CN101558997A - EEG signal recognition method based on second-order blind recognition - Google Patents
EEG signal recognition method based on second-order blind recognition Download PDFInfo
- Publication number
- CN101558997A CN101558997A CNA200910115435XA CN200910115435A CN101558997A CN 101558997 A CN101558997 A CN 101558997A CN A200910115435X A CNA200910115435X A CN A200910115435XA CN 200910115435 A CN200910115435 A CN 200910115435A CN 101558997 A CN101558997 A CN 101558997A
- Authority
- CN
- China
- Prior art keywords
- eeg
- identification
- eeg signals
- matrix
- subject
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 44
- 239000011159 matrix material Substances 0.000 claims description 33
- 238000013528 artificial neural network Methods 0.000 claims description 26
- 238000000537 electroencephalography Methods 0.000 claims description 25
- 230000008569 process Effects 0.000 claims description 24
- 238000000605 extraction Methods 0.000 claims description 12
- 238000012360 testing method Methods 0.000 claims description 10
- 238000012545 processing Methods 0.000 claims description 8
- 239000000284 extract Substances 0.000 claims description 7
- 238000007781 pre-processing Methods 0.000 claims description 7
- 238000012937 correction Methods 0.000 claims description 6
- 238000000926 separation method Methods 0.000 claims description 6
- 230000000763 evoking effect Effects 0.000 claims description 5
- 238000004070 electrodeposition Methods 0.000 claims description 4
- 230000006870 function Effects 0.000 claims description 4
- 238000012935 Averaging Methods 0.000 claims description 3
- 230000002159 abnormal effect Effects 0.000 claims description 3
- 238000000354 decomposition reaction Methods 0.000 claims description 3
- 230000001934 delay Effects 0.000 claims description 3
- 210000001595 mastoid Anatomy 0.000 claims description 3
- 239000000203 mixture Substances 0.000 claims description 3
- 238000005070 sampling Methods 0.000 claims description 3
- 239000013598 vector Substances 0.000 claims description 3
- 238000012216 screening Methods 0.000 claims 1
- 210000004556 brain Anatomy 0.000 abstract description 9
- 238000011160 research Methods 0.000 abstract description 7
- 230000000638 stimulation Effects 0.000 abstract description 4
- 238000009415 formwork Methods 0.000 abstract 1
- 238000005516 engineering process Methods 0.000 description 8
- 210000000554 iris Anatomy 0.000 description 5
- 210000000887 face Anatomy 0.000 description 3
- 238000012795 verification Methods 0.000 description 3
- 230000000007 visual effect Effects 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 2
- 230000003542 behavioural effect Effects 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 208000012880 Finger injury Diseases 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 238000007405 data analysis Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005021 gait Effects 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 210000005036 nerve Anatomy 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 210000001525 retina Anatomy 0.000 description 1
- 238000001757 thermogravimetry curve Methods 0.000 description 1
- 238000012549 training Methods 0.000 description 1
Images
Landscapes
- Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
Abstract
Description
技术领域 technical field
本技术发明属于生物医学工程和信息技术领域。The technical invention belongs to the fields of biomedical engineering and information technology.
技术背景: technical background:
身份识别及验证是是保证国家公共安全和信息安全的重要前提。在国家安全、公安、司法、电子商务、电子政务、安全检查、保安监控等应用领域,都需要准确的身份识别及鉴定。传统的身份标识物品(如钥匙、证件、银行卡)等的验证方法;另一类为基于身份标示知识(如用户名、密码等)的验证方法。但是,标示物品容易遗失或假冒,标示知识容易遗忘或破译。生物特征识别技术给这一愿望带来了实现的可能。人们可能会遗忘或丢失他们的卡片或密码,但绝对不会遗忘或者丢失自己的生物特征,如人脸、指纹、虹膜、掌纹、脑电波等。因此,基于生物特征识别技术的个人身份识别系统具有更好的安全性、可靠性和有效性,正越来越受到人们的重视,并开始进入我们社会生活的各个领域,迎接新时代的挑战。自20世纪80年代末90年代初,随着信息安全重要性的日益突出,生物特征识别技术研究开始成为一个研究热点。生物特征识别技术(Biometrics)是指通过计算机与光学、声学、生物传感器和生物统计学原理等高科技手段密切结合,利用人体固有的生理特性(如指纹、人脸、虹膜、脑电波、脉搏等)或行为特征(如笔迹、语音、步态等)来进行个人身份的认证。生物特征识别技术具有不会遗忘、不易伪造或被盗、随身携带和随时随地可用等优点,比传统的身份认证方法更加安全、保密、方便。能够用来鉴定和认证身份的生物特征应该具有普遍性、唯一性、稳定性和可采集性等特点。目前,比较成熟和最具有应用前景的几种生物特征识别技术包括指纹、人脸、人脸温谱图、虹膜、视网膜、手型、声纹以及签名等。其中,虹膜识别和指纹识别被公认为最可靠的两种生物识别技术。Identification and verification are important prerequisites for ensuring national public safety and information security. In national security, public security, justice, e-commerce, e-government, security inspection, security monitoring and other application fields, accurate identification and identification are required. The traditional verification method for identification items (such as keys, certificates, bank cards); the other is a verification method based on identification knowledge (such as user name, password, etc.). However, marked items are easily lost or counterfeited, and marked knowledge is easily forgotten or deciphered. Biometric identification technology has brought the possibility of realizing this wish. People may forget or lose their cards or passwords, but they will never forget or lose their biometrics, such as faces, fingerprints, irises, palm prints, brain waves, etc. Therefore, the personal identification system based on biometric identification technology has better security, reliability and effectiveness, and is attracting more and more attention, and has begun to enter various fields of our social life to meet the challenges of the new era. Since the late 1980s and early 1990s, with the increasing importance of information security, biometric technology research has become a research hotspot. Biometrics refers to the use of the inherent physiological characteristics of the human body (such as fingerprints, faces, iris, brain waves, pulse, etc.) ) or behavioral characteristics (such as handwriting, voice, gait, etc.) for personal identity authentication. Biometric identification technology has the advantages of not being forgotten, not easy to be forged or stolen, portable and available anytime, anywhere, etc. It is more secure, confidential and convenient than traditional identity authentication methods. Biometrics that can be used to identify and authenticate identities should have the characteristics of universality, uniqueness, stability, and collectability. At present, several biometric identification technologies that are relatively mature and have the most application prospects include fingerprints, faces, face thermograms, irises, retinas, hand shapes, voiceprints, and signatures. Among them, iris recognition and fingerprint recognition are recognized as the two most reliable biometric technologies.
人的任何生理或行为特征只要它满足以下的条件,原则上就可以作为生物特征用于身份鉴别:(1)普遍性,每个人都有;(2)唯一性,每个人都不同;(3)稳定性,在某一段时间是不变的;(4)可采集性,可以方便的定量测量。当然,仅仅满足以上的条件未必可行,实际的系统还应该考虑:(1)性能,即识别的准确性、速度、鲁棒性以及为达到要求所需要的资源;(2)可接受性,人们对这种生物识别的接受程度;(3)可欺骗性,能否通过主观欺诈的方法骗过系统的难易程度。Any physiological or behavioral characteristic of a person can be used as a biological characteristic for identification in principle as long as it meets the following conditions: (1) universal, everyone has it; (2) unique, everyone is different; (3) ) stability, which is constant in a certain period of time; (4) collectability, which can be conveniently measured quantitatively. Of course, it may not be feasible to just meet the above conditions. The actual system should also consider: (1) performance, that is, the recognition accuracy, speed, robustness and resources needed to meet the requirements; (2) acceptability, people Acceptance of this kind of biometric identification; (3) Deceptiveness, whether it is easy to deceive the system through subjective fraud.
目前常用的生物识别技术存在这样或那样的问题,例如人脸识别对于双胞胎无能为力;声纹识别容易模仿;指纹识别会受手指受伤的影响,同时也容易盗用。脑电(EEG)信号不仅是一个非常有用的临床诊断工具,而且也是一种很好的用于身份认证的生物特征识别工具。首先,它具备普遍性,每个人都有脑电波;其次由于每个人的大脑特性、思维方式、记忆等不同造成人与人之间存在不同的EEG信号;第三,EEG也具备一定的稳定性,在一定时间内,EEG信号可以保持相对的稳定性,最后,EEG信号便于采集。基于EEG信号的生物识别系统能够达到一定的准确性和较快的速度,并且对人体不会产生任何伤害,人们也能接受。由于EEG信号来源于大脑的思维活动,难以伪造,系统的鲁棒性很高。对人脑的脑电信号研究分析表明,不同个体在不同的脑区会产生不同的神经脉冲反应,根据这种脑电信号不同,可以提取出个体的脑电信号特征,利用设定的分类算法,能使得脑电信号具备个体特异性。基于以上分析,基于脑电的生物身份识别系统是一种新的有应用前景的身份鉴别系统。Currently commonly used biometric technologies have one or another problem, for example, face recognition is powerless for twins; voiceprint recognition is easy to imitate; fingerprint recognition will be affected by finger injuries, and it is also easy to steal. Electroencephalogram (EEG) signals are not only a very useful clinical diagnostic tool, but also a good biometric tool for identity authentication. First of all, it is universal, everyone has brain waves; secondly, there are different EEG signals between people due to the differences in brain characteristics, thinking methods, memory, etc. of each person; thirdly, EEG also has a certain degree of stability , within a certain period of time, the EEG signal can maintain relative stability, and finally, the EEG signal is easy to collect. The biometric system based on EEG signal can achieve a certain accuracy and speed, and it will not cause any harm to the human body, which is also acceptable to people. Because the EEG signal comes from the thinking activity of the brain, it is difficult to forge, and the robustness of the system is very high. The research and analysis of the EEG signals of the human brain shows that different individuals will produce different nerve impulse responses in different brain regions. , which can make the EEG signal have individual specificity. Based on the above analysis, the biometric identification system based on EEG is a new identification system with application prospects.
发明内容 Contents of the invention
本发明利用对运动想象脑电信号的分类,实现对受试者的身份识别,只采用与运动想象有关的电极信号进行数据分析,采用经研究对运动想象脑电信号十分有效的信号处理及特征抽取方法——二阶盲辨识和Fisher距离来提取特征,借助神经网络进行特征分类,从而实现身份的识别。该方法适合包括身体残疾,视觉缺陷等各类人群,有较好适用性。The present invention uses the classification of motor imagery EEG signals to realize the identification of the subject, only uses the electrode signals related to motor imagery for data analysis, and adopts the signal processing and characteristics that are very effective for motor imagery EEG signals after research. Extraction method - second-order blind identification and Fisher distance to extract features, and use neural network to classify features, so as to realize identity recognition. The method is suitable for various groups of people including physical disabilities and visual defects, and has good applicability.
本发明包含以下步骤:The present invention comprises the following steps:
步骤1、受试者带上电极帽,原始脑电(EEG)信号是通过64导符合国际脑电图学会标定的10/20法的EEG放大器采集,采样率为250Hz,以左侧乳突为参考电极,带通滤波器通频带为1-50Hz,选取6个电极采集脑电信号(也就是国际脑电图学会标定的10/20国际标准中的C3,C4,P3,P4,O1和O2共6个电极位置),采集不同运动想象过程的受试者脑电信号。
步骤2、在计算机屏幕上根据设定好的刺激程序(提示受试者开始想象运动),受试者根据实验要求,做出四类不同的运动想象(想象左手运动、右手运动、腿动和舌动)。受试者经过训练,熟悉实验过程。
因为每个人对不同运动想象的适应性是不同的,我们在学习过程中让受试者尝试四种不同的运动想象类型,通过学习和测试,我们就能够决定哪一种运动想象类型最适合。例如,当受试者通过学习和测试后,我们发现想象舌动的识别率比其他三种运动想象类型的识别率要高,我们就认为可能这位受试者更适合与想象舌动,在今后的使用中只需想象舌动即可,无需想象其他运动了。Because each person has different adaptability to different motor imagery, we let the subjects try four different types of motor imagery during the learning process. Through learning and testing, we can decide which type of motor imagery is most suitable. For example, after the subject passed the study and test, we found that the recognition rate of imagining tongue movements was higher than that of the other three types of motor imagery, we thought that this subject might be more suitable for imagining tongue movements. In future use, you only need to imagine the tongue movement, and you don't need to imagine other movements.
步骤3、将采集到的脑电信号进行预处理。首先对获取的脑电信号进行筛选,排除一部分明显异常的脑电信号,然后对剩下的脑电信号进行去眼电、去伪迹、基线校正、线性校正等预处理,经过预处理后的脑电信号将进一步的信号处理。
步骤4、脑电信号处理。经过预处理的脑电信号中仍然包含很多无关的诱发电位和背景噪声,因此空间分辨率和信噪比很低,为了从背景噪声中识别有用的信号,必需进行进一步处理,本发明采用一种盲源分离算法——二阶盲辨识来对脑电信号进行进一步处理,其具体算法如下:
令x(t)的n个列向量对应n个电极的连续时间脑电信号,则xi(t)对应第i个电极的脑电信号。每一个xi(t)都可以看成是n个源si(t)的线性瞬时混合,混合矩阵为A,则Let the n column vectors of x(t) correspond to the continuous-time EEG signals of n electrodes, then x i (t) corresponds to the EEG signals of the i-th electrode. Each x i (t) can be regarded as a linear instantaneous mixture of n sources s i (t), and the mixing matrix is A, then
x(t)=As(t) (1)x(t)=A s (t) (1)
SOBI仅仅利用传感器测量得到的脑电信号x(t),得到近似于A-1分解矩阵W,使得SOBI only uses the EEG signal x(t) measured by the sensor to obtain an approximate A -1 decomposition matrix W, so that
为恢复的连续时间源信号。is the recovered continuous-time source signal.
SOBI算法有两个步骤:首先对脑电信号进行零均值化,如下式所示:The SOBI algorithm has two steps: first, the EEG signal is zero-meanized, as shown in the following formula:
y(t)=B(x(t)-<x(t)>) (3)y(t)=B(x(t)-<x(t)>) (3)
尖括号<·>表示时间平均,因此y的均值为零。矩阵B的取值使得y的相关矩阵<y(t)y(t)T>为单位矩阵,其值由下式给出Angle brackets <·> indicate time averaging, so the mean of y is zero. The value of matrix B is such that the correlation matrix <y(t)y(t) T > of y is the identity matrix, whose value is given by
其中λi为相关矩阵<(x(t)-<x(t)>)(x(t)-<x(t)>)T>的特征值,U的各列则为其对应的特征向量。Where λ i is the eigenvalue of the correlation matrix <(x(t)-<x(t)>)(x(t)-<x(t)>) T >, and each column of U is its corresponding eigenvector .
第二步,构造一组对角矩阵:选取一组时间延迟τ,计算信号y(t)和它的时间延迟信号y(t+τ)的对称化相关矩阵:The second step is to construct a set of diagonal matrices: select a set of time delays τ, and calculate the symmetric correlation matrix of the signal y(t) and its time-delayed signal y(t+τ):
Rτ=sym(<y(t)y(t+τ)T>) (5)R τ = sym(<y(t)y(t+τ) T >) (5)
其中in
sym(M)=(M+MT)/2 (6)sym(M)=(M+M T )/2 (6)
这是一个将不对称矩阵转变为相关的对称矩阵的函数。对称化的过程丢失了一些信息,但却提供了有效的解决方法。This is a function that turns an asymmetric matrix into a related symmetric matrix. The process of symmetrization loses some information, but it provides an effective solution.
计算完Rτ,再对Rτ进行对角化:通过旋转矩阵V,运用迭代法,使得After calculating Rτ, then diagonalize Rτ: through the rotation matrix V, use the iterative method, so that
∑τ∑i≠j(VTRτV)ij 2 (7)∑ τ ∑ i≠j (V T R τ V) ij 2 (7)
取得极小值,则分离矩阵的估计obtains a minimum value, the estimate of the separation matrix
W=VTB (8)W = V T B (8)
步骤5、特征提取Step 5. Feature extraction
为了进行分类,首先要进行特征提取。特征提取,就是要在所有数据中提取出能区分样本类型的数据点,即特征点,本发明采用Fisher距离来确定特征。在分类研究中,Fisher距离常常被用来表示类型间的差异,Fisher距离的大小与类型间的区分度成正比,若是类型间区分度较大,即差异明显,则fisher距离较大,否则,Fisher距离较小。In order to perform classification, feature extraction is first performed. Feature extraction is to extract data points that can distinguish sample types from all data, that is, feature points. The present invention uses Fisher distance to determine features. In classification research, Fisher distance is often used to represent the difference between types. The size of Fisher distance is proportional to the degree of discrimination between types. If the degree of discrimination between types is large, that is, the difference is obvious, the Fisher distance is larger. Otherwise, Fisher distance is smaller.
两类间的Fisher距离计算公式如下:The formula for calculating the Fisher distance between two classes is as follows:
其中F表示Fisher距离,μ和σ分别为均值和方差,下标1、2则分别代表两个不同的类。Among them, F represents the Fisher distance, μ and σ are the mean and variance, respectively, and the
对于三类或以上的情况,可以将Fisher距离公式进行推广,如下:For three or more types of situations, the Fisher distance formula can be extended as follows:
对于每一个数据点,Fisher距离的大小表示了该数据点作为特征对分类的贡献度,Fisher距离越大的点,在分类中的贡献越大。For each data point, the size of the Fisher distance represents the contribution of the data point as a feature to the classification. The point with a larger Fisher distance has a greater contribution to the classification.
特征点个数的多少与最终识别率、算法复杂程度和识别速率密切相关,特征点过多或过少,都会影响识别率,使识别率降低,另外特征点越多,算法越复杂,识别越慢;反之,特征点越少,算法越简单,识别越快。因此,特征点的数量对最终的性能影响非常大。经过反复测试发现,特征提取,采用Fisher距离来确定特征,对每根电极的数据提取8-12个特征点,总共48--72个特征点;能够达到较高的识别率,而且识别速度也不慢,算法复杂度一般。The number of feature points is closely related to the final recognition rate, algorithm complexity and recognition rate. Too many or too few feature points will affect the recognition rate and reduce the recognition rate. In addition, the more feature points, the more complex the algorithm and the faster the recognition. On the contrary, the fewer feature points, the simpler the algorithm and the faster the recognition. Therefore, the number of feature points has a great influence on the final performance. After repeated tests, it is found that the feature extraction uses the Fisher distance to determine the feature, extracts 8-12 feature points for each electrode data, and a total of 48--72 feature points; it can achieve a higher recognition rate, and the recognition speed is also faster. Not slow, the algorithm complexity is average.
步骤6、使用BP神经网络进行分类学习与测试。BP神经网络输入层共60个单元,隐含层10个单元,输出层1个单元。将上述60个特征作为BP神经网络的输入层,把每个受试者每次运动想象的脑电信号通过步骤5提取出的特征输入到输入层,每个受试者学习过程有20个数据(四种运动想象类型各5个),通过学习过程我们确定了神经网络的各项参数。测试过程也有20个数据,通过测试过程,我们可以确定适合该受试者的运动想象类型(识别率最高)。Step 6. Use the BP neural network for classification learning and testing. The BP neural network has 60 units in the input layer, 10 units in the hidden layer, and 1 unit in the output layer. Use the above 60 features as the input layer of the BP neural network, and input the features extracted from the EEG signal of each subject’s motor imagery through step 5 to the input layer, and each subject has 20 data during the learning process (five for each of the four types of motor imagery), we determined the parameters of the neural network through the learning process. The test process also has 20 data, through the test process, we can determine the type of motor imagery suitable for the subject (the recognition rate is the highest).
步骤7、将未知的脑电数据输入神经网络进行识别和认证。受试者通过上述步骤1-6后,确定了BP神经网络结构和适合他(她)的运动想象类型,此时就可以进行识别和认证了。受试者戴上电极帽,按照步骤2开始运动想象(只需步骤6中确定的最适合的一种运动想象类型),采集脑电信号,预处理后,按照步骤5介绍的算法提取60个特征量,将提取的特征量输入到步骤6确定的神经网络中。如果是识别,则神经网络输出受试者的编码;如果是认证,则神经网络输出则改为是否该受试者(0或1)。Step 7. Input unknown EEG data into the neural network for identification and authentication. After the subject has passed the above steps 1-6, the BP neural network structure and the type of motor imagery suitable for him (her) are determined, and identification and authentication can be performed at this time. The subject puts on the electrode cap, starts motor imagery according to step 2 (just the most suitable type of motor imagery determined in step 6), collects EEG signals, and after preprocessing, extracts 60 EEG signals according to the algorithm introduced in step 5. Feature quantity, input the extracted feature quantity into the neural network determined in step 6. If it is identification, the neural network outputs the code of the subject; if it is authentication, the neural network output changes whether the subject (0 or 1).
本发明所述的识别指的是从若干个受试者中选择这段脑电信号是哪一个受试者的;而认证过程则为确定这段脑电信号是否是某位受试者的,前者是选择题,而后者是判断题。The identification described in the present invention refers to selecting which subject this EEG signal belongs to from several subjects; and the authentication process is to determine whether this EEG signal belongs to a certain subject, The former is a multiple-choice question, while the latter is a true-false question.
本发明使用的是脑电信号,是对脑电信号进行信息特征提取,使用的方法是通过大脑想象各种不同的运动方式,对其进行特征提取和分类,从而实现通过脑电信号对个体身份进行识别或认证的过程。把脑电信号作为身份识别,提供一种新型的密码系统,既能解决某些残疾人不能完成日常身份识别的问题,也可以用于在对身份识别有较高要求的场合。The present invention uses EEG signals to extract information features of EEG signals. The method used is to imagine various movement patterns through the brain, and perform feature extraction and classification on them, so as to realize the identification of individual identities through EEG signals. The process of performing identification or authentication. EEG signals are used as identification to provide a new type of password system, which can not only solve the problem that some disabled people cannot complete daily identification, but also can be used in occasions that have higher requirements for identification.
本方法的创新点有:The innovations of this method are:
1、采用脑电信号作为身份识别的输入信号,不同于以往的指纹、虹膜等。1. EEG signals are used as input signals for identification, which is different from previous fingerprints and irises.
2、采集了基于运动想象的脑电信号,也就是受试者在想象四种运动时所产生的脑电信号,当然也适用于其他脑电信号(比如视觉诱发电位、事件诱发电位等)。2. The EEG signals based on motor imagery were collected, that is, the EEG signals generated by the subjects when they imagined four kinds of sports, of course, it is also applicable to other EEG signals (such as visual evoked potentials, event evoked potentials, etc.).
3、采用了二阶盲辨识及Fisher距离对脑电信号进行信息提取。3. Second-order blind recognition and Fisher distance are used to extract information from EEG signals.
4、同时实现了识别和认证功能。识别指的是从若干个人的脑电信号中判断是谁的脑电信号,而认证指的是判断某一脑电信号是否是目标者的脑电信号。4. At the same time, the identification and authentication functions are realized. Recognition refers to judging whose EEG signal is from the EEG signals of several individuals, and authentication refers to judging whether a certain EEG signal is the EEG signal of the target person.
5、针对不同受试者的特点,自动选择适合受试者的运动想象类型。5. According to the characteristics of different subjects, automatically select the type of motor imagery suitable for the subjects.
附图说明 Description of drawings
图1电极的选取示意图,The schematic diagram of electrode selection in Fig. 1,
图2基于脑电信号的身份识别系统特征提取流程图,Figure 2 is a flow chart of the feature extraction of the identity recognition system based on EEG signals,
图3基于脑电信号的身份识别流程图。Figure 3 is a flow chart of identity recognition based on EEG signals.
具体实施方式 Detailed ways
本发明方法,在脑电信号身份识别系统中,用来实现对个体身份的识别,按附图1、2、3。可以通过下列步骤实现:The method of the present invention is used to realize the identification of the individual identity in the EEG signal identification system, according to accompanying
步骤1、受试者带上电极帽,原始脑电(EEG)信号是通过64导符合国际脑电图学会标定的10/20法的EEG放大器采集,采样率为250Hz,以左侧乳突为参考电极,带通滤波器通频带为1-50Hz,选取6个电极采集脑电信号,具体电极位置如图1所示。也就是国际脑电图学会标定的10/20国际标准中的C3,C4,P3,P4,O1和O2共6个电极位置,采集不同运动想象过程的受试者脑电信号。
步骤2、在计算机屏幕上根据设定好的刺激程序(提示受试者开始想象运动),受试者根据实验要求,做出四类不同的运动想象(想象左手运动、右手运动、腿动和舌动)。受试者经过训练,熟悉实验过程。
步骤3、将采集到的脑电信号进行预处理。首先对获取的脑电信号进行筛选,排除一部分明显异常的脑电信号,然后对剩下的脑电信号进行去眼电、去伪迹、基线校正、线性校正等预处理,经过预处理后的脑电信号将进一步的信号处理。
步骤4、脑电信号处理。经过预处理的脑电信号中仍然包含很多无关的诱发电位和背景噪声,因此空间分辨率和信噪比很低,为了从背景噪声中识别有用的信号,必需进行进一步处理,本发明采用一种盲源分离算法——二阶盲辨识来对脑电信号进行进一步处理,其具体算法如下:
令x(t)的n个列向量对应n个电极的连续时间脑电信号,则xi(t)对应第i个电极的脑电信号。每一个xi(t)都可以看成是n个源si(t)的线性瞬时混合,混合矩阵为A,则Let the n column vectors of x(t) correspond to the continuous-time EEG signals of n electrodes, then x i (t) corresponds to the EEG signals of the i-th electrode. Each x i (t) can be regarded as a linear instantaneous mixture of n sources s i (t), and the mixing matrix is A, then
x(t)=As(t) (1)x(t)=As(t) (1)
SOBI仅仅利用传感器测量得到的脑电信号x(t),得到近似于A-1分解矩阵W,使得SOBI only uses the EEG signal x(t) measured by the sensor to obtain an approximate A -1 decomposition matrix W, so that
为恢复的连续时间源信号。is the recovered continuous-time source signal.
SOBI算法有两个步骤:首先对脑电信号进行零均值化,如下式所示:The SOBI algorithm has two steps: first, the EEG signal is zero-meanized, as shown in the following formula:
y(t)=B(x(t)-<x(t)>) (3)y(t)=B(x(t)-<x(t)>) (3)
尖括号<·>表示时间平均,因此y的均值为零。矩阵B的取值使得y的相关矩阵<y(t)y(t)T>为单位矩阵,其值由下式给出Angle brackets <·> indicate time averaging, so the mean of y is zero. The value of matrix B is such that the correlation matrix <y(t)y(t) T > of y is the identity matrix, whose value is given by
其中λi为相关矩阵<(x(t)-<x(t)>)(x(t)-<x(t)>)T>的特征值,U的各列则为其对应的特征向量。Where λ i is the eigenvalue of the correlation matrix <(x(t)-<x(t)>)(x(t)-<x(t)>) T >, and each column of U is its corresponding eigenvector .
第二步,构造一组对角矩阵:选取一组时间延迟τ,计算信号y(t)和它的时间延迟信号y(t+τ)的对称化相关矩阵:The second step is to construct a set of diagonal matrices: select a set of time delays τ, and calculate the symmetric correlation matrix of the signal y(t) and its time-delayed signal y(t+τ):
Rτ=sym(<y(t)y(t+τ)T>) (5)R τ = sym(<y(t)y(t+τ) T >) (5)
其中in
sym(M)=(M+MT)/2 (6)sym(M)=(M+M T )/2 (6)
这是一个将不对称矩阵转变为相关的对称矩阵的函数。对称化的过程丢失了一些信息,但却提供了有效的解决方法。This is a function that turns an asymmetric matrix into a related symmetric matrix. The process of symmetrization loses some information, but it provides an effective solution.
计算完Rτ,再对Rτ进行对角化:通过旋转矩阵V,运用迭代法,使得After calculating Rτ, then diagonalize Rτ: through the rotation matrix V, use the iterative method, so that
∑τ∑i≠j(VTRτV)ij 2 (7)∑ τ ∑ i≠j (V T R τ V) ij 2 (7)
取得极小值,则分离矩阵的估计obtains a minimum value, the estimate of the separation matrix
W=VTB (8)W = V T B (8)
步骤5、特征提取Step 5. Feature extraction
为了进行分类,首先要进行特征提取。特征提取,就是要在所有数据中提取出能区分样本类型的数据点,即特征点,本发明采用Fisher距离来确定特征。在分类研究中,Fisher距离常常被用来表示类型间的差异,Fisher距离的大小与类型间的区分度成正比,若是类型间区分度较大,即差异明显,则fisher距离较大,否则,Fisher距离较小。In order to perform classification, feature extraction is first performed. Feature extraction is to extract data points that can distinguish sample types from all data, that is, feature points. The present invention uses Fisher distance to determine features. In classification research, Fisher distance is often used to represent the difference between types. The size of Fisher distance is proportional to the degree of discrimination between types. If the degree of discrimination between types is large, that is, the difference is obvious, the Fisher distance is larger. Otherwise, Fisher distance is smaller.
两类间的Fisher距离计算公式如下:The formula for calculating the Fisher distance between two classes is as follows:
其中F表示Fisher距离,μ和σ分别为均值和方差,下标1、2则分别代表两个不同的类。Among them, F represents the Fisher distance, μ and σ are the mean and variance, respectively, and the
对于三类或以上的情况,可以将Fisher距离公式进行推广,如下:For three or more types of situations, the Fisher distance formula can be extended as follows:
对于每一个数据点,Fisher距离的大小表示了该数据点作为特征对分类的贡献度,Fisher距离越大的点,在分类中的贡献越大。For each data point, the size of the Fisher distance represents the contribution of the data point as a feature to the classification. The point with a larger Fisher distance has a greater contribution to the classification.
特征点个数的多少与最终识别率、算法复杂程度和识别速率密切相关,特征点过多或过少,都会影响识别率,使识别率降低,另外特征点越多,算法越复杂,识别越慢;反之,特征点越少,算法越简单,识别越快。因此,特征点的数量对最终的性能影响非常大。经过反复测试发现,特征提取,采用Fisher距离来确定特征,对每根电极的数据提取10个特征点,总共60个特征点;能够达到较高的识别率,而且识别速度也不慢,算法复杂度一般。The number of feature points is closely related to the final recognition rate, algorithm complexity and recognition rate. Too many or too few feature points will affect the recognition rate and reduce the recognition rate. In addition, the more feature points, the more complex the algorithm and the faster the recognition. On the contrary, the fewer feature points, the simpler the algorithm and the faster the recognition. Therefore, the number of feature points has a great influence on the final performance. After repeated tests, it is found that the feature extraction uses the Fisher distance to determine the feature, and extracts 10 feature points from the data of each electrode, a total of 60 feature points; it can achieve a high recognition rate, and the recognition speed is not slow, and the algorithm is complex Moderate.
步骤6、按照图2所示的流程提取每个受试者的脑电信号特征,通过BP神经网络学习和识别,确定神经网络结构和运动想象类型,训练过程结束。BP神经网络输入层共60个单元,隐含层10个单元,输出层1个单元。将上述60个特征作为BP神经网络的输入层,把每个受试者每次运动想象的脑电信号通过步骤5提取出的特征输入到输入层,每个受试者学习过程有20个数据(四种运动想象类型各5个),通过学习过程我们确定了神经网络的各项参数。测试过程也有20个数据,通过测试过程,我们可以确定适合该受试者的运动想象类型(识别率最高)。Step 6. Extract the EEG signal features of each subject according to the process shown in Figure 2, learn and identify through the BP neural network, determine the neural network structure and motor imagery type, and the training process ends. The BP neural network has 60 units in the input layer, 10 units in the hidden layer, and 1 unit in the output layer. Use the above 60 features as the input layer of the BP neural network, and input the features extracted from the EEG signal of each subject’s motor imagery through step 5 to the input layer, and each subject has 20 data during the learning process (five for each of the four types of motor imagery), we determined the parameters of the neural network through the learning process. The test process also has 20 data, through the test process, we can determine the type of motor imagery suitable for the subject (the recognition rate is the highest).
步骤7、按照图3所示的流程对每个受试者的身份进行识别和认证。将未知的脑电数据输入神经网络进行识别和认证。受试者通过上述步骤1-6后,确定了BP神经网络结构和适合他(她)的运动想象类型,此时就可以进行识别和认证了。受试者戴上电极帽,按照步骤2开始运动想象(只需步骤6中确定的最适合的一种运动想象类型),采集脑电信号,预处理后,按照步骤5介绍的算法提取60个特征量,将提取的特征量输入到步骤6确定的神经网络中。如果是识别,则神经网络输出受试者的编码;如果是认证,则神经网络输出则改为是否该受试者(0或1)。Step 7. Identify and authenticate the identity of each subject according to the process shown in FIG. 3 . Input unknown EEG data into the neural network for identification and authentication. After the subject has passed the above steps 1-6, the BP neural network structure and the type of motor imagery suitable for him (her) are determined, and identification and authentication can be performed at this time. The subject puts on the electrode cap, starts motor imagery according to step 2 (just the most suitable type of motor imagery determined in step 6), collects EEG signals, and after preprocessing, extracts 60 EEG signals according to the algorithm introduced in step 5. Feature quantity, input the extracted feature quantity into the neural network determined in step 6. If it is identification, the neural network outputs the code of the subject; if it is authentication, the neural network output changes whether the subject (0 or 1).
目前国外的一些研究主要以视觉刺激或肌电作为特征源,本研究以运动想象脑电信号作为身份识别,能适合残疾等各种人群,有较好的适应性。在方法上,采用二阶盲辨识进行信号处理,并采用Fisher距离来提取特征。从结果可以看出,想象舌动脑电信号识别率最高,达到88.1%,四种想象运动脑电信号平均识别率在82.8%,识别率较国外的其它方法高出5个百分点左右。At present, some foreign studies mainly use visual stimulation or myoelectricity as a feature source. This study uses motor imagery EEG signals as identification, which can be suitable for various groups of people such as disabilities, and has good adaptability. In terms of method, second-order blind identification is used for signal processing, and Fisher distance is used to extract features. It can be seen from the results that the recognition rate of imaginary tongue movement EEG signal is the highest, reaching 88.1%, and the average recognition rate of four kinds of imaginary movement EEG signals is 82.8%, which is about 5 percentage points higher than other foreign methods.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNA200910115435XA CN101558997A (en) | 2009-05-27 | 2009-05-27 | EEG signal recognition method based on second-order blind recognition |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNA200910115435XA CN101558997A (en) | 2009-05-27 | 2009-05-27 | EEG signal recognition method based on second-order blind recognition |
Publications (1)
Publication Number | Publication Date |
---|---|
CN101558997A true CN101558997A (en) | 2009-10-21 |
Family
ID=41218095
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNA200910115435XA Pending CN101558997A (en) | 2009-05-27 | 2009-05-27 | EEG signal recognition method based on second-order blind recognition |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN101558997A (en) |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101703405A (en) * | 2009-11-09 | 2010-05-12 | 江西蓝天学院 | Wavelet analysis and Welch algorithm personal identification method |
CN102749514A (en) * | 2012-07-27 | 2012-10-24 | 中国科学院半导体研究所 | Measurement method for phase difference among same-frequency signals based on SOBI (Second Order Blind Identification) and FastICA (fast Independent Component Analysis) |
CN103338265A (en) * | 2013-07-10 | 2013-10-02 | 安徽大学 | Information interaction system and information interaction method for combining brain electricity and eye electricity |
CN103750844A (en) * | 2014-01-15 | 2014-04-30 | 杭州电子科技大学 | Identification method based on EEG phase synchronization |
CN105962915A (en) * | 2016-06-02 | 2016-09-28 | 安徽大学 | Non-contact human body respiration rate and heart rate synchronous measurement method and system |
CN106096544A (en) * | 2016-06-02 | 2016-11-09 | 安徽大学 | Non-contact blink and heart rate joint detection system and method based on second-order blind identification |
CN106419909A (en) * | 2016-09-12 | 2017-02-22 | 西安电子科技大学 | Multi-class motion imagination EEG signal classification method based on characteristic recombination and wavelet transformation |
CN106991409A (en) * | 2017-04-14 | 2017-07-28 | 山东建筑大学 | A kind of Mental imagery EEG feature extraction and categorizing system and method |
CN107028608A (en) * | 2017-05-16 | 2017-08-11 | 武汉中天元科技有限公司 | A kind of eeg signal harvester and preprocess method |
US20170325720A1 (en) * | 2014-11-21 | 2017-11-16 | National Institute Of Advanced Industrial Science And Technology | Authentication device using brainwaves, authentication method, authentication system, and program |
CN107423668A (en) * | 2017-04-14 | 2017-12-01 | 山东建筑大学 | Eeg signal classification System and method for based on wavelet transformation and sparse expression |
CN108959891A (en) * | 2018-07-19 | 2018-12-07 | 南京邮电大学 | Brain electricity identity identifying method based on privacy sharing |
CN109820503A (en) * | 2019-04-10 | 2019-05-31 | 合肥工业大学 | Synchronous removal of multiple artifacts in single-channel EEG signals |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1803086A (en) * | 2005-12-02 | 2006-07-19 | 清华大学 | Objectively detected identity recognition method based on human brain memory character |
-
2009
- 2009-05-27 CN CNA200910115435XA patent/CN101558997A/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1803086A (en) * | 2005-12-02 | 2006-07-19 | 清华大学 | Objectively detected identity recognition method based on human brain memory character |
Non-Patent Citations (3)
Title |
---|
王璐等: "四类运动想象任务的脑电特征分析及分类", 《计算机技术与发展》 * |
胡剑锋等: "基于二阶盲辨识的运动想象脑电信号分类", 《中国组织工程研究与临床康复》 * |
胡剑锋等: "基于脑电信号的身份识别方法", 《中国组织工程研究与临床康复》 * |
Cited By (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101703405A (en) * | 2009-11-09 | 2010-05-12 | 江西蓝天学院 | Wavelet analysis and Welch algorithm personal identification method |
CN102749514A (en) * | 2012-07-27 | 2012-10-24 | 中国科学院半导体研究所 | Measurement method for phase difference among same-frequency signals based on SOBI (Second Order Blind Identification) and FastICA (fast Independent Component Analysis) |
CN102749514B (en) * | 2012-07-27 | 2014-09-03 | 中国科学院半导体研究所 | Measurement method for phase difference among same-frequency signals based on SOBI (Second Order Blind Identification) and FastICA (fast Independent Component Analysis) |
CN103338265A (en) * | 2013-07-10 | 2013-10-02 | 安徽大学 | Information interaction system and information interaction method for combining brain electricity and eye electricity |
CN103338265B (en) * | 2013-07-10 | 2016-03-30 | 安徽大学 | A kind of in conjunction with brain electricity and the information interaction system of eye electricity and information interacting method |
CN103750844A (en) * | 2014-01-15 | 2014-04-30 | 杭州电子科技大学 | Identification method based on EEG phase synchronization |
CN103750844B (en) * | 2014-01-15 | 2015-07-29 | 杭州电子科技大学 | A kind of based on the phase locked personal identification method of brain electricity |
US20170325720A1 (en) * | 2014-11-21 | 2017-11-16 | National Institute Of Advanced Industrial Science And Technology | Authentication device using brainwaves, authentication method, authentication system, and program |
US10470690B2 (en) * | 2014-11-21 | 2019-11-12 | National Institute Of Advanced Industrial Science And Technology | Authentication device using brainwaves, authentication method, authentication system, and program |
CN105962915B (en) * | 2016-06-02 | 2019-04-05 | 安徽大学 | Non-contact human body respiration rate and heart rate synchronous measurement method and system |
CN106096544A (en) * | 2016-06-02 | 2016-11-09 | 安徽大学 | Non-contact blink and heart rate joint detection system and method based on second-order blind identification |
CN106096544B (en) * | 2016-06-02 | 2019-04-23 | 安徽大学 | Non-contact blink and heart rate joint detection system and method based on second-order blind identification |
CN105962915A (en) * | 2016-06-02 | 2016-09-28 | 安徽大学 | Non-contact human body respiration rate and heart rate synchronous measurement method and system |
CN106419909A (en) * | 2016-09-12 | 2017-02-22 | 西安电子科技大学 | Multi-class motion imagination EEG signal classification method based on characteristic recombination and wavelet transformation |
CN106991409A (en) * | 2017-04-14 | 2017-07-28 | 山东建筑大学 | A kind of Mental imagery EEG feature extraction and categorizing system and method |
CN107423668A (en) * | 2017-04-14 | 2017-12-01 | 山东建筑大学 | Eeg signal classification System and method for based on wavelet transformation and sparse expression |
CN106991409B (en) * | 2017-04-14 | 2020-03-27 | 山东建筑大学 | Motor imagery electroencephalogram signal feature extraction and classification system and method |
CN107028608A (en) * | 2017-05-16 | 2017-08-11 | 武汉中天元科技有限公司 | A kind of eeg signal harvester and preprocess method |
CN107028608B (en) * | 2017-05-16 | 2020-04-10 | 武汉中天元科技有限公司 | Brain wave signal acquisition device and preprocessing method |
CN108959891A (en) * | 2018-07-19 | 2018-12-07 | 南京邮电大学 | Brain electricity identity identifying method based on privacy sharing |
CN108959891B (en) * | 2018-07-19 | 2022-07-12 | 南京邮电大学 | Electroencephalogram identity authentication method based on secret sharing |
CN109820503A (en) * | 2019-04-10 | 2019-05-31 | 合肥工业大学 | Synchronous removal of multiple artifacts in single-channel EEG signals |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101491441B (en) | Identification method based on electroencephalogram signal | |
CN101558997A (en) | EEG signal recognition method based on second-order blind recognition | |
Abdeldayem et al. | A novel approach for ECG-based human identification using spectral correlation and deep learning | |
Abo-Zahhad et al. | A new multi-level approach to EEG based human authentication using eye blinking | |
CN105787420B (en) | Method and device for biometric authentication and biometric authentication system | |
CN101828921A (en) | Identity identification method based on visual evoked potential (VEP) | |
CN101716079A (en) | Brainprint identity identification authentication method based on multi-characteristics algorithm | |
CN103714281A (en) | Identity recognition method based on electrocardiosignals | |
Belgacem et al. | Person identification system based on electrocardiogram signal using LabVIEW | |
Sharma et al. | Individual identification based on neuro-signal using motor movement and imaginary cognitive process | |
CN101862194A (en) | Imaginative Action EEG Identity Recognition Method Based on Fusion Feature | |
Alyasseri et al. | The effects of EEG feature extraction using multi-wavelet decomposition for mental tasks classification | |
CN112804937A (en) | High frequency QRS in biometric identification | |
Nieves et al. | Automatic person authentication using fewer channel EEG motor imagery | |
CN114081505A (en) | Electroencephalogram signal identification method based on Pearson correlation coefficient and convolutional neural network | |
Sasikala et al. | Identification of individuals using electrocardiogram | |
Wu et al. | ECG identification based on neural networks | |
Pouryayevali | ECG biometrics: new algorithm and multimodal biometric system | |
CN100411580C (en) | Identification method based on objective detection of human brain memory features | |
Liew et al. | Identifying visual evoked potential (VEP) electrodes setting for person authentication | |
Farid et al. | Biometric authentication for dementia patients with recurrent neural network | |
Chen et al. | Finger ECG-based authentication for healthcare data security using artificial neural network | |
Pathoumvanh et al. | ECG analysis for person identification | |
Riera et al. | Multimodal physiological biometrics authentication | |
Yu et al. | P300-BCI-based authentication system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C02 | Deemed withdrawal of patent application after publication (patent law 2001) | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20091021 |