CN101533528B - 基于模块分段线性模型的光学运动捕捉数据处理方法 - Google Patents

基于模块分段线性模型的光学运动捕捉数据处理方法 Download PDF

Info

Publication number
CN101533528B
CN101533528B CN200910011236.4A CN200910011236A CN101533528B CN 101533528 B CN101533528 B CN 101533528B CN 200910011236 A CN200910011236 A CN 200910011236A CN 101533528 B CN101533528 B CN 101533528B
Authority
CN
China
Prior art keywords
module
data
frame
point
linear model
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN200910011236.4A
Other languages
English (en)
Other versions
CN101533528A (zh
Inventor
张强
吴升
魏小鹏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dalian University
Original Assignee
Dalian University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dalian University filed Critical Dalian University
Priority to CN200910011236.4A priority Critical patent/CN101533528B/zh
Publication of CN101533528A publication Critical patent/CN101533528A/zh
Application granted granted Critical
Publication of CN101533528B publication Critical patent/CN101533528B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Image Analysis (AREA)
  • Processing Or Creating Images (AREA)

Abstract

本发明公开了基于模块分段线性模型的光学运动捕捉数据处理方法。该方法基于光学人体运动捕捉散乱数据的全局信息,提出基于模块分段线性模型的数据处理算法。利用模块分段线性模型归纳出不同模块的变化特征,从而确定各模块数据的匹配优先级及段内拟合函数,有效地对三维运动数据各模块进行全局性分层次预测和跟踪,并对噪声数据进行基于模块的去噪处理,对缺失运动数据提出基于分段Newton插值拟合算法,进行合理的补缺。该方法经优化后在处理过程中无需人工干预,并能满足实时性要求。

Description

基于模块分段线性模型的光学运动捕捉数据处理方法
技术领域
本发明涉及光学人体运动捕捉散乱数据处理,特别是基于模块分段线性模型的光学运动捕捉数据处理方法。
背景技术
伴随着CG产业的飞速发展,运动捕捉技术(Motion Capture)日趋成熟,已经成为目前广泛使用的能够真实地再现运动物体运动细节的技术。该技术正越来越多的应用于影视、动画、游戏、体育训练、医疗、机械制造、机器人控制中。人体运动捕捉从原理上可以分为:机械式、声学式、电磁式和光学式。光学运动捕获是较为精确的一种,在人体关键点(一般选取关节点)贴上一些特制的标志点(称为″Marker″),视觉系统将识别和处理这些标志。系统定标后,由几组摄相机连续拍摄表演者的动作,并将图像序列保存下来,然后再进行分析和处理,识别其中的标志点,并计算其在每一瞬间的空间位置,进而得到其运动轨迹。为了得到准确的运动轨迹,拍摄速率一般要达到每秒60帧以上。光学运动捕捉系统的关键技术有三方面:摄像机标定、标记点跟踪和三维重建技术。
利用光学式捕捉的原始运动数据有以下四个特点:①采集到的信息仅有Marker点的三维坐标信息,数据以散乱无序(没有被标定)的形式存在;②由于标记点被道具、四肢、躯干或者其他标记点遮挡,存在缺失点数据,时常缺失点会连续缺失;③由于摄像延迟会出现噪声点;④运动员在做剧烈的运动时,Marker点相对于人体会出现位移,从而改变了运动数据之间的拓扑结构。因此数据后续处理运算复杂度较大,如何剔除噪声点弥补缺失点对运动数据进行有序标定并满足实时性要求是光学运动散乱数据处理的核心内容。
本发明提出基于模块的分段线性模型,有效地解决了仅用传统的刚体匹配方法和前后帧之间的局部联系所造成的失配和误差累积问题。本发明利用运动数据全局信息,在跟踪匹配过程中自动调整误差参数,在处理过程中无需手工干预自动完成,并且单帧数据处理耗时满足运动捕捉的实时性要求。
发明内容
本发明的目的在于:提出了一种用于被动式光学人体运动捕捉数据方法,该方法通过建立刚体模块的分段线性模型,探索运动数据的全局规律,引用归纳总结方法学,动态地对运动数据进行描述,提高运动数据跟踪的精度。使得在处理过程中无需手工干预,并且单帧数据处理耗时满足运动捕捉的实时性要求。
本发明的技术方案是:首先建立人体生理结构分块模型,提出基于模块的去噪算法,对噪声数据进行预处理。然后通过建立刚体模块的分段线性模型,利用噪声数据的统计信息,动态地对运动数据进行描述,利用有效的统计信息进行基于模块的分段线性数据处理。最后对运动数据进行校验,输出标定完整的运动数据,演示动画效果。附图1所示为本发明算法流程图,其具体包括以下技术环节:
1.人体运动捕捉标记点的摆放原理与方法
运动捕捉的目的是准确捕捉演员的动作,能够反映出具体的运动细节,并有利于后期的运动数据处理。因此,寻求一套科学的布点方案很重要。
1.1标记点的摆放原理
为了能够体现出动作的精确性,我们在布点时应该遵循以下三点原则:
(1)标记点必需覆盖所有需要捕捉的骨骼
(2)标记点需反映出骨骼的自由度
(3)标记点需尽可能与骨骼运动一致
为了提高后期运动数据处理的效率,造成缺点现象和避免标记点的错误交换等,我们在布点时应该遵循以下三点原则:
(1)摆放在不易被遮挡的地方
(2)标记点间距离大小不一
(3)相关标记点间形成规则的几何图形
1.2标记点的摆放方法
基于以上原理,本文的标记点摆放方法描述如下:
把人体模型为16刚体:头部、上躯干、下躯干、骨盆、左上臂、左前臂、左手、左大腿、左小腿、左脚、右上臂、右前臂、右手、右大腿、右小腿、右脚,由三十二个标记点描绘,基本上表达了人体的运动变化。其Marker点标记方式如图2:
2.人体生理结构分块模型
如图1所示,根据标记点的摆放和人体骨架的连接。我们按照在拓扑结构上相近和在生理结构上相关的原则,把一些联系比较紧密的骨骼进行组合,如在腰部前后排放四个标记点组成近等腰梯形,在头部上方排放四个标记点组成近正方形,在手腕和手指部排放四个标记点组成四边形,肩部两边的标记点和颈部下方前后的两个标记点组成近平行四边形,胸部前后的两标记点和颈部下方前后的两个标记点组成近正方形,膝部和同侧的腰部的两个标记点组成三角形,脚踝和脚趾部组成四面体结构。如图3所示,根据人体生理结构把人体骨架拆分为七大模块。
3.模块去噪算法
由于表演场地的光照变化和定标相机的延迟,会产生噪声点。噪声点的存在影响Marker点的跟踪效率和精度,如何合理精确地剔除噪声点,成为光学运动捕捉数据处理的首要任务。剔除噪声点需要解决一下两个问题:(1)在一个产生噪声点的Marker点的小邻域内有几个点时,如何选择其中之一作为精确的Marker点?(2)由于运动数据中存在Marker点交叉现象,因此在一个产生噪声点的Marker点的小邻域内有可能存在其它的Marker点,如何避免剔除其它Marker点?基于这些考虑,提出模块去噪思想:根据上面提到分块模型,从几何学上考虑这些模块在运动过程中应该保持一致的几何结构,当一个点存在噪声点时,如果采用噪声点代替作为需标定的Marker点定会破坏该模块的几何结构,所以说当存在噪声点时,我们通过选择能够和模板更加匹配的那个点为待标定的Marker点,其它点删除,以腰部模块为例,如图4所示。为了避免问题(2)提到的避免剔除其它Marker点的方法是:从标记点的摆放和人体运动特点来看,交叉的方式一般为手部模块和其它模块的交叉,其它模块相互交叉的现象很少,我们在删除其它幻点时看该模块是否和手部模块相交,如相交看那些幻点是否是手部模块的组成部分,如果不是就删除,如图5所示。如此两步操作后去噪算法结束。
需要补充说明的是,上面的模块去噪算法是在各模块得以匹配的情况下进行的,可以在运动数据的跟踪算法之前进行。当出现模块中缺点而模块上的其它点有噪声点时,在运动数据预测与跟踪过程中的补点算法完成后再进行上面叙述的模块去噪算法,达到去噪目的。经过模块去噪算法处理后,剩余数据点一般每帧保持在32个数据点左右,表明大多数噪声点被剔除。
4.模块分段线性模型
整体上观察人体运动特征,我们能够得到一些有利于运动数据处理的规律。描述如下:
(1)人体运动系统由骨、骨连接和骨骼肌通过运动关节组成,运动中各骨骼的长度和形状是不变的,身体各部分通过关节联系在一起在神经系统的调节和其他系统的配合下相互驱动形成运动。各关节点有自己的自由度数并且在运动中子节点受动于父节点,也就是人体运动学原理。利用这一约束原理有助于进行模块匹配和处理算法后期的结构效验。
(2)在运动过程中,各模块的动作幅度,变化速度不尽相同,有些模块变化不大,有些模块变化幅度大,在整个过程中呈现一定的规律。如拳击运动、招手运动等,手部和臂部变化比较大,且在局部时间内变化向量速度均衡,而其它模块变化不大,同样的有踢腿运动,上楼梯运动和体操等一些复杂的运动。对于这些,分模块归纳统计出不同模块在不同阶段的变化趋势,对于数据跟踪就有十分重大的意义。
我们以手部模块为例来介绍模块分段线性模型流程图(见图6)及详细步骤:
步骤1:手部模块为基本固定的四边形,我们可以依据四边形的边长和对角线长在运动过程中不变为约束条件进行形状匹配,把每一帧中这样的模块都找到,如没有不计,说明是缺点所致。对其四点坐标求平均值,用一个二维数组来记录,横轴表示帧t,纵轴分别表示当前帧相对于前一帧在x、y、z方向上的偏移量。
步骤2:以连续的5帧为一个时间段(可根据需求调节,实验结果5帧比较好,在这个段内运动变化不大),首先检查此5帧数据中是否有明显偏离较大的帧,如有认为是在匹配中的误配现象,去除之。然后求出剩余帧的平均变化位移,依次求得并保存于数组a中,横轴表示第几段的编号,纵轴表示变化速度、首帧与末帧的向量和相对于上一时间段的方向改变角度。
步骤3:从首段开始,依次比较相邻段的记录,如相似则合并,反之设标志位表示是一趋势段。相似的条件为:(1)变化速度相差小于一定值,(2)运动方向平滑(在实际中可认为夹角小于90度)。
步骤4:如两段能合并,修改数组a,当前项的横轴不变,纵轴变化的速度改为两段的平均值,首帧不变,末帧改为后一段的末帧值,由于当前两项合二为一,因此数组后部依次前移。直到查询到数组末尾,结束合并查询。
步骤5:对每一模块进行以上4步处理,最终统计结果可用一张二维表来描述,以便用于运动数据的预测和跟踪。
本文以一组表演运动数据为例,图7给出对该组表演动作进行模块分段线性算法后得到的手部(图左)和腰部(图右)模块变化特征结果图,粗线框和细线框相间表示相邻段不相容的归类情况,从图上观察,分段统计结果基本上能反应出运动数据的空间位置及向量变化规律。从而可根据各段信息为约束条件进行运动数据预测跟踪。
5.基于模块分段线性模型的运动数据预测与跟踪算法
在进行刚性匹配或是进行基于人体运动学原理的标记点跟踪时,会出现以下问题:由于没有其它约束条件的约束,在进行匹配时为了取得匹配成功会加大误差系数,而且误差系数一旦设定对于自动匹配的程序来说将不再改变,从而导致可能会有多个匹配结果;由于遮挡等原因,会出现缺点现象,如何合理的补点成为问题。基于模块特征统计算法,会在提高精度和利用已匹配的统计结果分段拟合出曲线方程,利用曲线方程进行缺点插值将很合理。模块分段归纳统计算法另一个优势在于,归纳结果是按照分模块进行,我们在进行运动数据预测与跟踪时可以根据模块在时间轴上的变化幅度设定匹配优先度,幅度小者先匹配原则。当然每帧匹配后要进行结构校验。详细步骤:
步骤1:调用模块去噪算法,进行运动数据跟踪前的降噪处理。
步骤2:依据各模块的分段统计信息,按各模块的变化幅度由低到高进行排序。对于每一帧数据,从变化幅度低的模块开始进行模块匹配(匹配方法是利用几何特征,如连线边长,对角线长度等特征进行组合匹配),如匹配成功,对运动数据进行标记,并从原始数据中把已标记的运动数据删除,如匹配失败,转到3。
步骤3:如没有匹配成功,说明是缺点所致,我们利用当前特征数组段的信息记录数据进行Newton插值,算出缺点坐标。Newton插值公式的表述:
设f(x)在互异的节点x0,x1,…,xn上的函数值为f0,f1,…,fn,且x0,x1,…,xn都在区间[a,b]内,则对于区间[a,b]内的一点x对应的Newton插值函数为:
f ( x ) = f ( x 0 ) + Σ k = 1 n f [ x 0 , x 1 , . . . , x k ] Π j = 0 k - 1 ( x - x j )
插值函数所得到的结果是模块的中心坐标,记为A,事实上我们要的是模块上各标记点的三维坐标,从中心坐标还原成各标记点坐标的方法是:把上一帧得到匹配的该模块的中心坐标通过平移到A,平移矩阵为B,那么上一帧该模块上的各标记点通过矩阵B的平移作用后得到的点坐标即为所求当前模块各标记点的三维坐标。
如果在本数组段的信息记录数据过少(很可能是连续缺点所致),利用Newton插值函数求出的预测点将误差较大,我们将辅助一些其它的约束条件(模块拆分匹配、动力学约束等)进行预测跟踪。
步骤4:当每个模块都得以预测和跟踪后,进行结构校验。结构校验是对匹配或追踪的结果进行检验,分全局和局部两个方面的检验。全局方面,模版对应结构和关节进行距离检测,满足距离误差范围的认为跟踪正确,否则认为跟踪错误。局部方面,进行身体左右侧检验,如双手和双脚的匹配矫正。
本发明与现有技术相比具有以下优点:
1、一般的人体运动数据跟踪匹配方法利用运动数据的拓扑结构和前后帧的局部联系进行数据处理,但仅仅运用这些局部信息可能会导致运动数据的失配和误差累积,从而跟踪失败,有时需要手工进行参数调整。本发明在以上两个约束条件下,提出基于模块的分段线性模型,充分地挖掘运动数据之间的关联信息,探索运动数据的全局规律,引用归纳总结方法学,动态地对运动数据进行描述,从而减少匹配误差,提高匹配效率,达到数据自动处理,无需人工调整,满足实时性要求。
2、本发明提出基于模块的去噪算法,有效合理地对噪声数据进行预处理,降低了后期数据跟踪匹配的误差累累积。
附图说明
图1本发明算法流程图。
图2标记点摆放方法。
图3人体拆分结构图。
图4模块去噪示图1。
图5模块去噪示图2。
图6模块分段线性模型流程图。
图7运动模块分段线性模型算法提取的手部(左)和腰部(右)的分段结果图。
图8系统实现结果,上图是散乱数据下图对应处理数据。
具体实施方式
下面通过具体的实施方式对本发明的方法做进一步说明。
在一个实施例中,本发明的基于模块分段线性模型的人体运动光学捕捉数据处理是在一台CPU主频为2.8GHz,内存为1G的计算机上实现,该计算机采用Windows XP操作系统。实例选取一组体操运动进行验证,运动人体标记点的贴点方式如图2所示,标记点个数为32,采样频率60fps。
具体实施步骤为:
步骤1:采集原始数据。原始数据存储格式如下:
FRAME1
MK1   -26.1368805   -37.1172719   47.6289079
MK2   -31.9841932   4.3155763     10.222054
MK3   -30.5799854   -29.5903648   161.4415529
MK4   -34.5172103   -18.1700251   145.7727965
MK5   -47.407498    -47.131523    112.9801285
MK6   -14.3785219   -33.1683169   96.9415495
FRAME2
其中FRAMEn表示为第n帧数据
MKm表示第m个特征标记点,随后的三个数分别表示其x,y,z坐标,单位cm。
步骤2:载入运动数据。
步骤3:建立人体分块模型。拓扑结构上相近和在生理结构上相关的原则,把人体骨架拆分为七大模块。并导入模板参数。
步骤4:数据预处理。根据模块去噪算法对散乱数据进行预处理,处理后数据每帧保持在和所贴标记点数目大致相同,本专利规定32个标记点。
步骤5:模块分段线性模型。根据模块分段线性模型,分模块归纳统计出不同模块在不同阶段的变化趋势。最终统计结果可用一张二维表来描述,以便用于运动数据的预测和跟踪。
步骤6:循环所有帧数据,对每帧调用基于模块分段线性模型的运动数据预测与跟踪算法。该算法在发明专利内容第5节已经详细叙述,此过程可用伪码描述为:
NoiseData[][]=InputAllData();
Template[]=Input TemplateData();
FOR i=1 to m_nCutFrame
{
        ResultStatistics[][]=Statistics(NoiseData[][]);
        Result1[]=Ondataprocess(ResultStatistics[][]);
        Result1[]=RectifyData(Result1[]);
        ExportData();
}
步骤7:处理后的运动数据输出,以文件形式输出,数据格式为:
FRAME1
MK1   -10.3234911   3.0258412    4.1649591
MK2   -22.1531727   -40.1301094  3.5659
MK3   -10.5284472   -36.212643    4.136714
MK4   -16.0143771   -22.0329356   138.3190033
MK5   -19.5042063   26.92842      96.000171
MK6   -40.5696009   -67.6225109   89.4987225
MK7   -14.6513428   -32.9409783   97.0535532
FRAME2
其中FRAMEn表示为第n帧数据,具体帧数和原始数据一样。
MKm表示第m个特征标记点,随后的三个数分别表示其x,y,z坐标,单位mm。在本专利中数据处理后m的最大值固定为32,与原始数据对比对应值不变,变化的是原始数据中每帧数据可能不为32个。且标记点顺序与模板中标记点顺序一致。
运用本专利所提方法,该系统对不同复杂度的捕捉数据进行处理,处理结果显示准确处理率根据动作复杂度不同分布在70%-100%之间,如表1所示,对于一般交叉较少运动幅度变化不是很大的常规数据匹配成功率能达到90%以上,对于运动数据缺点比较多而且运动幅度很大的运动,成功定标率在80%左右。本算法抗噪能力强,且不存在跟丢现象。且在处理过程中自动递归处理,无须手动干预,经测试,对于以每秒60帧采集的散乱数据,单帧数据处理过程耗时t<1/60s,每帧处理耗时相近,处理效率能够满足实时性要求。附图8为利用本文所提算法并经过优化后对一组光学捕捉散乱运动进行数据处理的界面,分别显示散乱数据和对应的处理结果。
表一:各组运动数据实验结果

Claims (2)

1.基于模块分段线性模型的光学运动捕捉数据处理方法,其特征在于包括如下步骤:
(一)建立人体几何模型和确立人体标记点摆放方式,导入人体模型和参数;
(二)按照在拓扑结构上相近和在生理结构上相关的原则,把联系紧密的骨骼进行组合,根据人体生理结构把人体骨架拆分为七大模块,所述模块包括头部、腰部、大腿部、胸部、脚部、肩部和手部模块,以建立人体生理结构模块,导入人体生理结构模块参数;
(三)构造模块去噪算法:对散乱数据进行噪声预处理,合理剔出噪声数据,保证剩余数据点个数为30-34个;
所述去噪算法具体的方案是:当存在噪声点时,通过选择能够和模板更加匹配的点为待标定的标记点,其它点删除;为了避免剔除其他模块的标记点,在删除其它噪声点时看该模块是否和手部模块相交,如相交看那些噪声点是否是手部模块的组成部分,如果不是就删除;
(四)建立模块分段线性模型:利用噪声数据的统计信息,动态地对运动数据进行描述,得到统计信息表,为后期的数据匹配跟踪处理提供有效的约束条件;具体实现步骤为:
(4.1)以手部模块为例,手部模块为基本固定的四边形,依据四边形的边长和对角线长在运动过程中不变为约束条件进行形状匹配,把每一帧中这样的模块都找到,如没有不计,说明是缺点所致;对其四点坐标求平均值,用一个二维数组来记录,横轴表示帧t,纵轴分别表示当前帧相对于前一帧在x、y、z方向上的偏移量;
(4.2)以连续的5帧为一个时间段,首先检查此5帧数据中是否有明显偏离较大的帧,如有认为是在匹配中的误配现象,去除之;然后求出剩余帧的平均变化位移,依次求得并保存于数组a中,横轴表示第几段的编号,纵轴表示变化速度、首帧与末帧的向量和相对于上一时间段的方向改变角度;
(4.3)从首段开始,依次比较相邻段的记录,如相似则合并,反之设标志位表示是一趋势段,相似的条件为:①变化速度相差小于一定值,②运动方向平滑,夹角小于90度;
(4.4)如两段能合并,修改数组a,当前项的横轴不变,纵轴变化的速度改为两段的平均值,首帧不变,末帧改为后一段的末帧值,由于当前两项合二为一,因此数组后部依次前移;直到查询到数组末尾,结束合并查询;
步骤(4.5)对每一模块进行以上(4.1-4.4)步处理,最终统计结果用一张二维表来描述,以便用于运动数据的预测和跟踪;
(五)基于模块分段线性模型的运动数据预测与跟踪算法;具体实现步骤包括:
(5.1)调用模块去噪算法,进行运动数据跟踪前的降噪处理;
(5.2)依据各模块的分段统计信息,按各模块的变化幅度由低到高进行排序,对于每一帧数据,从变化幅度低的模块开始进行模块匹配,匹配方法是利用几何特征,如匹配成功,对运动数据进行标记,并从原始数据中把已标记的运动数据删除,如匹配失败,转到步骤(5.3);
(5.3)如没有匹配成功,利用当前特征数组段的信息记录数据进行牛顿插值,插值函数所得到的结果是模块的中心坐标,记为A,从中心坐标还原成各标记点坐标的方法是:把上一帧得到匹配的该模块的中心坐标通过平移到A,平移矩阵为B,上一帧该模块上的各标记点通过矩阵B的平移作用后得到的点坐标即为所求当前模块各标记点的三维坐标,如果在本数组段的信息记录数据过少,利用牛顿插值函数求出的预测点将误差较大,应辅助约束条件进行预测跟踪;
(5.4)当每个模块都得以预测和跟踪后,进行结构校验:结构校验是对匹配或追踪的结果进行检验,分全局和局部检验,全局检验时,模板对应结构和关节进行距离检测,满足距离误差范围的认为跟踪正确,否则认为跟踪错误,局部检验时,进行身体左右侧检验;
(六)对每帧跟踪匹配后的运动数据进行结构校验,得到最终的标定数据;
(七)将成功标定的运动数据按照读入的格式写入数据文件。
2.根据权利要求书1所述的基于模块分段线性模型的光学运动捕捉数据处理方法,其特征在于所述的步骤(一)中标记点摆放的方法是:
(1.1)标记点必需覆盖所有需要捕捉的骨骼;
(1.2)标记点需反映出骨骼的自由度;
(1.3)标记点与骨骼运动一致;
(1.4)摆放在不易被遮挡的地方;
(1.5)标记点间距离大小不一;
(1.6)相关标记点间形成规则的几何图形。
CN200910011236.4A 2009-04-18 2009-04-18 基于模块分段线性模型的光学运动捕捉数据处理方法 Active CN101533528B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN200910011236.4A CN101533528B (zh) 2009-04-18 2009-04-18 基于模块分段线性模型的光学运动捕捉数据处理方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN200910011236.4A CN101533528B (zh) 2009-04-18 2009-04-18 基于模块分段线性模型的光学运动捕捉数据处理方法

Publications (2)

Publication Number Publication Date
CN101533528A CN101533528A (zh) 2009-09-16
CN101533528B true CN101533528B (zh) 2014-11-26

Family

ID=41104104

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200910011236.4A Active CN101533528B (zh) 2009-04-18 2009-04-18 基于模块分段线性模型的光学运动捕捉数据处理方法

Country Status (1)

Country Link
CN (1) CN101533528B (zh)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4763863B1 (ja) * 2009-12-28 2011-08-31 パナソニック株式会社 関節状領域検出装置およびその方法
CN102486816A (zh) * 2010-12-02 2012-06-06 三星电子株式会社 计算人体形状参数的装置和方法
CN103003846B (zh) * 2011-01-26 2016-07-06 松下知识产权经营株式会社 关节区域显示装置、关节区域检测装置、关节区域归属度计算装置、关节状区域归属度计算装置以及关节区域显示方法
EP2710557B1 (en) * 2011-05-16 2020-04-29 Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. Fast articulated motion tracking
CN106096518A (zh) * 2016-06-02 2016-11-09 哈尔滨多智科技发展有限公司 基于深度学习的快速动态人体动作提取、识别方法
CN109543996A (zh) * 2018-11-20 2019-03-29 广东机场白云信息科技有限公司 一种基于轨迹行为分析的机场人员工作评估方法
CN110176062A (zh) * 2019-05-05 2019-08-27 北京当红齐天国际文化发展集团有限公司 一种基于运动捕捉数据的虚拟人体的控制方法
CN110561430B (zh) * 2019-08-30 2021-08-10 哈尔滨工业大学(深圳) 用于离线示例学习的机器人装配轨迹优化方法及装置
CN112949084B (zh) * 2021-03-25 2023-04-25 中国人民解放军国防科技大学 一种无力反馈的受力动作捕捉误差修正方法
CN113246131B (zh) * 2021-05-27 2022-10-28 广东智源机器人科技有限公司 运动捕捉方法、装置、电子设备以及机械臂控制系统
CN113688683A (zh) * 2021-07-23 2021-11-23 网易(杭州)网络有限公司 光学运动捕捉数据处理方法、模型训练方法及装置
CN114051148A (zh) * 2021-11-10 2022-02-15 拓胜(北京)科技发展有限公司 一种虚拟主播生成方法、装置及电子设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6324296B1 (en) * 1997-12-04 2001-11-27 Phasespace, Inc. Distributed-processing motion tracking system for tracking individually modulated light points
CN1477602A (zh) * 2002-08-21 2004-02-25 厦门影迪软件有限公司 一种动画制作方法及装置
CN1506799A (zh) * 2002-12-11 2004-06-23 技嘉科技股份有限公司 虚拟位置动作捕捉装置
CN1764931A (zh) * 2003-02-11 2006-04-26 索尼电脑娱乐公司 实时运动捕捉的方法和设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6324296B1 (en) * 1997-12-04 2001-11-27 Phasespace, Inc. Distributed-processing motion tracking system for tracking individually modulated light points
CN1477602A (zh) * 2002-08-21 2004-02-25 厦门影迪软件有限公司 一种动画制作方法及装置
CN1506799A (zh) * 2002-12-11 2004-06-23 技嘉科技股份有限公司 虚拟位置动作捕捉装置
CN1764931A (zh) * 2003-02-11 2006-04-26 索尼电脑娱乐公司 实时运动捕捉的方法和设备

Also Published As

Publication number Publication date
CN101533528A (zh) 2009-09-16

Similar Documents

Publication Publication Date Title
CN101533528B (zh) 基于模块分段线性模型的光学运动捕捉数据处理方法
JP7061694B2 (ja) 画像処理方法および装置、画像機器、ならびに記憶媒体
CN109636831B (zh) 一种估计三维人体姿态及手部信息的方法
US8830269B2 (en) Method and apparatus for deforming shape of three dimensional human body model
EP2391988B1 (en) Visual target tracking
US8175326B2 (en) Automated scoring system for athletics
CN107301370A (zh) 一种基于Kinect三维骨架模型的肢体动作识别方法
US20210315486A1 (en) System and Method for Automatic Evaluation of Gait Using Single or Multi-Camera Recordings
CN110210284A (zh) 一种人体姿态行为智能评价方法
CN110991268B (zh) 一种基于深度图像的帕金森手部运动量化分析方法和系统
CN101578613A (zh) 在运动捕捉中使用的标记
CN101533526B (zh) 基于动态模板的光学运动捕捉数据处理方法
CN108919943A (zh) 一种基于深度传感器的实时手部追踪方法
CN103824326A (zh) 一种动态的人体三维建模方法
CN109344803A (zh) 一种姿态特征提取方法及相关装置
Tsai et al. Enhancing accuracy of human action Recognition System using Skeleton Point correction method
CN102023707A (zh) 基于dsp-pc机器视觉系统的斑纹式数据手套
Deng et al. Hand pose understanding with large-scale photo-realistic rendering dataset
CN116362133A (zh) 一种基于骨架的预测目标姿势下布料静态变形的双相流网络方法
CN107862387A (zh) 训练有监督机器学习的模型的方法和装置
Zeng et al. PE-DLS: A novel method for performing real-time full-body motion reconstruction in VR based on Vive trackers
CN111539294B (zh) 投篮检测方法、装置、电子设备及计算机可读存储介质
CN113297919A (zh) 基于姿态识别的康复动作检测方法、装置、设备及介质
CN101533527A (zh) 基于时空搜索数据处理的光学运动捕捉数据处理方法
CN116386137A (zh) 一种轻量级识别太极拳动作的移动端设计方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant