CN101527498A - 用于风力应用的包括超导直接驱动发电机的系统 - Google Patents

用于风力应用的包括超导直接驱动发电机的系统 Download PDF

Info

Publication number
CN101527498A
CN101527498A CN200910127472A CN200910127472A CN101527498A CN 101527498 A CN101527498 A CN 101527498A CN 200910127472 A CN200910127472 A CN 200910127472A CN 200910127472 A CN200910127472 A CN 200910127472A CN 101527498 A CN101527498 A CN 101527498A
Authority
CN
China
Prior art keywords
generator
superconductor
coil
armature coil
magnet exciting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN200910127472A
Other languages
English (en)
Inventor
J·W·布雷
E·T·拉斯卡里斯
K·西瓦苏布拉马尼亚姆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Co
Original Assignee
General Electric Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Electric Co filed Critical General Electric Co
Publication of CN101527498A publication Critical patent/CN101527498A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D9/00Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
    • F03D9/20Wind motors characterised by the driven apparatus
    • F03D9/25Wind motors characterised by the driven apparatus the apparatus being an electrical generator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D15/00Transmission of mechanical power
    • F03D15/20Gearless transmission, i.e. direct-drive
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D80/00Details, components or accessories not provided for in groups F03D1/00 - F03D17/00
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K55/00Dynamo-electric machines having windings operating at cryogenic temperatures
    • H02K55/02Dynamo-electric machines having windings operating at cryogenic temperatures of the synchronous type
    • H02K55/04Dynamo-electric machines having windings operating at cryogenic temperatures of the synchronous type with rotating field windings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D13/00Assembly, mounting or commissioning of wind motors; Arrangements specially adapted for transporting wind motor components
    • F03D13/20Arrangements for mounting or supporting wind motors; Masts or towers for wind motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D9/00Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
    • F03D9/20Wind motors characterised by the driven apparatus
    • F03D9/25Wind motors characterised by the driven apparatus the apparatus being an electrical generator
    • F03D9/255Wind motors characterised by the driven apparatus the apparatus being an electrical generator connected to electrical distribution networks; Arrangements therefor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/18Structural association of electric generators with mechanical driving motors, e.g. with turbines
    • H02K7/1807Rotary generators
    • H02K7/1823Rotary generators structurally associated with turbines or similar engines
    • H02K7/183Rotary generators structurally associated with turbines or similar engines wherein the turbine is a wind turbine
    • H02K7/1838Generators mounted in a nacelle or similar structure of a horizontal axis wind turbine
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Wind Motors (AREA)
  • Superconductive Dynamoelectric Machines (AREA)

Abstract

本发明名称为“用于风力应用的包括超导直接驱动发电机的系统”。一种用于发电的系统(100)包括超导直接驱动风力发电机(102),它包括由第一超导材料构成的电枢线圈(208)以及由第二超导材料构成的励磁线圈(210),其中,在发电机(102)的运行期间,电枢线圈(208)和励磁线圈(210)进行电磁通信,并且励磁线圈(210)响应通过其的励磁电流而产生磁场,磁场在生成电力输出的电枢线圈(208)中感应输出电流。

Description

用于风力应用的包括超导直接驱动发电机的系统
技术领域
本发明的实施例概要地涉及超导发电机,更具体来说,涉及用于风力应用的包括超导直接驱动发电机的系统。
背景技术
在这方面,已经通过构建超导材料(“超导体”)而不是普通铜材料的发电机励磁线圈(它通常承载近似直流)来制作超导发电机。与例如铜等传统导体相比,超导体的重量通常较轻、尺寸较小(例如相对于载流容量),并且在传导电流(特别是在较低频率)时也更为有效。因此,风力应用、如风力涡轮发电机中超导体的使用提供诸如更有效的性能、较低发电机重量、非变速箱直接驱动操作以及较低制造和安装成本等的有益效果。但是,超导体要求极冷的操作温度(例如大约-269至-196摄氏度或者4至77开氏度)以便进行超导,同时超导体在承载非交流(“DC”)电流时具有零阻抗,在携带交流(“AC”)电流时,阻抗随频率增加而增加,这导致抵消上述有益效果的发热形式的损耗。因此,超导发电机的电枢线圈(它通常承载较高频率的AC电流)仍然由铜构成。但是,将超导体用于风力应用中使用的超导发电机的电枢线圈是合乎需要的。
发明内容
在一个示范实施例中,用于风力应用的包括超导直接驱动发电机的系统包括超导直接驱动风力发电机,它包括由第一超导材料构成的电枢线圈以及由第二超导材料构成的励磁线圈,其中,在发电机运行期间,电枢线圈和励磁线圈进行电磁通信,并且励磁线圈响应通过其的励磁电流而产生磁场,磁场在生成电力输出的电枢线圈中感应输出电流。
另一个示范实施例包括一种用于发电的系统,它包括:超导发电机,包括由第一超导材料构成的电枢线圈以及由第二超导材料构成的励磁线圈,其中,在发电机运行期间,电枢线圈和励磁线圈进行电磁通信,并且励磁线圈响应通过其的励磁电流而产生磁场,磁场在生成电力输出的电枢线圈中感应输出电流;以及涡轮转子,以直接驱动配置与发电机连接。
另一个示例实施例包括一种风力涡轮电力系统,它包括:超导发电机,包括由超导材料构成并且与发电机的转子附连的电枢线圈以及由超导材料构成并且与发电机的定子附连的励磁线圈;以及涡轮转子,以直接驱动配置经与发电机的转子连接的轴与发电机连接,其中,涡轮转子的转动使励磁线圈附近的电枢线圈转动,这在电流通过励磁线圈被输入时从电枢线圈生成电力输出。
附图说明
通过参照附图阅读以下详细描述,会更好地理解这些及其它特征、方面和优点,附图中,相似符号在整个附图中表示相似部件,其中:
图1是根据本发明的示范实施例、包括超导发电机的示范风力系统的图示。
图2是图1的超导发电机的示范截面图的图示。
具体实施方式
在以下详细描述中,阐明大量具体细节,以便提供对各种实施例的透彻理解。但是,即使没有这些具体细节也可实施实施例。在其它情况下,没有详细描述众所周知的方法、过程和组件。
此外,各种操作可描述为以有助于理解本发明的实施例的方式所执行的多个分立步骤。但是,描述的顺序不应当理解为暗示这些操作需要按照它们所表述的顺序来执行或者它们甚至是顺序相关的。此外,短语“在一个实施例中”的重复使用不一定都表示同一个实施例,尽管也可能表示同一个实施例。最后,本申请中所使用的术语“包含”、“包括”、“具有”等是同义的,除非另有指示。
与相同或相似容量的传统发电机相比,超导发电机(例如具有一个或多个超导组件的发电机)提供更轻的重量、更小的尺寸以及更有效的操作,因此在例如风力涡轮系统等风力应用中是有利的。直接驱动超导发电机可运行于足够低的频率,以便除了超导励磁线圈之外还允许包括超导电枢线圈,从而在风力应用中提供甚至更高程度的上述有益效果。
图1示出根据本发明的示范实施例、包括超导发电机102的示范风力系统100。示范系统100还包括其中包括一个或多个叶片105的涡轮转子104。涡轮转子104以直接驱动配置与发电机102连接。例如,涡轮转子104可经轴106与发电机102连接。风力系统100的发电机102、涡轮转子104的一个或多个部分、轴106和其它组件(未示出)可以至少部分包含在壳体108中,壳体108在现有技术中也可称作“机舱(nacelle)”。
发电机102和涡轮转子104由支撑结构110支撑,支撑结构110是能够在地面或其它表面之上支撑这些组件的结构。如图所示,支撑结构110还可支撑包括其中所包含组件的壳体108。虽然未示出,但是,电力承载导体(例如电缆)能与发电机102的输出连接,并且沿支撑结构110(例如在内部或外部)延伸下来,以便与电网(例如发电、配电和/或输电系统)连接。
图2示出图1的超导发电机102的示范截面图。如图所示,发电机102包括外同心组件204和内同心组件206。在一些实施例中,外组件204可以是发电机102的定子(即固定部分),而内组件206可以是(例如以内部转子配置的)发电机102的转子(即转动部分)。但是,在其它实施例中,外组件204可以是发电机102的转子,而内组件206可以是(例如以外部转子配置的)发电机102的定子。间隙(或“空气间隙”)205包含在外组件204与内组件206之间,并且允许它们之间的运动(例如转动)。此外,在一些实施例中,轴106可如图所示与内组件206连接,而在其它实施例中,轴106可与外组件204连接。
发电机102还包括与外组件204附连的一个或多个载流导体(“线圈”)208的第一集合以及与内组件206附连的一个或多个载流导体(“线圈”)210的第二集合。在发电机102的运行期间,这些线圈208、210进行电磁通信。在一些实施例中,线圈208可以是发电机102的电枢线圈,而线圈210可以是发电机102的励磁线圈。在其它实施例中,线圈208可以是发电机102的励磁线圈,而线圈210可以是发电机102的电枢线圈。在这类实施例中,励磁线圈与励磁电流源(例如“励磁机”)连接,通过其中的电流产生跨跃励磁线圈的磁场,以及电枢线圈与发电机102的输出连接(例如经输出端子),以便传导输出电流和电力输出。虽然示出几个线圈208、210,但是,在各种实施例中,分别在外组件206和内组件208周围可存在更多或更少的线圈208、210和/或其绕组,例如以便配置发电机102的极数,并由此配置发电机102的发电频率和/或其它运行特性。
励磁线圈、如线圈210由例如铌-钛(NbTi)、铌-锡(Nb3Sn)或镁-硼(MgB2)等超导材料构成。此外,根据本发明的示范实施例,电枢线圈、如线圈208也由例如NbTi、Nb3Sn或MgB2等超导材料构成,而不是由传统超导发电机中那样由铜构成。在一些实施例中,线圈208、210由不同的超导材料构成,而在其它实施例中,它们由相同的超导材料构成。此外,在一些实施例中,电枢线圈208和/或励磁线圈210可由例如铋锶钙铜氧化物(例如BSCCO-2212或BSCCO-2223)或者钇钡铜氧化物(例如YBa2Cu3O7或“YBCO”)等高温超导体(HTS)构成。
在示范操作中,风通过叶片105上方,由此使涡轮转子104转动。这种转动引起发电机102的转子(例如内组件206)的相应转动,这可例如经轴106进行,因为发电机102以直接驱动配置与涡轮转子104连接。因此,励磁线圈(例如线圈210)在电枢线圈(例如线圈208)附近转动。引起例如是近似DC(例如接近一赫兹或更小)的励磁电流例如经励磁机流过励磁线圈210。励磁线圈210响应这个励磁电流而产生磁场,以及当励磁线圈210在电枢线圈208附近转动时,该磁场在电枢线圈208中感应输出电流。与跨跃电枢线圈208产生的电压耦合的该输出电流生成例如经电力电缆从发电机102到电网的电力输出。
作为直接驱动发电机102,发电机102配置成运行于大约每分钟10至25转(rpm)的转速,以及感应频率大约为1至10赫兹(Hz)(或周期/秒)的电枢电流。这种低频特性允许使用超导电枢线圈208而没有例如因发热损耗而抵消或消除超导材料的有益效果,这种发热损耗会出现在传统风力系统超导发电机中,其运行于(例如变速箱驱动)较高转速并且产生较高频率电枢线圈电流。
本书面描述使用包括最佳模式的示例来公开本发明,并且还允许实施本发明,包括制作和使用任何装置或系统,以及执行任何结合方法。本发明的专利范围由权利要求来定义,并且可包括其它示例。如果这类其它示例具有与权利要求的文字语言完全相同的结构元件,或者如果它们包括具有与权利要求的文字语言非实质差异的等效结构元件,则它们意在处于权利要求的范围之内。
各部分列表
风力系统100
超导发电机102
涡轮转子104
叶片105
轴106
壳体108
支撑结构110
外同心组件、定子204
间隙、空气间隙205
内同心组件、转子206
一个或多个载流导体、线圈、电枢线圈208的第一集合
一个或多个载流导体、线圈、励磁线圈210的第二集合

Claims (11)

1.一种用于发电的系统(100),包括:
超导直接驱动风力发电机(102),包括:
由第一超导材料组成的电枢线圈(208);以及
由第二超导材料组成的励磁线圈(210);
其中,在所述发电机(102)的运行期间,所述电枢线圈(208)和所述励磁线圈(210)进行电磁通信,以及所述励磁线圈(210)响应通过它的励磁电流而产生磁场,所述磁场在生成电力输出的所述电枢线圈(208)中感应输出电流。
2.如权利要求1所述的系统(100),其中,所述发电机(102)配置成运行于每分钟10至25转的转速。
3.如权利要求1所述的系统(100),其中,所述发电机(102)配置成感应频率为1至10赫兹(Hz)的输出电流。
4.如权利要求1所述的系统(100),其中,所述电枢线圈(208)与所述发电机(102)的定子(204)附连,而所述励磁线圈(210)与所述发电机(102)的转子(206)附连。
5.如权利要求1所述的系统(100),其中,所述电枢线圈(208)与所述发电机(102)的转子(206)附连,而所述励磁线圈(210)与所述发电机(102)的定子(204)附连。
6.如权利要求1所述的系统(100),其中,所述第一超导材料是铌-钛(NbTi)、铌-锡(Nb3Sn)或镁-硼(MgB2),以及所述第二超导材料是NbTi、Nb3Sn或MgB2
7.如权利要求6所述的系统(100),其中,所述第一超导材料与所述第二超导材料相同。
8.如权利要求1所述的系统(100),其中,所述第一超导材料是包括铋锶钙铜氧化物(BSCCO)或者钇钡铜氧化物(YBCO)的高温超导体。
9.如权利要求1所述的系统(100),其中,所述第二超导材料是包括铋锶钙铜氧化物(BSCCO)或者钇钡铜氧化物(YBCO)的高温超导体。
10.如权利要求1所述的系统(100),还包括:以直接驱动配置与所述发电机(102)连接的涡轮转子(104)。
11.如权利要求10所述的系统(100),还包括:支撑所述发电机(102)和所述涡轮转子(104)的支撑结构(110)。
CN200910127472A 2008-03-06 2009-03-06 用于风力应用的包括超导直接驱动发电机的系统 Pending CN101527498A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US12/043474 2008-03-06
US12/043,474 US20090224550A1 (en) 2008-03-06 2008-03-06 Systems involving superconducting direct drive generators for wind power applications

Publications (1)

Publication Number Publication Date
CN101527498A true CN101527498A (zh) 2009-09-09

Family

ID=41010304

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200910127472A Pending CN101527498A (zh) 2008-03-06 2009-03-06 用于风力应用的包括超导直接驱动发电机的系统

Country Status (3)

Country Link
US (1) US20090224550A1 (zh)
EP (1) EP2108833A2 (zh)
CN (1) CN101527498A (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102412640A (zh) * 2011-12-05 2012-04-11 中国东方电气集团有限公司 海上型超导风力发电机
CN102710200A (zh) * 2012-05-17 2012-10-03 中国石油大学(华东) 一种高温超导励磁磁通切换电机构成的直驱型风力发电系统
CN103151874A (zh) * 2011-12-07 2013-06-12 远景能源(江苏)有限公司 具有密封的定子室的风力涡轮机
CN103208883A (zh) * 2012-04-11 2013-07-17 远景能源(江苏)有限公司 带改进的冷却装置的风力涡轮机
US9046081B2 (en) 2011-12-07 2015-06-02 Envision Energy (Denmark) Aps Wind turbine with sealed off stator chamber
EP3291429A1 (en) 2016-08-30 2018-03-07 Gamesa Innovation & Technology, S.L. Synchronous generator for wind turbines

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090230690A1 (en) * 2008-03-13 2009-09-17 General Electric Company Systems involving superconducting homopolar alternators for wind power applications
US8298115B2 (en) * 2008-07-10 2012-10-30 General Electric Company Wind turbine transmission assembly
KR101376326B1 (ko) * 2009-01-14 2014-03-20 에이엠에스씨 윈텍 게엠베하 풍력 에너지 변환기의 나셀
US7851935B2 (en) * 2009-08-11 2010-12-14 Jason Tsao Solar and wind energy converter
DE102012206296A1 (de) * 2012-04-17 2013-10-17 Siemens Aktiengesellschaft Anlage zur Speicherung und Abgabe thermischer Energie und Verfahren zu deren Betrieb
JP2014204647A (ja) * 2013-04-10 2014-10-27 株式会社日立製作所 回転電機または風力発電システム
WO2020005222A1 (en) * 2018-06-27 2020-01-02 General Electric Company Wind turbine having superconducting generator and method of operating the same
US11521771B2 (en) 2019-04-03 2022-12-06 General Electric Company System for quench protection of superconducting machines, such as a superconducting wind turbine generator
US11128231B2 (en) * 2019-08-01 2021-09-21 General Electric Company System and method for exciting low-impedance machines using a current source converter
US11387699B2 (en) 2020-12-15 2022-07-12 General Electric Renovables Espana, S.L. Rotating cooling system for wind turbine generator

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3368087A (en) * 1963-08-16 1968-02-06 Asea Ab Rotating electric high power machine with super-conducting stator
US3469121A (en) * 1964-10-21 1969-09-23 Stuart H Smith Jr Superconductive power apparatus
DE1283946B (de) * 1965-03-24 1968-11-28 Siemens Ag Generator zum Erzeugen von Stroemen in supraleitenden Spulen
US3440456A (en) * 1965-04-15 1969-04-22 Siemens Ag Commutating arrangement for electric machines with superconducting armature coils
DE1638613B1 (de) * 1967-09-29 1970-12-03 Siemens Ag Supraleitender Generator
US3772543A (en) * 1972-05-25 1973-11-13 Massachusetts Inst Technology Eddy-current shield superconducting machine
CH591178A5 (zh) * 1972-11-03 1977-09-15 Anvar
US4185216A (en) * 1978-03-29 1980-01-22 Westinghouse Electric Corp. Circumferentially-segmented magnet homopolar dynamoelectric machine
IL133278A0 (en) * 1999-12-02 2001-04-30 Univ Ben Gurion Single phase autonomous generator with dc excitation
US6856062B2 (en) * 2000-04-26 2005-02-15 General Atomics Homopolar machine with shaft axial thrust compensation for reduced thrust bearing wear and noise
US6590305B2 (en) * 2001-05-15 2003-07-08 General Electric Company High temperature super-conducting synchronous rotor having an electromagnetic shield and method for assembly
US6608409B2 (en) * 2001-05-15 2003-08-19 General Electric Company High temperature super-conducting rotor having a vacuum vessel and electromagnetic shield and an assembly method
US6759781B1 (en) * 2003-02-14 2004-07-06 American Superconductor Corporation Rotor assembly
GB2417140B (en) * 2004-08-09 2008-01-23 Alstom Rotating superconducting machines
US7312544B2 (en) * 2005-02-15 2007-12-25 General Electric Company Fluid transfer device and method for conveying fluid to a rotating member
US7274125B2 (en) * 2005-04-20 2007-09-25 General Electric Company Current collector ring for a generator having balance resistors
US7463914B2 (en) * 2005-06-08 2008-12-09 Dynamo Capital, Inc. Superconducting acyclic homopolar electromechanical power converter
US7233079B1 (en) * 2005-10-18 2007-06-19 Willard Cooper Renewable energy electric power generating system
US7821164B2 (en) * 2007-02-15 2010-10-26 General Electric Company Method and apparatus for a superconducting generator driven by wind turbine

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102412640A (zh) * 2011-12-05 2012-04-11 中国东方电气集团有限公司 海上型超导风力发电机
CN102412640B (zh) * 2011-12-05 2014-04-02 中国东方电气集团有限公司 海上型超导风力发电机
CN103151874A (zh) * 2011-12-07 2013-06-12 远景能源(江苏)有限公司 具有密封的定子室的风力涡轮机
CN103151875A (zh) * 2011-12-07 2013-06-12 远景能源(江苏)有限公司 具有密封的定子室的风力涡轮机
CN103151875B (zh) * 2011-12-07 2015-04-01 远景能源(江苏)有限公司 具有密封的定子室的风力涡轮机
US9046081B2 (en) 2011-12-07 2015-06-02 Envision Energy (Denmark) Aps Wind turbine with sealed off stator chamber
CN103151874B (zh) * 2011-12-07 2015-08-19 远景能源(江苏)有限公司 具有密封的定子室的风力涡轮机
CN103208883A (zh) * 2012-04-11 2013-07-17 远景能源(江苏)有限公司 带改进的冷却装置的风力涡轮机
CN102710200A (zh) * 2012-05-17 2012-10-03 中国石油大学(华东) 一种高温超导励磁磁通切换电机构成的直驱型风力发电系统
CN102710200B (zh) * 2012-05-17 2015-05-13 中国石油大学(华东) 一种高温超导励磁磁通切换电机构成的直驱型风力发电系统
EP3291429A1 (en) 2016-08-30 2018-03-07 Gamesa Innovation & Technology, S.L. Synchronous generator for wind turbines

Also Published As

Publication number Publication date
EP2108833A2 (en) 2009-10-14
US20090224550A1 (en) 2009-09-10

Similar Documents

Publication Publication Date Title
CN101527498A (zh) 用于风力应用的包括超导直接驱动发电机的系统
Terao et al. Electromagnetic design of superconducting synchronous motors for electric aircraft propulsion
US8084909B2 (en) Dual armature motor/generator with flux linkage
AU2005271044A1 (en) Superconducting electrical machines
Zhu et al. Design and analysis of 10 MW class HTS exciting double stator direct-drive wind generator with stationary seal
CN104883015A (zh) 双定子超导励磁场调制电机
EP3627674B1 (en) Electric machine
Wang et al. Comparison study of superconducting generators with multiphase armature windings for large-scale direct-drive wind turbines
Ohsaki et al. Electromagnetic characteristics of 10 MW class superconducting wind turbine generators
Xu et al. Performance comparison of 10-MW wind turbine generators with HTS, copper, and PM excitation
Kalsi et al. The status of HTS ship propulsion motor developments
Kalsi et al. Superconducting rotating machines for aerospace applications
US11303194B1 (en) Wound field synchronous machine
Liang et al. Electromagnetic simulations of a fully superconducting 10-MW-class wind turbine generator
CN101532472A (zh) 涉及用于风力应用的超导单极交流发电机的系统
US7466046B2 (en) Methods and apparatus for operating an electric machine
Masson et al. Scaling up of HTS motor based on trapped flux and flux concentration for large aircraft propulsion
Qu et al. Design study of a 10-kW fully superconducting synchronous generator
Kovalev et al. Superconducting technologies for renewable energy
Joshi et al. Demonstration of two synchronous motors using high temperature superconducting field coils
JP2011103708A (ja) 超電導回転機
CN207382174U (zh) 一种高温超导同步调相机
Chubraeva et al. Project of autonomous power plant with high-temperature superconductive devices
Cheng et al. A novel HTS wind generator having permanent magnets between the rotor pole-tips
Ohsaki et al. Design and characteristic analysis of 10 MW class superconducting wind turbine generators with different types of stator and rotor configurations

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20090909