CN101547648A - Ct成像系统 - Google Patents

Ct成像系统 Download PDF

Info

Publication number
CN101547648A
CN101547648A CNA2007800447282A CN200780044728A CN101547648A CN 101547648 A CN101547648 A CN 101547648A CN A2007800447282 A CNA2007800447282 A CN A2007800447282A CN 200780044728 A CN200780044728 A CN 200780044728A CN 101547648 A CN101547648 A CN 101547648A
Authority
CN
China
Prior art keywords
mobile
detectable signal
determining
time series
edge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2007800447282A
Other languages
English (en)
Other versions
CN101547648B (zh
Inventor
R·普罗克绍
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koninklijke Philips NV
Original Assignee
Koninklijke Philips Electronics NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koninklijke Philips Electronics NV filed Critical Koninklijke Philips Electronics NV
Publication of CN101547648A publication Critical patent/CN101547648A/zh
Application granted granted Critical
Publication of CN101547648B publication Critical patent/CN101547648B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/50Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment specially adapted for specific body parts; specially adapted for specific clinical applications
    • A61B6/504Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment specially adapted for specific body parts; specially adapted for specific clinical applications for diagnosis of blood vessels, e.g. by angiography
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/02Arrangements for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
    • A61B6/03Computed tomography [CT]
    • A61B6/032Transmission computed tomography [CT]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/42Arrangements for detecting radiation specially adapted for radiation diagnosis
    • A61B6/4208Arrangements for detecting radiation specially adapted for radiation diagnosis characterised by using a particular type of detector
    • A61B6/4241Arrangements for detecting radiation specially adapted for radiation diagnosis characterised by using a particular type of detector using energy resolving detectors, e.g. photon counting
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/48Diagnostic techniques
    • A61B6/481Diagnostic techniques involving the use of contrast agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/48Diagnostic techniques
    • A61B6/482Diagnostic techniques involving multiple energy imaging
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/50Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment specially adapted for specific body parts; specially adapted for specific clinical applications
    • A61B6/507Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment specially adapted for specific body parts; specially adapted for specific clinical applications for determination of haemodynamic parameters, e.g. perfusion CT
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S378/00X-ray or gamma ray systems or devices
    • Y10S378/901Computer tomography program or processor

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • Pathology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Veterinary Medicine (AREA)
  • Biophysics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Public Health (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Optics & Photonics (AREA)
  • General Health & Medical Sciences (AREA)
  • Radiology & Medical Imaging (AREA)
  • Biomedical Technology (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Dentistry (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Vascular Medicine (AREA)
  • Pulmonology (AREA)
  • Theoretical Computer Science (AREA)
  • Apparatus For Radiation Diagnosis (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

本发明涉及一种用于确定对象内物质的流动的CT成像系统,其中,所述CT成像系统包括多色X射线源和能量分辨X射线探测器,所述能量分辨X射线探测器用于获得取决于通过对象后的X射线辐射的探测信号。计算单元(12)从所述探测信号确定所述物质的k边缘5分量,以及重建单元(13)从所确定的k边缘分量来重建k边缘图像的时间序列。流量确定单元(14)从所述k边缘图像的时间序列来确定指示所述对象内的流动的关于流动的值。

Description

CT成像系统
技术领域
本发明涉及用于确定对象内物质的流动的CT成像系统、CT方法以及计算机程序。本发明还涉及用于确定对象内物质的流动的相应的确定设备、确定方法和计算机程序。
背景技术
用于确定对象内物质的流动的传统的CT成像系统使用发射X射线辐射的X射线源以及探测取决于通过对象后的X射线辐射的探测信号的探测单元。重建单元使用所述探测信号来重建所述对象的图像的时间序列,其中,从所述对象的图像的时间序列来确定指示了对象内所述物质的流动的关于流动的值。例如,这些关于流动的值为所述物质的流量或通过所述对象的平均通过时间。
通过使用这些传统的CT成像系统,关于流动的值的确定受到与X射线辐射通过对象相关的效应的影响,即,X射线辐射不仅受到将为其确定流动的所述物质的影响,还受到对象本身的影响。这降低了所确定的关于流动的值的质量。
发明内容
因此,本发明的一个目的在于提供一种CT成像系统,其中,减小了与X射线辐射通过对象相关的效应对关于流动的值的确定的影响,因此提高了所确定的关于流动的值的质量。另外,将提供对应的CT成像方法、对应的确定设备以及对应的确定方法。
在本发明的第一个方面中,提出了用于确定对象内物质的流动的CT成像系统,其包括
多色X射线源,其用于发射多色X射线辐射,
能量分辨X射线探测器,其用于获得取决于通过所述对象后的所述X射线辐射的能量分辨的探测信号,
计算单元,其用于从所述探测信号确定所述物质的k边缘分量,
重建单元,其用于从所确定的k边缘分量来重建k边缘图像的时间序列,
流动确定单元,其用于从所述k边缘图像的时间序列来确定指示了所述物质的流动的关于流动的值。
本发明所基于的思想为物质的k边缘分量由探测信号确定,并且从所确定的k边缘分量来重建k边缘图像的时间序列。这导致重建后的图像仅包含所述物质,即,图像中不包含对象本身。因此,所述物质的这些图像不受到对象的干扰。由于使用这些仅包含所述物质的图像来确定关于流动的值,因此降低了与X射线辐射通过对象相关的效应对关于流动的值的影响,因此提高了所确定的关于流动的值的质量。
流动确定单元优选地适于确定物质通过对象的平均通过时间作为关于流动的值。另外,所述流动确定单元可适于确定物质的流量作为关于流动的值。由于从仅包含所述物质的k边缘图像的时间序列来确定所述平均通过时间和物质流量,因此可以以与使用传统CT图像系统所确定的所述平均通过时间和物质流量的质量相比改善了的质量来确定所述平均通过时间和物质流量。
在优选实施例中,一种物质存在于对象内的流体中,流动确定单元适于相对于所述流体来校准重建后的k边缘图像的时间序列,并且从经校准的重建后的k边缘图像的时间序列来确定指示了在所述对象内的流体流动的关于流动的值。由于重建后的k边缘图像的时间序列是相对于所述流体而校准的,因此可以确定指示了所述对象内的所述流体流动的关于流动的值。这允许了直接地确定关于流动的值,具体而言,定量地确定所述流体通过所述对象的平均通过时间和所述流体的流量。与之相比,传统的CT灌注系统仅允许基于在x射线衰减上的转变来对流动进行的间接定量。
该流体可以为人体或者是动物体内的血液。这允许确定(例如)人体或动物体内,具体而言,大脑内的血液的平均通过时间和/或流量。因此,例如可以确定脑血流(CBF)。
优选地,能量分辨X射线探测器适于提供针对多个能量组(bin)的多个能量分辨探测信号,其中,计算单元适于使用针对探测信号的模型通过解出针对多个能量分辨探测信号的方程组来确定物质的k边缘分量,所述模型将探测信号描述为物质的k边缘效应、光电效应以及康普顿效应的组合,其中每一个效应向所述探测信号贡献相应的分量。具体而言,X射线探测器提供许多具有不同能量组的能量分辨探测信号,不同能量组包括不同谱灵敏度,具体而言,每一个能量组为完整能量范围中的在其中可得到探测信号并该探测信号为感兴趣信号的一部分。之后将所扫描的对象建模为具有第一谱的光电效应、具有第二谱的康普顿效应和具有第三谱的、k边缘处于感兴趣能量范围内的物质的组合。将每一探测信号中的每一个分量的密度长度乘积建模为离散线性系统,解出所述离散线性系统可至少获得物质的k边缘分量。从针对不同探测器位置所获得的物质的k边缘分量,可以以传统的重建方法对物质的k边缘图像进行重建。
优选地,通过使用数值方法来解出针对多个能量分辨探测信号的方程组。一种优选的方法为考虑了测量的噪声统计的极大似然方法。
在另一个实施例中,使用一个考虑了X射线源的发射谱以及多个能量组中的每一个中的X射线探测器的谱灵敏度的模型。这得到了高准确度的所计算的分量,因此,得到了高准确度的重建后的图像以及所确定的关于流动的值。
所述物质优选地为注射到对象内的,具体而言,注射到人体或动物体内的造影剂。这允许确定诸如通过人体器官的平均通过时间或血流量的人体或动物体内的关于流动的值。
在权利要求10和12中定义了对应的CT成像方法以及对应的计算机程序。在权利要求9、11和13定义了用于确定对象内物质流动的对应的确定设备、对应的确定方法和对应的计算机程序。在独立权利要求中定义了本发明的优选实施例。
附图说明
通过参考以下描述的实施例,本发明的这些和其它方面将会显而易见并且得以阐明。
图1示出了根据本发明的CT成像系统的图解性表示;
图2示出了说明用于确定对象内物质流动的CT成像方法的实施例的流程图;
图3示范性地示出了多色X射线源的谱;
图4示出了光电效应、康普顿效应和对象内物质的示范性谱。
具体实施方式
图1所示的CT成像系统包括能够围绕平行于z方向延伸的旋转轴R旋转的扫描架1。诸如X射线管的辐射源2安装在扫描架1上。X射线源配备有准直仪设备3,所述准直仪设备将X射线源2发射的辐射形成锥形辐射束4。在其它实施例中,所述准直仪设备3可适于形成具有诸如扇形的另一种形状的辐射束。
辐射横穿诸如患者的、处于圆柱形检查区5的感兴趣区域中的对象(未示出)。横穿检查区5后,X射线束4入射到能量分辨X射线探测器单元6上,在这个实施例中,所述探测器单元为安装在扫描架1上的二维探测器。在另一个实施例中,所述能量分辨X射线探测器单元为一维探测器。
能量分辨X射线探测器的工作原理(例如)为,对入射光子计数,并且输出示出了在某一能量区域内每个能量的光子的数量的信号。例如,在Llopart,X.,等的“First test measurement of a 64k pixel readout chip working ina single photon counting mode”,Nucl.Inst.and Meth.A,509(1-3):157-163,2003以及Llopart,X.,等的“Medipix2:A64-k pixel readout chip with 55 mumsquare elements working in a single photon counting mode”,IEEE Trans.Nucl.Sci.49(5):2279-2283,2002中描述了这种能量分辨探测器。
马达7以优选地为恒定的但可调整的角速度驱动扫描架1。提供另一马达8用于使对象移位,例如使布置在检查区5内的患者台上的患者沿平行于旋转轴R的方向或z轴移位。这些马达7、8由(例如)控制单元9控制,从而使得辐射源2和检查区5相对于彼此沿螺旋轨迹移动。但是优选地,不移动所述对象或检查区5,而旋转X射线源2,即,X射线源2沿相对于所述对象的圆形轨迹行进。
向确定设备10提供探测器6所获取的数据用于确定对象内物质的流动,具体而言,用于确定指示了对象内的流动的关于流动的值。例如,这些关于流动的值可以为通过对象的平均通过时间或物质流量。如果所述对象(例如)为人类大脑,那么确定设备可适于确定脑血流和脑平均通过时间。最后可以向显示单元11提供所述关于流动的值用于显示该关于流动的值。显示单元11可以显示单一关于流动的值或对应于对象内某一区域的平均的关于流动的值,优选地,显示单元11示出了二维或三维图像,其中每一图像元素,即,分别地为每一像素或每一体素,示出了对象内对应于相应图像元素的位置处的关于流动的值。因此,显示单元11优选地显示了关于流动的值的图像。
确定设备10包括计算单元12,以从由探测器6所获取的探测信号中确定k边缘分量。所述确定设备10还包括重建单元13用于从所确定的k边缘分量来重建k边缘图像的时间序列,并且所述确定设备10包括流动确定单元14用于从所述k边缘图像的时间序列来确定指示了对象内的流动的关于流动的值。同样,所述确定设备10优选地由控制单元9控制。
以下,将根据图2所示的流程图,更详细地描述根据本发明的用于确定对象内的流动的CT成像方法的实施例。
在步骤101中,X射线源围绕旋转轴R或z方向旋转,并且不移动对象,即,X射线源2沿围绕对象的圆形轨迹行进。在另一个实施例中,X射线源2可以沿诸如螺旋形轨迹的另一种轨迹相对于对象移动。所述X射线源2发射横穿了对象的X射线辐射,有一种物质存在于所述对象中。例如,所述物质为基于碘或钆的、在这个步骤101之前被注射的造影剂。例如,所述对象为人体或动物体,其中,将所述造影剂注射至例如人体或者动物体的血管内。探测器6探测通过了对象以及对象内的物质的X射线辐射,并生成探测信号。因此,在步骤101中,获取了探测信号。
在步骤102中,将探测信号传输至确定设备10的计算单元12。所述计算单元12从探测信号来确定物质的k边缘分量。现在将会更详细地解释这一点。
计算单元12的输入为针对多个(至少三个)能量组的能量分辨探测信号di。这些探测信号di示出了第i个能量组bi的谱灵敏度Di(E)。另外,多色X射线管2的发射谱T(E)通常是已知的,或者可以在步骤101之前测量出来。在图3中,示意性地示出了这种多色X射线管的发射谱T(E)的一个例子。在确定设备中,具体而言,在计算单元12中,将所述探测信号di的生成建模为具有谱P(E)的光电效应、具有谱C(E)的康普顿效应以及k边缘处于感兴趣的能量范围内并具有谱K(E)的线性组合。
图4中示范性地示出了谱P(E)、C(E)和K(E)。
可以将探测信号的生成建模为以下线性系统:
di=∫dE T(E)Di(E)exp[-(ρ光电P(E)+ρ康普顿C(E)+ρk边缘K(E,))].   (1)
其中ρ光电、ρ康普顿、ρk边缘分别为光电分量、康普顿分量和k边缘分量的密度长度乘积。
由于可得到针对至少三个能量组b1、b2、b3的至少三个探测信号d1、d2、d3,因此可以形成至少由三个方程构成的具有三个未知数的方程组,该三个未知数为三个密度长度乘积,因此其可以在计算单元12中由已知的数值方法解出。如果可得到多于三个能量组,则优选地使用考虑了测量的噪声统计的极大似然方法。一般而言,三个能量组是足够的。但是,为了提高灵敏度和噪声鲁棒性,优选地使用用于更多的能量组的更多探测信号。
在步骤103中,将所确定的k边缘分量,即,密度长度乘积ρk边缘传输至重建单元13。由于X射线源2相对于对象移动,因此探测信号以及由此所确定的密度乘积ρk边缘与从不同角方向横穿所述对象以及物质的X射线相对应。因此,可以使用传统的、诸如密度长度乘积ρk边缘的滤波反向投影的CT重建方法来重建k边缘图像。执行获取步骤101从而可重建对象内相同位置的k边缘图像的时间序列。这意味着(例如)X射线管2沿围绕对象的圆形轨迹行进,并且在一时间段上获取探测信号,所述时间段足够的长以至于可获取使用其可至少为感兴趣的区域来重建图像组的探测信号,其中,所述图像组在不同时间点示出了对象内的相同的位置。这样的组为对象的k边缘图像的时间序列,具体而言,对象的一个视场的k边缘图像的时间序列,即,四维图像数据集。
在步骤104中,相对于对象内的物质来校准k边缘图像。具体而言,所述物质存在于对象内的流体中,并且相对于对象内的流体来校准k边缘图像。优选地,所述对象为人体或动物体,或者诸如大脑的身体的一部分,所述流体为血液。可以通过选择包括一个或多个图像元素的图像区域来执行校准,所述元素为仅对应于所述流体的像素或体素。由于对象的相应区域的体积是已知的,因此这一区域内的流体的体积也是已知的。另外,所述对象的这一区域内的图像元素值与这一区域内的物质的量是相关联的。因此,可以确定流体体积与k图像中所示出的物质的量之间的直接的关系。这一关系可用于校准k边缘图像,从而使得所述k边缘图像示出了每一个图像元素,即,每一个像素或体素中的流体体积。重建单元13或流动确定单元14可以执行这种校准。举一个简单的例子,如果在图像元素中所重建的物质的浓度是cs并且在这个图像元素中流体的体积为V,则所重建的四维图像数据集的每一个值可以与V/cs相乘,以校准四维图像数据集,即,k边缘图像的时间序列。
在步骤105中,流动确定单元14接收经校准的图像时间序列并且从所接收的图像时间序列来确定指示了对象内流动的关于流动的值。由于经校准的图像直接地示出了对象内不同位置不同时间点处的血液的值,因此这些经校准的图像直接地示出了所述物质的流动。
从经校准的图像,即,从所确定的物质的流动来确定关于流动的值这一方法是人们所熟知的。例如,这些关于流动的值为平均通过时间,脑血流或脑血液体积。例如,在“Dynamic CT Measurement of Cerebral Blood Flow:A Validation Study”,Aleksa Cenic,Darius G.Nabavi,Rosemary A.Craen,Adrian W.Gelb and Ting-Yim Lee,American Journal Of Neuroradiology20:63-73(1999)中描述了一种关于流动的值的确定。
尽管已经在附图和上述的描述中说明并且描述了本发明,但是应将这种说明和描述视为说明性的或者示范性的而非限制性的。本发明不受到所公开实施例的限制。
对象可以为对象的整体或者仅是对象的部分。对象的这部分可以是,例如由用户所预定的感兴趣区域。
对象可以是任何对象,具体而言,所述对象还可以是技术上的对象。另外,流体可以是对象内的任何流体。具体而言,CT成像系统还可适于确定与诸如技术上的对象内的水或油的流动相关联的关于流动的值。
通过研究附图、说明书和权利要求,本领域技术人员能够在实践所要求保护的本发明的过程当中理解并实施针对所公开的实施例的其它变形。
在权利要求中,“包括”一词不排除其它元件或者步骤,并且单数冠词不排除复数个。在互不相同的独立权利要求中引用某些特征不表示将这些特征结合使用是不利的。
计算机程序可以存储/分布在合适的介质上,例如光存储介质或者与其它硬件一起提供或作为其它硬件的一部分的固态介质,但是所述计算机程序可以以其它形式分布,例如通过Internet或其它有线或无线的通信系统。
权利要求中的任何参考标记不应解释为限制本发明的范围。

Claims (13)

1、一种用于确定对象内物质的流动的CT成像系统,其包括:
多色X射线源,其用于发射多色X射线辐射,
能量分辨X射线探测器,其用于获得取决于通过所述对象后的所述X射线辐射的探测信号(di),
计算单元(12),其用于从所述探测信号(di)来确定所述物质的k边缘分量,
重建单元(13),其用于从所确定的k边缘分量来重建k边缘图像的时间序列,
流动确定单元(14),其用于从所述k边缘图像的时间序列来确定指示所述对象内的所述流动的关于流动的值。
2、如权利要求1所述的CT成像系统,
其中,所述流动确定单元(14)适于将所述物质通过所述对象的平均通过时间确定为关于流动的值。
3、如权利要求1所述的CT成像系统,
其中,所述流动确定单元(14)适于将所述物质的流量确定为关于流动的值。
4、如权利要求1所述的CT成像系统,
其中,所述物质存在于所述对象内的流体中,并且其中,所述流动确定单元(14)或所述重建单元(13)适于相对于所述流体来校准重建后的k边缘图像的时间序列,以及从经校准的重建后的k边缘图像的时间序列来确定指示所述对象内的所述流体的流动的关于流动的值。
5、如权利要求4所述的CT成像系统,
其中,所述流动确定单元(14)适于将所述流体通过所述对象的平均通过时间确定为关于流动的值。
6、如权利要求4所述的CT成像系统,
其中,所述流动确定单元(14)适于将所述流体的流量确定为关于流动的值。
7、如权利要求1所述的CT成像系统,
其中,所述能量分辨X射线探测器适于提供针对多个能量组的多个能量分辨探测信号(di),以及
其中,所述计算(12)单元适于使用将探测信号(di)描述为所述物质的k边缘效应、光电效应和康普顿效应的组合的所述探测信号(di)的模型,通过解出针对所述多个能量分辨探测信号(di)的方程组来确定所述物质的k边缘分量,每一种效应向所述探测信号(di)贡献对应的分量。
8、如权利要求7所述的CT成像系统,
其中,所述计算单元(12)适于使用一种模型,所述模型考虑了所述X射线源的发射谱P(E)以及所述X射线探测器在所述多个能量组的每一个中的谱灵敏度。
9、一种用于确定对象内物质的流动的确定设备(10),所述确定设备(10)被提供了探测信号(di),由能量分辨X射线探测器获得所述探测信号(di),所述能量分辨X射线探测器用于获得取决于由多色X射线发射的通过所述对象后的X射线辐射的探测信号(di),所述确定设备(10)包括:
计算单元(12),其用于从所述探测信号(di)来确定所述物质的k边缘分量,
重建单元(13),其用于从所确定的k边缘分量来重建k边缘图像的时间序列,
流动确定单元(14),其用于从所述k边缘图像的时间序列来确定指示所述对象内的所述流动的关于流动的值。
10、一种用于确定对象内物质的流动的CT成像方法,其包括以下步骤:
由多色X射线源发射多色X射线辐射,
由能量分辨X射线探测器获得取决于通过所述对象后的所述X射线辐射的探测信号(di),
由计算单元(12)从所述探测信号(di)来确定所述物质的k边缘分量,
由重建单元(13)从所确定的k边缘分量来重建k边缘图像的时间序列,
由流动确定单元(14)从所述k边缘图像的所述时间序列确定指示所述对象内的所述流动的关于流动的值。
11、一种用于确定对象内物质的流动的确定方法,所述确定方法被提供了探测信号(di),由能量分辨X射线探测器获得所述探测信号(di),所述能量分辨X射线探测器用于获得取决于由多色X射线发射的通过所述对象后的X射线辐射的探测信号(di),所述确定方法包括:
由计算单元(12)从所述探测信号(di)来确定所述物质的k边缘分量,
由重建单元(13)从所确定的k边缘分量来重建k边缘图像的时间序列,
由流动确定单元(14)从所述k边缘图像的时间序列来确定指示所述对象内的所述流动的关于流动的值。
12、一种用于确定对象内物质的流动的计算机程序,其包括程序代码模块,当所述计算机程序在用于控制如权利要求1所述的CT成像系统的计算机上执行时,所述程序代码模块使计算机执行如权利要求10所述的方法的步骤。
13、一种用于确定对象内物质的流动的计算机程序,其包括程序代码模块,当所述计算机程序在用于控制如权利要求9所述的确定设备(10)的计算机上执行时,所述程序代码模块使计算机执行如权利要求11所述的方法的步骤。
CN2007800447282A 2006-12-04 2007-11-29 Ct成像系统 Active CN101547648B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP06125341.5 2006-12-04
EP06125341 2006-12-04
PCT/IB2007/054834 WO2008068674A2 (en) 2006-12-04 2007-11-29 Ct imaging system

Publications (2)

Publication Number Publication Date
CN101547648A true CN101547648A (zh) 2009-09-30
CN101547648B CN101547648B (zh) 2012-02-22

Family

ID=39492701

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2007800447282A Active CN101547648B (zh) 2006-12-04 2007-11-29 Ct成像系统

Country Status (6)

Country Link
US (1) US7813472B2 (zh)
EP (1) EP2091437B1 (zh)
JP (1) JP5355412B2 (zh)
CN (1) CN101547648B (zh)
RU (1) RU2466678C2 (zh)
WO (1) WO2008068674A2 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102415220A (zh) * 2009-05-05 2012-04-11 皇家飞利浦电子股份有限公司 用于对x射线生成设备的焦斑进行负荷相关尺寸调整的方法和设备
CN103339656A (zh) * 2011-01-27 2013-10-02 皇家飞利浦电子股份有限公司 谱成像
CN104379063A (zh) * 2012-06-14 2015-02-25 皇家飞利浦有限公司 基于谱成像的决策支持、处置规划和/或介入引导
CN106488743A (zh) * 2014-05-08 2017-03-08 劳伦斯·利弗莫尔国家安全有限责任公司 使用激光康普顿x射线源的2 色射线成像的方法
CN106605122A (zh) * 2014-09-30 2017-04-26 海克斯康测量技术有限公司 用于使用x射线投射来测量对象的系统和方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2429403B1 (en) * 2009-05-12 2020-12-09 Koninklijke Philips N.V. Perfusion imaging
US8422636B2 (en) * 2010-10-12 2013-04-16 Ge Medical Systems Israel, Ltd. Photon counting and energy discriminating detector threshold calibration
EP2874542B1 (en) * 2012-07-18 2016-10-05 Koninklijke Philips N.V. Swivel gantry for multi-modal imaging systems
DE102013200400A1 (de) 2012-09-24 2014-05-28 Siemens Aktiengesellschaft Verfahren und Vorrichtung zur Bestimmung der durch das zu untersuchende Objekt verursachten Abschwächung der Röntgenstrahlung
JP6305692B2 (ja) * 2013-05-28 2018-04-04 キヤノンメディカルシステムズ株式会社 X線診断装置
CN107430778A (zh) 2015-03-18 2017-12-01 棱镜传感器公司 基于来自光子计数多仓检测器的能量分辨的图像数据的图像重建
CN107945241B (zh) * 2017-10-25 2021-01-08 首都师范大学 一种基于边界信息扩散的x射线cl图像重建算法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4887604A (en) 1988-05-16 1989-12-19 Science Research Laboratory, Inc. Apparatus for performing dual energy medical imaging
JPH06205767A (ja) 1992-11-25 1994-07-26 Xerox Corp 放射線画像形成システム
RU2218601C2 (ru) * 2000-12-26 2003-12-10 Красноперов Ренат Анатольевич Способ стереологического определения размеров и размерных распределений объектов
US6373920B1 (en) * 2001-03-16 2002-04-16 Ge Medical Systems Global Technology Company, Llc Method and apparatus for acquiring CT perfusion images
US6904118B2 (en) 2002-07-23 2005-06-07 General Electric Company Method and apparatus for generating a density map using dual-energy CT
US6891918B2 (en) 2002-11-27 2005-05-10 Ge Medical Systems Global Technology Company, Llc Methods and apparatus for acquiring perfusion data
DE10335663A1 (de) * 2003-08-04 2005-03-10 Siemens Ag Verfahren zur automatischen Kalibrierung von Perfusionsparameterbildern
DE10347961A1 (de) * 2003-10-10 2005-06-09 Schering Ag Röntgenanordnung und Röntgenkontrastverfahren zur Bildgebung an einem mindestens ein röntgenkontrastgebendes Element enthaltenden Untersuchungsobjekt sowie Verwendung der Röntgenanordnung
DE102007046281A1 (de) * 2007-09-27 2009-04-09 Siemens Ag Verfahren und Recheneinheit zur Messung der Flussgeschwindigkeit eines Kontrastmittels in einem Gefäß eines Patienten

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102415220A (zh) * 2009-05-05 2012-04-11 皇家飞利浦电子股份有限公司 用于对x射线生成设备的焦斑进行负荷相关尺寸调整的方法和设备
US8958530B2 (en) 2009-05-05 2015-02-17 Koninklijke Philips N.V. Method and device for load dependent resizing of a focal spot of an X-ray generating device
CN103339656A (zh) * 2011-01-27 2013-10-02 皇家飞利浦电子股份有限公司 谱成像
CN103339656B (zh) * 2011-01-27 2017-04-19 皇家飞利浦电子股份有限公司 谱成像
CN104379063A (zh) * 2012-06-14 2015-02-25 皇家飞利浦有限公司 基于谱成像的决策支持、处置规划和/或介入引导
CN106488743A (zh) * 2014-05-08 2017-03-08 劳伦斯·利弗莫尔国家安全有限责任公司 使用激光康普顿x射线源的2 色射线成像的方法
CN106488743B (zh) * 2014-05-08 2019-09-20 劳伦斯·利弗莫尔国家安全有限责任公司 使用激光康普顿x射线源的2色射线成像的方法
CN106605122A (zh) * 2014-09-30 2017-04-26 海克斯康测量技术有限公司 用于使用x射线投射来测量对象的系统和方法

Also Published As

Publication number Publication date
EP2091437B1 (en) 2018-02-28
US7813472B2 (en) 2010-10-12
US20100061504A1 (en) 2010-03-11
RU2009125562A (ru) 2011-01-20
JP2010511418A (ja) 2010-04-15
EP2091437A2 (en) 2009-08-26
WO2008068674A3 (en) 2008-09-04
CN101547648B (zh) 2012-02-22
JP5355412B2 (ja) 2013-11-27
WO2008068674A2 (en) 2008-06-12
RU2466678C2 (ru) 2012-11-20

Similar Documents

Publication Publication Date Title
CN101547648B (zh) Ct成像系统
US20080253503A1 (en) Ct-Imaging System
CN102098963B (zh) 谱成像
CN101495039A (zh) 用于能谱ct的定量物质分解
US7852978B2 (en) Imaging system for imaging an object
CN103262124B (zh) 用于对感兴趣区域成像的成像系统
JP2010510514A (ja) 検出ユニットの検出器エネルギー重み関数を決定する装置及び方法
JP5869001B2 (ja) 検出値処理装置
CN107106109A (zh) 计算机断层扫描系统
Liu et al. A deep learning approach for converting prompt gamma images to proton dose distributions: A Monte Carlo simulation study
CN101785029B (zh) 根据能量相关投影数据对感兴趣区域进行成像的成像系统
CN103620393B (zh) 成像装置
US7983735B2 (en) Simulation of nuclear medical imaging
EP3152596B1 (en) Imaging system for generating an image of an object
Modrý et al. SPECT imaging properties of the CdTe-Timepix3 detector used in a new prototype FullSPECT 3D multimodal preclinical imaging system: Comparison with scintillation gamma camera
Kang et al. Evaluation of gold K-edge imaging using spectral computed tomography with a photon-counting detector: A Monte Carlo simulation study
Nai et al. 137 Cs transmission imaging and segmented attenuation corrections in a small animal PET scanner
Crestana et al. Developing spectroscopic and imaging techniques for advanced studies in soil physics based on results obtained at Embrapa instrumentation
Konik Evaluation of attenuation and scatter correction requirements in small animal PET and SPECT imaging
Schmidt et al. Physics of Medical Imaging
Claesson et al. An X-ray computed tomography demonstrator using a CZT solid-state detector
Tocharoenchai et al. Effect of attenuation correction on lesion detection using a hybrid PET system
Kitamura et al. Integrated SET-3000G/X positron emission tomography scanner
Sunaguchi et al. The feasibility study on 3-dimensional fluorescent X-ray computed tomography using the pinhole effect for biomedical applications
Ishihara Investigation of accuracy in quantitation of 18F-FDG concentration of PET/CT

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant