system based on wireless sensor network |
CN102118883A (en) * | 2011-03-03 | 2011-07-06 | 东南大学 | Wireless sensor network node device |
CN102118883B (en) * | 2011-03-03 | 2013-07-10 | 东南大学 | Wireless sensor network node device |
CN102759420B (en) * | 2011-04-24 | 2015-07-15 | 山东大成电气有限公司 | Intelligent borehole stress sensor and meter calibration method thereof |
CN102759422A (en) * | 2011-04-24 | 2012-10-31 | 山东大成电气有限公司 | Intelligent mine pressure monitoring substation and calibration method thereof |
CN102759420A (en) * | 2011-04-24 | 2012-10-31 | 山东大成电气有限公司 | Intelligent borehole stress sensor and meter calibration method thereof |
CN102759325A (en) * | 2011-04-24 | 2012-10-31 | 山东大成电气有限公司 | Intelligent roof displacement sensor and meter calibration method thereof |
CN102759422B (en) * | 2011-04-24 | 2016-04-06 | 山东大成电气有限公司 | Intelligent type mine pressure monitoring substation and correction method thereof |
CN102842212A (en) * | 2011-06-24 | 2012-12-26 | 深圳市华奥通通信技术有限公司 | Wireless collection system and data collection terminal |
CN102680155A (en) * | 2012-06-11 | 2012-09-19 | 中国矿业大学 | Stress and vibration measurement device for rotary machine |
CN102680155B (en) * | 2012-06-11 | 2014-04-16 | 中国矿业大学 | Stress and vibration measurement device for rotary machine |
CN102708522A (en) * | 2012-06-19 | 2012-10-03 | 招商局重庆交通科研设计院有限公司 | Bridge inspection and evaluation system based on mobile terminal |
CN102708522B (en) * | 2012-06-19 | 2015-11-04 | 招商局重庆交通科研设计院有限公司 | Bridge Inspection and Evaluation System Based on Mobile Terminal |
CN105444801A (en) * | 2014-08-27 | 2016-03-30 | 武汉普创数码科技有限公司 | High-temperature and low-power-consumption data acquisition device based on ZigBee |
CN104266580A (en) * | 2014-10-16 | 2015-01-07 | 国家电网公司 | Steel beam bending point measuring device and method |
CN106323156A (en) * | 2016-08-06 | 2017-01-11 | 太原理工大学 | Frequency-hopping spread-spectrum communication-based bridge circuit-adjustable wireless strain sensing device |
CN106323156B (en) * | 2016-08-06 | 2018-12-18 | 太原理工大学 | Frequency hopping spread spectrum communication means based on the adjustable wireless strain sensing device of bridge |
CN106504496A (en) * | 2016-11-09 | 2017-03-15 | 无锡宝露重工有限公司 | A kind of intelligent work piece measurement data wireless acquisition system |
CN107246861A (en) * | 2017-07-11 | 2017-10-13 | 汉正检测技术有限公司 | A kind of strain detection testing device |
CN109001153A (en) * | 2018-10-12 | 2018-12-14 | 四川长虹电器股份有限公司 | Near infrared spectrometer based on radio communication |
CN113848239A (en) * | 2021-10-22 | 2021-12-28 | 西安交通大学 | Resistance measurement and damage imaging device and method based on single chip microcomputer |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN201402520Y (en) | Bridge strain acquisition instrument based on wireless sensor network interface | |
CN101561245A (en) | Bridge strain detection sensor based on wireless sensor network interface | |
CN201465282U (en) | A Wireless Sensor Network Node Based on Universal Modular Interface | |
CN101551282B (en) | Bridge load detection system based on wireless sensor network | |
CN104614593A (en) | Self-calibration based high-precision intelligent instrument system and application method thereof | |
CN102116847A (en) | Single battery performance parameter acquisition system for battery pack | |
CN201955886U (en) | Agricultural environment information collection system based on wireless sensor network | |
CN202676932U (en) | Multi-channel meteorological observation device | |
CN103438937A (en) | Standing-wood electric energy and environment parameter measuring device for standing wood | |
CN201402217Y (en) | Bridge load detection device based on wireless sensor network | |
CN201765687U (en) | ZigBee Farmland Wireless Sensor Node System | |
CN203414433U (en) | Temperature and humidity detection system for drying process | |
CN201680888U (en) | Wireless precision electronic scale | |
CN202794325U (en) | Device capable of increasing unit voltage collecting quantity | |
CN201936016U (en) | Landslide monitoring device | |
CN201955887U (en) | MCF51QE128-based ultralow-power consumption wireless temperature/humidity node | |
CN203534633U (en) | Farmland canopy humiture information automatic acquisition system | |
CN204389714U (en) | A kind of weather monitoring instrument realizing Temperature and Humidity based on SHT2X chip | |
CN202486945U (en) | Soil Moisture Acquisition Node Based on ZigBee | |
CN211181045U (en) | Wisdom agricultural is with multi-functional temperature and humidity sensor | |
CN202548564U (en) | Portable collecting device of greenhouse environment parameters | |
CN203405284U (en) | Multifunctional wireless soil environment monitor | |
CN201053912Y (en) | Intelligent pressure sensor device possessing temperature compensation | |
CN206930360U (en) | A kind of industrial wireless weighing system | |
CN206740163U (en) | Sensor detection circuit plate |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C02 | Deemed withdrawal of patent application after publication (patent law 2001) | ||
WD01 | Invention patent application deemed withdrawn after publication |
Open date: 20091021 |