CN101517940A - Wireless communication network for an implantable medical device system - Google Patents

Wireless communication network for an implantable medical device system Download PDF

Info

Publication number
CN101517940A
CN101517940A CN 200780033906 CN200780033906A CN101517940A CN 101517940 A CN101517940 A CN 101517940A CN 200780033906 CN200780033906 CN 200780033906 CN 200780033906 A CN200780033906 A CN 200780033906A CN 101517940 A CN101517940 A CN 101517940A
Authority
CN
China
Prior art keywords
device
medical device
network
communication
data
Prior art date
Application number
CN 200780033906
Other languages
Chinese (zh)
Inventor
兰德尔·L·诺尔
杰勒德·J·希尔
杰韦德·马苏德
格雷戈里·约翰·豪贝里希
萨拉·安妮·奥代特
Original Assignee
美敦力公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US82277006P priority Critical
Priority to US60/822,770 priority
Application filed by 美敦力公司 filed Critical 美敦力公司
Publication of CN101517940A publication Critical patent/CN101517940A/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B13/00Transmission systems characterised by the medium used for transmission, not provided for in groups H04B3/00 - H04B11/00
    • H04B13/005Transmission systems in which the medium consists of the human body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Detecting, measuring or recording for diagnostic purposes; Identification of persons
    • A61B5/0002Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network
    • A61B5/0026Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network characterised by the transmission medium
    • A61B5/0028Body tissue as transmission medium, i.e. transmission systems where the medium is the human body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Detecting, measuring or recording for diagnostic purposes; Identification of persons
    • A61B5/0002Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network
    • A61B5/0031Implanted circuitry
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/02Details
    • A61N1/08Arrangements or circuits for monitoring, protecting, controlling or indicating
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/372Arrangements in connection with the implantation of stimulators
    • A61N1/37211Means for communicating with stimulators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/372Arrangements in connection with the implantation of stimulators
    • A61N1/37211Means for communicating with stimulators
    • A61N1/37217Means for communicating with stimulators characterised by the communication link, e.g. acoustic or tactile
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F19/00Digital computing or data processing equipment or methods, specially adapted for specific applications
    • G06F19/30Medical informatics, i.e. computer-based analysis or dissemination of patient or disease data
    • G06F19/34Computer-assisted medical diagnosis or treatment, e.g. computerised prescription or delivery of medication or diets, computerised local control of medical devices, medical expert systems or telemedicine
    • G06F19/3418Telemedicine, e.g. remote diagnosis, remote control of instruments or remote monitoring of patient carried devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; Arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks ; Receiver end arrangements for processing baseband signals
    • H04L25/03006Arrangements for removing intersymbol interference
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; Arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks ; Receiver end arrangements for processing baseband signals
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L25/03012Arrangements for removing intersymbol interference operating in the time domain
    • H04L25/03019Arrangements for removing intersymbol interference operating in the time domain adaptive, i.e. capable of adjustment during data reception

Abstract

An implantable medical device system includes, in one embodiment, a first device including a first communication module coupled to a wireless communication network for transmitting data and a second device adapted for implantation in a patient's body including a second communication module coupled to the wireless communication network and adapted to receive data from the first device. The second device may include an equalizer coupled to the second communication module for reducing signal distortion of the data received wirelessly through the patient's body. The second device may convert a received signal to an acoustic or radio-frequency output signal.

Description

用于植入式医疗设备系统的无线通信网络 Wireless communication network for an implantable medical device system

技术领域 FIELD

本发明总体上涉及植入式医疗设备,具体而言,涉及一种用于植入式医疗设备系统的通信网络。 The present invention relates generally to implantable medical devices, particularly, it relates to a communication network an implantable medical device system is provided.

背景技术 Background technique

各种植入式医疗设备(IMD)可用于监测生理状况和/或提供治疗。 A variety of implantable medical device (IMD) may be used to monitor physiological conditions and / or provide therapy. 这些设备可以包括感知器,所述感知器用于监测为了诊断目的的生理信号、监测病情进展、或者控制和优化治疗提供。 These devices may include a sensing device, the sensing device for monitoring the physiological signals for diagnostic purposes, monitoring disease progression, or treatment provided control and optimization. 植入式监测设备的例子包括:血液动力学监测器、ECG监测器以及葡萄糖监测器。 Examples of the implantable monitoring device comprising: a hemodynamic monitor, ECG monitor and a glucose monitor. 治疗提供设备的例子包括能够提供电刺激脉沖的设备,例如:心脏起搏器、植入式心律转变除颤器、神经刺激器、神经肌肉刺激器以及诸如胰岛素泵、吗啡泵等之类的药物递送设备。 Examples include the treatment providing device capable of providing electrical stimulation pulses device, for example: cardiac pacemakers, implantable cardioverter defibrillator, neurostimulator drugs, nerve and muscle stimulators, such as an insulin pump, a pump and the like morphine delivery device.

IMD通常与医疗导线连接,所述医疗导线从封装IMD电路的外壳延伸出来。 IMD is typically connected to the medical lead, the medical lead extending from the package housing IMD circuitry. 所述导线带有感知器和/或电极,并且所述医疗导线在所述感知器/电极与IMD电路间提供电连接时,用于在目标监测部位或治疗提供部位布置所述感知器/电极。 Said wire having a sensing and / or electrodes, and the medical lead providing an electrical connection between the Sensor / electrode and the IMD circuit, the target for monitoring the treatment site or provides the site disposed Sensor / electrode . 此外,现有已经描述了将电极或感知器合并在所述设备的外壳上或内部的无导线式IMD。 Further, the conventional electrodes has been described perceptron or incorporated on the housing of the device or the internal-conductor-free IMD.

通过具有分布在远离IMD的身体部位的感知器可加强IMD的功能和改善全面的患者护理。 IMD can enhance functionality and improve overall patient care by having a Perceptron distributed in parts of the body away from the IMD. 然而,为了实现将被传输到IMD的感知信号的通信,分布在其它身体部位的感知器与该IMD的物理连接可能是不方便的、高侵入性的、或者根据感知器植入部位该物理连接根本不可行的。 However, to achieve perceived to be transmitted to the communication signal of the IMD, located in other parts of the body of the sensor of a physical connection to the IMD may be inconvenient, highly invasive, or a connection according to the physical implantation site perceptron simply not feasible. 由Funke(美国专利5,113,859)公开的声波身体总线(acoustic body bus )允许穿过患者身体进行无线双向通信。 The Funke (U.S. Patent No. 5,113,859) disclosed physical bus sonic (acoustic body bus) allowed to pass through the patient's body to wirelessly communicate bidirectionally. 随着植入式设备技术的进步和持续、远程地提供全面的患者护理管理能力的发展,显然有必要为分布贯穿患者身体或者患者的部分身体的被植入医疗设备之间以及与位于患者体外的设备之间提供有效的通信。 With the advancement of technology and continue to implantable devices, and remotely provides comprehensive patient care management development capabilities, a clear need for the distribution throughout the body or body part of a patient between the patient's medical devices and in vitro were implanted in the patient located providing efficient communication between devices. 当信号通过被植入的医疗设备通信系统的节点间的身体时,由于遇到的身体组织成分和结构的差异性,穿过患者身体无线传输的数据信号可能遭受大量散射 When the signal through the body between nodes implanted medical device communication system, due to differences in the composition and structure of the body tissue of the encountered wireless transmission of data signals through the body of the patient may suffer a large number of scattering

4和反射。 4 and reflection. 附图说明 BRIEF DESCRIPTION

图1是在植入式医疗设备系统中实现的无线通信网络的示意图;图2是根据本发明的一种实施方式的功能框图,该功能框图概述了被包括于联网的植入式医疗设备内的功能组件; FIG 1 is a schematic diagram of a wireless communication network implemented in an implantable medical device system; FIG. 2 is a functional block diagram of one embodiment of the present invention, an overview of the functional block diagram of an implantable medical device are included in a networked the functional components;

图3是适于沿着体内通信路径进行无线通信的两个联网设备的框图;图4是一种应用于植入式设备通信系统的方法的流程图;图5是具有声》^/射频网关节点的植入式医疗设备通信网络的示意图;图6 A-6C是通信网络中声波/射频网关节点302的不同实施方式的示意图;图7是涉及在植入式医疗设备通信网络中使用的通信方法的流程图。 FIG 3 is a block diagram of two networked devices adapted for wireless communications in vivo along the communication path; FIG. 4 is a flow chart of a system applied to the implanted device communication method; FIG. 5 is an acoustic "^ / RF gateway a schematic view of an implantable medical device communications network node; FIG. 6 a-6C is a schematic view of a different embodiment of the communication network of acoustic / radio gateway node 302; FIG. 7 is the communication for use in an implantable medical device in a communication network flowchart of a method.

具体实施方式 Detailed ways

在下面的描述中,作为参考以说明实现本发明的实施方式。 In the following description, by reference to illustrate embodiments of the present invention is implemented. 应该理解,在没有脱离本发明的保护范围的前提下,可以采用其它实施方式。 It should be understood that, under the premise of without departing from the scope of the present invention, other embodiments may be employed. 为了表述清楚,在附图中使用相同的附图标记标识类似的元件。 For clarity, the same reference numerals identify like elements in the figures. 本文所使用的术语"模块"指专用集成电路(ASIC)、电子电路、处理器(共享型、专用型或处理器組)、以及执行一个或者多个软件或者固件程序的存储器、组合逻辑电路或者其它提供所述功能的合适的组件。 The term "module" as used herein refers to the application specific integrated circuit (ASIC), an electronic circuit, a processor (shared, special-processor, or group), and execute one or more software or firmware programs, a combinational logic circuit, or other suitable components to provide the functionality.

本发明涉及提供在植入式医疗设备系统中实现的无线通信网络,其中,所述网络包括至少一个与第二设备通信的被植入设备,所述第二设备位于患者体内或者体外。 The present invention relates to a wireless communication network provides implemented in an implantable medical device system, wherein the network comprises at least one device is implanted in communication with a second device, the second device located inside the patient or in vitro. 所述网络可配置成在联网的设备间具有单通道,或者可配置成网状网路,所述网状网络允许通过点对点路径在联网设备间传输数据,所述点对点路径可以包括诸如已在美国专利申请No. XXXX (代理巻号为No.P25563 )中公开的多节点"跳"技术,通过引用全部并入本文中。 The network may be configured to have a single channel between networked devices, or may be configured in a mesh network, the mesh network allows transfer of data between networked device via a point in the path, the path may include a point, such as in U.S. Patent application No. XXXX (agent Volume No. No.P25563) disclosed a multi-node "jump" technique, incorporated herein by reference in its entirety. 本发明实施方式不局限于具体的网络结构,其它可以使用的网络结构的类型为星型网络、ad hoc网络以及ALOHA网络。 Embodiment of the present invention is not limited to the particular embodiment of the network structure, other network type structures can be used are star network, ad hoc networks and network ALOHA. 本文所使用的术语"节点"指包括在无线网络中至少能够在网络上发送和/或接收数据的设备,并且,"节点"还可以包括本文将描述的其它功能。 The term "node" as used herein is meant to include in a wireless network capable of transmitting at least on the network and / or receiving data apparatus, and the "node" may also include other functions to be described herein. 节点可以是被植入设备或者外部设备之一,并且还指本文中的"网络元件"。 Node may be one of the implanted device or the external device, and further refers herein "network element." 所述无线网络可包括多个植入式设备,其中每个植入式设 The wireless network may comprise a plurality of implantable devices, wherein each implantable provided

5备作为单独的网络节点运行,并且所述无线网络可包括外部设备,如本文将进一步的描述,该外部设备作为网络节点运行。 Preparation 5 operating as a separate network node, and the wireless network may include external devices, such as will be further described herein, the external apparatus operating as a network node. 应该意识到,根据本发明的各种实施方式,实现无线通信网络的整个医疗设备系统还可包括非联网设备(植入式设备或者外部设备)。 It should be appreciated that, in accordance with various embodiments of the present invention, the entire medical device system to realize a wireless communication network may further comprise a non-networked devices (implantable device or an external device).

图l是在植入式医疗设备系统中实现的无线通信网络的示意图,所述网络 Figure l is a schematic diagram of a wireless communication network implemented in an implantable medical device system, the network

包括多个植入式设备12〜26,每个植入式设备作为节点(网络元件)运行,该网络还可包括作为网络节点运行的外部设备。 12~26 comprising a plurality of implantable devices, each of the implantable device node (network element) as running, the network may further include an external apparatus operating as a network node. 患者IO被植入多个医疗设备12-26,其中医疗设备12〜26中的每一个可具有生理感知能力和/或治疗提供能力。 Patients were implanted IO plurality of medical devices 12-26, wherein each one physiological perception and / or treatment of medical device may have the ability to provide in 12~26. 如本文将进一步的描述,植入式设备12〜26中的一些可作为专用节点执行, 该专用节点用于执行诸如数据处理、数据存储或者通信管理功能之类的特定网络功能,而不提供任何生理感知或治疗提供功能。 As will be further described herein, the implantable device 12~26 some may be performed as a dedicated node, the private network node for performing the specified functions such as data processing, data storage or communications management functions and the like, without providing any perception of physiological functions or to provide treatment.

例如,设备12可以是治疗提供设备,例如:心脏起搏器、植入式心律转变除颤器、植入式药物泵或者神经刺激器。 For example, device 12 may provide a therapeutic apparatus, for example: cardiac pacemakers, implantable cardioverter defibrillators, implantable drug pump or a neurostimulator. 设备16也可以是用作双向通信节点的治疗提供设备,并且还能够执行专用网络管理功能,例如充当网络网关。 Device 16 may also be used as a therapeutic device providing bidirectional communication node, and can also perform a specialized network management functions, such as serving as a network gateway. 设备14可以具体为用于监测生理状况的感知设备,并且也用作双向通信节点。 14 may be embodied as a device for monitoring a physiological condition sensing apparatus, and is also used as a bidirectional communication node. 设备18、 22、 24以及26可以具体为用于监测各种生理状况的感知设备,也可以作为低功率设备实现,所述低功率设备主要作为无接收能力或有限接收能力的传输设备运行。 Device 18, 22, 24 and 26 can be specifically used to monitor various physiological conditions of the sensing device may be implemented as a low power device, said low-power transmission device operating as a main device without receiving capability or limited reception capability. 设备20可作为转发器节点实现以减轻用于将数据从更远的植入部位传输到其它网络节点的感知设备18的功率需求负荷。 Device 20 may be implemented as a repeater node for transferring data to mitigate distant from the implantation site to the power requirements of the load sensing device 18 to other network nodes.

可被列为网络元件的植入式设备包括任何治疗提供设备(例如上面列出的治疗提供设备)以及任何生理感知设备,生理感知设备例如:EGM/ECG感知器、血液动力学监测器、压力感知器、血液或组织化学感知器或者用于测定各种蛋白质或酶水平的感知器,其中,血液或组织化学感知器例如:氧气感知器、PH感知器、葡萄糖感知器、钟感知器或者其它电解质感知器。 The implantable device may be classified as including any network element providing the treatment device (e.g. treatment providing apparatus listed above) as well as any physiological sensing device, sensing device, such as a physiological: EGM / ECG sensing, a hemodynamic monitoring, pressure perceptron, blood or tissue chemical sensing device for measuring a variety of protein or enzyme levels or perceptron, wherein the blood or tissue chemical sensing for example: oxygen Sensor, PH sensing device, a glucose sensing device, sensing the bell, or other electrolyte Sensor. 本发明各种实施方式提供的无线网络通信系统不限于任何特定类型的植入式医疗设备或者植入式医疗设备的组合。 Wireless network communication system provides various embodiments of the present invention is not limited to any specific combination of type of implantable medical device or implantable medical device.

植入式设备24〜26之间实现的无线通信网络可利用声波、超声波和/或无线信号频率带宽。 24~26 achieved between the implanted device may utilize a wireless communication network sonic, ultrasound and / or radio frequency signal bandwidth. 这里将描述可以实现将RF数据传输信道和声波或超声波数据传输信道的结合以允许同时传输射频和声波/超声波数据。 It will be described herein may be implemented in conjunction with RF data transmission channels and a sonic or ultrasonic data transmission channels to allow simultaneous transmission of RF and sonic / ultrasonic data. 本文所使用的"声波"信号包括在可听声波和超声波范围内的信号。 "Acoustic" as used herein includes a signal in the audible sound signals and ultrasonic range. 根据解剖学、生理学和临床的需要,无线网络通信系统允许将多种设备植入患者体内,没有通过身体用于将信号和数据从一个设备传送到另一个设备的导线或者其它硬件连接相联合的限制。 Necessary anatomy, physiology, and clinical, wireless network communication system allows multiple devices implanted in the patient, without the joint body by a phase signals and for transmitting data from one device to the other conductor, or other hardware device connected limit. 这样,根据单个患者对诊断、监测以及疾病管理目的的需要,感知器和/或治疗提供设备可以以分布式方式植入遍布于身体。 Thus, according to the need for diagnosis, monitoring and management of disease in patients with a single purpose, perception and / or providing therapy device can be implanted in a distributed manner throughout the body. 来自被植入的感知器和/或治疗提供设备的分布式系统的数据 From the implanted sensing and / or treatment of a distributed system to provide data device

并且也可以传输至外部设备以提供患者反馈、远程患者监测等功能。 And it may also be transmitted to the external device to provide patient feedback, remote patient monitoring functions.

植入式设备12〜26可以依赖各种电源,包括电池、诸如电容器或者可充电电池的蓄电池、或者依靠诸如压电、热电或^f兹电的电源产生方式的电源获取设备。 The implantable device may be dependent 12~26 various power sources, including a battery, a rechargeable battery such as a capacitor or battery, or rely on such as piezoelectric, pyroelectric, or ^ f hereby electric power generation mode power acquisition device. 分布式的设备可以具有极小的电源需求,从而缩小设备的整体尺寸。 The apparatus may be distributed with minimal power requirements, thereby reducing the overall size of the device. 作为网络节点运行的植入式设备可以是小型设备,例如:小型可注入设备、 利用微侵入技术或微切口植入的设备、或利用更加开放的方式植入的更大的设备。 As implanted device running the network node may be a small device, for example: small device may be implanted using minimally invasive or micro-incision techniques implanted device, or with larger more open embodiment of the device implanted.

所述网络可包括如图l所示的外部设备,例如主监测器30、手持设备34以及外部监测设备36之类的外部设备。 The network may comprise an external apparatus as shown in FIG. L, for example, the main monitor 30, the handheld device 34 and an external device 36 external monitoring apparatus or the like. 参考共同转让的美国专利6,249,703 (Stanton et al.),该专利涉及与植入式医疗设备一同使用的手持设备,在此通过引用全部并入本文中。 With reference to commonly assigned U.S. Patent No. 6,249,703 (Stanton et al.), Which relates to handheld devices and implantable medical devices used with, incorporated in its entirety herein by reference. 所述医疗设备系统还可包括以无线或有线方式与外部联网设备通信的外部设备或者系统,外部联网设备例如:患者信息显示器32、以及远程患者管理系统40,所述患者信息显示器32用于对患者显示从网络获取的数据。 The system may also include a medical device to an external device or system for wireless or wired communication with an external network device, an external device such as networking: a patient information display 32, and a remote patient management system 40, a patient information display 32 for patients displaying data obtained from the network. 患者或护理人员可以通过主监测器30和患者信息显示器32 获得生理数据反馈和与设备相关的数据反馈。 30 and the patient or caregiver can obtain patient information display 32 associated with the physiological data and feedback data fed back through the master device monitors. 在本示例性实施例中,所述主监测器30包括RF接收器和远程网络功能,所述远程网络功能4吏得从净皮植入的网络节点接收到的数据被积累并且划分优先次序以进一步传输至远程患者管理系统40和/或患者信息显示器32。 In the present exemplary embodiment, the main monitor 30 includes an RF receiver and the remote network functions, the remote network function 4 officials have received from the network node net percutaneous implantation is accumulated and data to prioritize It is further transmitted to the remote patient management system 40 and / or patient information display 32. 患者可以根据临床医生的指示适当地响应从所述网络获取并显示在患者信息显示器32上的信息。 Patients may respond appropriately according to an instruction from the clinician to obtain information on the network and displays patient information display 32. 例如,患者可以通过改变身体动作、寻求医疗帮助、改变药物治疗、或者利用手持设备34进行反应,以启动^皮纟直入的i殳备的功能。 For example, by changing a patient body movement, seek medical help, change medication, or by reacting the handheld device 34 to start the function of the straight Si transdermal ^ i Shu prepared.

临床医生、护理人员、应急人员、临床数据库等也可以通过外部的或者并联的通信网络获得数据,使得能够作出适当的即时的响应以改变患者病情或者疾病状态。 Clinicians, nurses, emergency personnel, clinical data database may also be obtained by or in parallel external communication network, making it possible to make an appropriate immediate response to changing patient condition or disease state. 由所述植入设备获取的数据可(例如,通过网关节点)融合、并且可由网络元件根据患者病情和治疗状况进行过滤、划分优先次序,或者以其它方式进行调整,通过易于解读的方式向临床医生或远程患者管理系统 The data acquired by the apparatus may be implanted (e.g., via gateway node) fusion, and filtered by a network element according to the patient's condition and treatment conditions, prioritize, or otherwise adjusted to an easy to interpret by way of clinical physician or remote patient management system

提供临床上有意的和有用的信息。 And it intends to provide clinically useful information. 所述主监测器30可以与远程医疗监测系统相连接。 The main monitor 30 can be connected with a remote medical monitoring system. 例如,对于与植入式医疗设备一起使用的用于远程患者监测和设备编程的网络通信系统的一般性描述,可参考共同转让的美国专利6,599,250 (Webb et al), 6,442,433 (Linberg et al.) 6,622,045 (Snell et al), 6,418,346 (Nelson et al.), and 6,480,745 (Nelson et al.),所有这些专利在此通过引用全部并入到本文中。 For example, for a general description of network communication system for remote monitoring and programming apparatus for use with a patient implantable medical device, refer to commonly assigned U.S. Patent No. 6,599,250 (Webb et al), 6,442,433 (Linberg et al.) 6,622,045 (Snell et al), 6,418,346 (Nelson et al.), and 6,480,745 (Nelson et al.), all of these patents is incorporated herein by reference in its entirety herein.

主监测器30和/或编程器可利用双向RF遥测技术与被植入设备12〜26中的一个或者多个通信,以编程和/或询问搡作。 The main monitor 30 and / or programmer may utilize a two-way RF telemetry with the implanted device 12~26 one or more of the communication, to program and / or ask for shoving. 对于与植入式医疗设备一同使用的适当远程的遥测系统的例子,可参考共同转让的美国专利6,482,154 (Haubrichetal.),在此通过引用全部并入本文中。 Remote telemetry systems suitable for the implantable medical device for use with the examples, reference is co-assigned U.S. Patent No. 6,482,154 (Haubrichetal.), All incorporated herein by reference herein. 与这里将描述一样,主监测器30可通过RF遥测链路(link)与网关节点通信,所述网关节点融合从其它被植入设备接收到的声波信号和RF信号。 And as will be described herein, the master monitor node 30 may communicate with a gateway, via the RF telemetry link (link) it received from the other gateway node fusion device to be implanted acoustic and RF signals.

图2是根据本发明的一种实施方式的功能框图,该功能框图概述了包括在联网的植入式医疗设备内的功能组件。 FIG 2 is a functional block diagram of one embodiment of the present invention, the functional block diagram of an overview of the functional components included within the implantable medical device is networked. 设备50大体上包括用于监测生理信号的感知器模块52、用于提供医疗以根据被编程的运行模式响应所述生理信号的治疗提供模块54、实现对设备的控制功能的处理器/控制模块56和关联存储器58 ( associated memory )。 Device 50 generally includes a sensing module 52 monitors physiological signals, for providing a medical operation in accordance with the programmed mode of response to treatment of the physiological signal supply module 54, to implement the processor functions of the control apparatus / control module 56 and associated memory 58 (associated memory). 设备50还包括通信模块70,通信模块70具有收发器72、自适应均衡器74、训练序列发生器78以及控制电路76。 Apparatus 50 further includes a communication module 70, communication module 70 has a transceiver 72, adaptive equalizer 74, the training sequence generator 78 and a control circuit 76. 自适应均衡器74包括多个可调抽头76,所述抽头允许对均衡器74的增益、相位和延迟设置进行优化。 The adaptive equalizer 74 comprises a plurality of adjustable taps 76, allowing the tap gain, phase, and delay 74 is provided to optimize the equalizer.

治疗提供模块54提供的治疗提供功能和感知器模块52提供的生理监测功能可以与上面提供的例子一致。 Therapeutic treatment provided by providing module 54 provides and perceptual module 52 may provide the same physiological monitoring example provided above. 应当认识到,在某些实施方式中,设备50可以设置成不包括治疗提供模块54的监测设备。 It should be appreciated that in some embodiments, the device 50 may be configured to not include the treatment providing module 54 of the monitoring device. 或者,设备50可以是治疗提供设备,该治疗提供设备不具有由感知器模块52提供的感知能力。 Alternatively, the device 50 may provide a treatment device, the treatment device does not have to provide sensing capabilities provided by the sensing module 52. 此外,设备50可以是被植入的联网设备以在植入式医疗设备通信系统内执行通信功能, 而不具有感知功能或者治疗提供功能。 Furthermore, the device 50 may be implanted within a networked device to perform the implantable medical device communication system functions without having sensing function or functions to provide treatment. 在某些实施方式中,感知器模块52包括或连接于姿势和/或动作感知器53以感知身体位置的变化或患者动作的变化,该患者动作的变化可能对应于身体位置的变化。 In certain embodiments, the sensing module 52 includes or is connected to the gesture and / or motion-sensing device 53 to sense the change of body position change operation or the patient, the patient change operation may correspond to a change in body position. 身体位置的变化可以改 Changes in body position can be changed

8变沿着具体的体内通信路径传输的信号传输性能。 8 along a particular variant of the communication path transmission signal transmission performance in vivo. 这样,探测到的身体位置的变化可用作触发,该触发用于重复训练会话以优化包括于设备通信模块70 Thus, changes in the detected body position used as a trigger, the trigger for repetitive training sessions to optimize the device comprises a communications module 70

内的自适应均衡器74,如下面进一步的描述。 In the adaptive equalizer 74, as described further below.

通信模块70适于发送和接收体内声波数据传输。 The communication module 70 is adapted to transmit and receive acoustic data transmission in vivo. 在可选的实施方式中, 通信模块70适于发送和/或接收射频(RF)数据传输。 In an alternative embodiment, the communication module 70 is adapted to transmit and / or receive radio frequency (RF) data transmission. 在其它实施方式中,通信模块70适于发送和/或接收声波数据传输和射频数据传输两者。 In other embodiments, the communications module 70 is adapted to both the transmitting and / or receiving acoustic data transmission and radio frequency data transmission. 由于身体组织造成的信号散射、信号反射以及信号吸收,通过体内连接无线传输的数据会遭受失真和延迟。 Since the signal scattering, absorption signal and reflection signal caused by the body tissue, the wireless data transmission connection via the body suffers distortion and delay. 由于身体组织造成的散射、反射以及吸收,声波通信信号尤其容易遭受失真。 As the body tissue caused by scattering, reflection and absorption, acoustic communication signals are particularly vulnerable to distortion. 然而,RF信号、特别是宽带信号、超宽带信号或者脉沖RF信号也会出现失真。 However, RF signals, particularly wideband signal, ultra-wideband signals or pulsed RF signal distortion will occur. 由于信号延迟,出现了信号间干扰,限制在身体内传送声波信号所用的最大数据传送速率。 Since the signal delay, the inter-signal interference occurs, limits the maximum data transfer rate transmission acoustic signal used in the body. 在通信模块70内使用自适应均衡器74可校正或者补偿传输信号的失真和延迟,从而可以较快的数据传输速率进行可靠的数据传输。 Using an adaptive equalizer in a communication module 7074 may correct or compensate transmission signal distortion and delay, thus a faster data transfer rate for reliable data transmission.

使用MOS、 CMOS或者其它集成电路技术可对均衡器74实现数字化。 Using MOS, CMOS or other integrated circuit technology may be 74 digitize the equalizer. 均衡器74可具体为:数字信号处理模块、带有多个接头的移位寄存器(例如使用算术逻辑单元(ALU))、状态机、微处理器或者其它数字电路配置为执行本文所述的信号均衡功能。 The equalizer 74 may be embodied as: a digital signal processing module, a shift register having a plurality of joints (e.g., using an arithmetic logic unit (the ALU)), a state machine, microprocessor or other digital circuitry is configured to perform a signal described herein balancing. 均衡器74具有多个可调抽头76以允许调整所述抽头76的增益、相位和延迟以实现接收到的信号的优化均衡。 The equalizer 74 has a plurality of adjustable taps 76 to permit adjustment of the tap 76 to optimize the gain and phase delay so as to achieve equalization of the received signal. 通过改变均衡器74内各自乘法电路的乘法系数可以实现抽头调整。 Multiplying each of the coefficient multiplying circuit 74 can be realized by changing the equalizer tap adaptation. 将每个抽头的输出相加以产生均衡器输出,对在身体内传输过程中可能产生的失真和延迟该输出被校正。 The output of each tap are summed to produce the equalizer output, the distortion in the body may occur during the transmission delay and the output is corrected. 控制电路76可包括在通信模块70内以用于确定和设置优化抽头系数。 The control circuit 76 may include a communication module 70 for determining and setting the tap coefficient optimization. 或者,处理器/控制模块56可以执行用于确定最优均衡系数的算法以及向均衡器74提供控制信号以适当地设置抽头系数。 Alternatively, the processor / control module 56 may perform an algorithm to determine the optimal equalization coefficients and for providing a control signal to the equalizer 74 to set the tap coefficients appropriately. 在此使用的"抽头设置"和"抽头系数"可交换地使用,并且通常涉及多个均衡器抽头的可调增益、延迟、和/或相位中的任意一个,调整所述均衡器抽头以优化通信信号的均衡性。 In the "wiper setting" and "tap coefficient" as used herein are used interchangeably, and typically involve a plurality of adjustable gain equalizer taps, the delay, any and / or one phase is adjusted to optimize the equalizer taps equalization of a communication signal. 抽头数目和可调增益、延迟、和/或相位的限定范围将可根据具体应用和系统特征来确定,例如:期望的数据传输速率、数据特征、通信路径等。 The number of taps and adjustable gain, delay, and / or defined range of the phase will be determined according to the particular application and system features, for example: a desired data transmission rate, wherein the data communication path and the like.

通信模块70还可包括训练序列发生器78,所述训练序列发生器可作为数字状态机或者其它专用数字电路实现,用于产生以被传送至另外的植入式设备的训练序列,所述训练序列用于确定最佳的均衡抽头设置。 The communication module 70 may also include a training sequence generator 78, the training sequence generator may be used as a digital state machine or other dedicated digital circuitry, for generating a further order is transmitted to the implanted device training sequence, said training for determining an optimal sequence tap equalization setting. 训练序列可以 Training sequence can

9是伪随机噪声码或者其它序列,所述其它序列开发为提供一定范围的数据频率、幅度以及数据传输速率,所述数据频率、幅度以及数据传输速率是在网 9 is a pseudo-random noise codes or other sequences, other sequences of the developed data to provide a range of frequency, amplitude and data transfer rate, the data frequency, amplitude, and a data transfer rate in the network

络传输过程中期望遇到的。 Network transmission process expected encounter. 被传输的训练序列按如下定义:该训练序列代表了对应于发送设备和接收设备之间的传输路径的失真和延迟特征。 Training sequence is transmitted is defined as follows: represents the training sequence corresponding to the transmission path between the transmitting and receiving devices distortion and delay characteristics. 控制电路75包括用于存储参考序列的存储器77,所述参考序列与由另一网络元件产生的将被设备50接收训练序列相对应。 The control circuit 75 comprises a memory 77 for storing the reference sequence, the reference sequence is the training sequence receiving apparatus 50 is generated by another network element, respectively. 控制电路75使用由设备50接收的训练序列以调整均衡器74的抽头76。 76 using the tap control circuit 75 by the training sequence received device 50 to adjust the equalizer 74. 控制电路75 "知道"接收的训练序列应该与存储的参考序列一致。 The control circuit 75 "knows" the received training sequence should be consistent with the stored reference sequence. 控制电路76调整所述抽头76直到所述接收的训练序列与所述存储的参考序列相匹配。 The control circuit 76 adjusts the tap 76 until the reference sequence matches with the stored training sequence of the received.

图3是适于沿着体内通信路径进行无线通信的两个联网设备的框图。 FIG 3 is a block diagram of two networked devices adapted for wireless communications along a communications path in vivo. 设备50与图2所示的i殳备相对应并且具有如前所述的通信^^块,所述通信^^莫块包括收发器72、自适应均衡器74、控制电路75和训练序列发生器78。 i Shu device 50 shown in FIG. 2 prepared as described above and having corresponding communication ^^ block, said block comprising Mo ^^ communication transceiver 72, adaptive equalizer 74, the control circuit 75 and a training sequence generator 78. 设备80也具有通信模块,所述通信模块包括收发器82、自适应均衡器84和控制电路85。 Device 80 also has a communication module, the communication module includes a transceiver 82, an adaptive equalizer 84 and the control circuit 85. 设备80还包括用于存储参考序列的存储器88。 Apparatus 80 further comprises a memory 88 for storing the reference sequence. 为了简明,设备50的其它功能模块未显示在图3中。 For simplicity, the device 50 of the other functional modules is not shown in FIG. 另外,设备80可以包括未在图3中显示的其它功能组件。 Further, the device 80 may include other functional components not shown in FIG.

设备50将训练序列发生器78产生的训练序列传送至设备80。 The training sequence devices 50 generate the training sequence generator 78 is transmitted to the device 80. 该训练序列由收发器82接收。 The training sequence is received by the transceiver 82. 控制电路85调整包括于均衡器84中的多个均衡器抽头的增益、相位和延迟,直到所述接收的训练序列与存储在存储器88里的参考序列可以接受地匹配。 85 comprises a control circuit to adjust the equalizer 84 in a plurality of equalizer tap gain, phase and delay, until the reference sequence and the received training sequence stored in the memory 88 in the acceptable match. 在确定最优抽头设置之后,将用于调整均衡器84至设备80 中的所述确定的最优设置的控制信号从设备80传输至设备50。 After determining the optimal tap is provided, for adjusting the equalizer 80 of the device 84 to determine the optimal set of control signals from the transmission device 80 to the device 50. 然后设备50的控制电路75可用所述传输的控制信号来调整均衡器74的抽头设置。 Then the control circuit 50 of the apparatus 75 of the transmission control signal can be used to adjust the equalizer tap settings 74. 这样,通过执行一个训练序列的传输,设备50和80二者的均衡器74和84被优化。 Thus, optimization is performed by transmitting a training sequence, both devices 50 and 80 of the equalizer 74 and 84. 这种网络操作假定在设备50和80之间传输的信号将经历相似的失真和延迟而与沿着体内路径90的传输方向无关。 Such a network assumes transmission of signals between devices 50 and 80 will experience a similar distortion and delay independent path 90 in the transport direction of the body.

根据体内路径90的解剖特征,传输的信号在一个方向传播与在另一个方向传播可能会遭受不同的反射和散射。 The anatomical feature within the path 90, the transmitted signal propagates in a propagation direction in the other direction may be subject to a different reflection and scattering. 因此,在其它实施方式中,设备50和设备80中的每一个包括训练序列发生器和用来存储参考序列的存储器,以使得均衡器74和84在各自的训练会话期间被优化,所述训练会话包括传输训练序列并调整抽头的设置直到接收到的训练序列与参考序列可接受地匹配。 Thus, in other embodiments, the apparatus 50 and each device 80 comprises a training sequence generator, and a memory for storing the reference sequence, so that the equalizer 74 and 84 are optimized during each training session, the training transmission session comprises a training sequence and a training sequence to adjust the tap settings until a reference sequence match acceptably.

当设备50被包括于在多个设备间具有多条路径的网络内时,可对将与设 When the device 50 is included within a network having a plurality of paths between a plurality of devices, and can be disposed of

10备50通信的其它设备的每一个执行训练会话。 Other devices 10 in communication apparatus 50 is performed for each training session. 如果设备50准备接收来自多个设备的数据,可确定一组对应于所述多个设备中每一个的接收信号的最优化均衡抽头系数。 If the device 50 is ready to receive data from a plurality of devices, may determine a set of a received signal for each of the plurality of devices corresponding to the equalizer tap coefficients optimized. 然后,对应于传输设备(设备50接收来自该传输设备的数据), 控制电路75将向均衡器74提供适当的抽头系数组。 Then, corresponding to the transmission device (device 50 receives data from the transmission apparatus), the control circuit 75 equalizer 74 will provide an appropriate set of tap coefficients. 所述传输设备的识别将基于时间、频率、或者码分多址信il^见划、识别码、RFID或者其它方式。 Identifying the transmitting device based on time, frequency, or code division multiple access channel designated il ^ See, identification code, the RFID or other means. 或者, 设备50可以包括多个均衡器,每个均衡器专用于均衡从指定设备或设备组接收的信号。 Alternatively, the device 50 may include a plurality of equalizers, each equalizer dedicated to equalize the received signal from the specified device or group of devices. 每一个均衡器将被调整至对应于所述指定设备或设备组的最优抽头设置。 Each of the equalizers are adjusted to correspond to the designated device or group of devices of the optimum tap setting.

在网状网络应用中,设备50可以作为转发器节点运行用于在两个通信设备之间传输信号。 In a mesh network applications, the apparatus 50 may be used for transmitting signals between two communication device operating as a repeater node. 这样,可以优化均衡器74用来接收来自发起信号传输的设备的信号,然后将所述均衡信号传输至最终的接收设备。 Thus, the equalizer 74 can be optimized for receiving signals originating from a signal transmission apparatus, and then the final equalized signal to the receiving device. 所述最终的接收设备可以根据先前优化过的均衡器抽头设置均衡从设备50接收到的信号。 The final receiving apparatus may tap equalization setting signal received from the device 50 according to previously optimized equalizer. 或者, 在沿着网状网络通信路径多跳期间使用的网络节点可照原样传输从所述源设备接收的信号。 Alternatively, the network node for use during a multi-hop mesh network along a communication path may according to a signal received from the source device as the transmission. 所述最终的接收设备将被优化以均衡最终接收的信号。 The final receiving apparatus will be optimized to equalize the final received signal. 这样根据制定的路由配置和信道规划,可将训练序列从源设备向沿着多跳路径的一个或者多个中间节点传输一直到最终的接收设备。 The development of such a configuration and channel routing plan, the training sequence may be from a source device to or along a plurality of multi-hop path to final intermediate node receiving the transmission apparatus. 最终的接收设备中的通信模块控制电路将最优化均衡器抽头系数,使得最终接收到的训练序列与存储的参考序列相匹配。 The final module receiving apparatus in a communication control circuit to optimize the equalizer tap coefficients, so that the reference sequence with a stored training sequence received by the final match. 最终的接收设备中的被优化的抽头设置将校正和补偿沿所述多跳出现的信号失真和延迟。 Optimized final tap provided in the receiving device and the compensating correction in the multi-hop delay and signal distortion occurs.

图4是一种应用于可植入医疗设备通信系统的方法的流程图。 FIG 4 is a flowchart of a method applied to an implantable medical device communication system. 方法1 OO将用于举例说明所述系统的功能运作,并且其不应该视为反映了实施本发明必需的软件或者硬件的具体形式。 Method 1 OO will serve to illustrate the function of the operation of the system, and it should not be taken to reflect the particular form of software or hardware embodiments of the present invention is required. 认为,软件/硬件的具体形式将主要由设备中使用的具体系统架构和具体的功率容量以及该设备的其它功能性方面来决定。 That the specific system architecture and the specific power capacity of the particular form of software / hardware used by the main apparatus and other functional aspects of the device can be determined. 在给予本申请公开内容的前提下,在任何现代植入式设备的情形中,提供实现本发明的软件是在是本领域技术人员的能力之内。 Administered under the premise of the present disclosure, in the case of any modern implantable devices, there is provided according to the present invention is implemented in software within the ability of the skilled artisan.

方法100涉及在植入式网络节点中用于优化自适应均衡器的训练会话,所述植入式网络节点配置为接收声波、宽频带/超宽频带的RF或者其它沿着体内通信路径遭受失真和延迟的通信信号。 100 relates to a method for optimizing a training session in the adaptive equalizer implantable network node, the network node implantable configured to receive the acoustic wave, wideband / ultra wide band subjected to distortion or other RF communication path along vivo and the communication signal delay. 在方框105,定义训练序列。 In block 105, the definition of the training sequence. 如前所述, 所述训练序列包括设计成具有数据幅度、频率和期望的数据传输速率的数据序列,因此,所述数据序列代表与具体的通信路径相关的特征信号失真和延 As described above, the training data sequence includes data designed to have an amplitude, frequency and the desired data transfer rate, therefore, the data sequence represents a communication path associated with a particular characteristic signal distortion and delay

ii迟。 ii late. 选择的所述训练序列将取决于具体应用和网络配置。 Selecting the training sequence will depend on the particular application and network configuration. 所述训练序列存储于传输网络节点,所述传输网络节点对应于通信路径,针对该通信路径开发所述训练序列。 Transmitting the training sequence stored in the network node, the network node corresponds to a transmission communication path, the training sequence for the development of the communication path.

在方框110,参考序列存储于与通信路径相对应的接收节点,针对该通信 In block 110, a reference sequence stored in a path corresponding to the communication node receiving opposite, for the communication

路径开发了所述训练序列。 The path of development of the training sequence. 参考序列与训练序列相匹配。 Sequence matches the reference training sequence. 在方框115,将所述训练序列从发送节点传输至接收节点。 In block 115, the training sequence transmitted from the sending node to the receiving node. 在方框120中,所述接收节点通过执行优化均衡算法响应所述训练序列。 In block 120, the receiving node by performing equalization algorithm in response to the optimization of the training sequence. 在均衡优化期间,均衡器抽头设置或者系数自动调整,使得沿着所述通信路径遭受失真和延迟的接收到的训练序列与相应的存储的参考序列相匹配。 During optimizing equalization, equalizer tap coefficients set or automatically adjusted so that the received training sequence with a corresponding reference sequence stored suffer distortion and delay along the communication path matches. 在方框125中,对于相应的路径的被优化的抽头设置存储或被应用于所述均衡器抽头。 In block 125, is applied to the optimized stored or disposed corresponding tap path equalizer taps. 多组抽头设置可被存储以用于对于给定接收节点的多接收路径。 Multiple set of taps can be stored for receiving a multi-path for a given receiving node. 这样,对于所述传输设备/路径中的每一个,方法IOO可以重复,接收设备将从所述传输设备/路径接收数据通信。 In this way, may be repeated for each of the transmission apparatus method IOO / path, the receiving apparatus from said transmission apparatus / reception data communication path.

所述训练序列可以通过返回至方框115进行重复。 The training sequence can be repeated back to block 115. 训练会话可以以连续的、周期性的或者被触发的方式出现。 Training sessions can be continuous or periodic mode is triggered appears. 所述通信系统通常在训练^t式和跟踪模式下运行。 The communication system is typically run ^ t in the training mode and a tracking type. 在训练模式期间,所述训练序列被传输,并且均衡器被优化以使接收到的训练序列与存储的参考序列相匹配。 During the training mode, the training sequence is transmitted, and the equalizer is optimized to the training sequence with a stored reference sequence received matches. 在跟踪模式期间,节点接收 During the tracking mode, the receiving node

施方式中,步骤115至125可以在每个通信会话的开始时执行,使得在每个通信会话的开始时调整所述接收节点的均衡器。 Shi, steps 115-125 may be performed at the start of each communication session, such that the receiving node is adjusted at the start of each communication session equalizer. 数据传输可以包括具有训练序列的数据头。 Data transmission may include a header having a training sequence. 根据传输的长度,训练序列可当作数据包头,以允许在传输期间均衡器的最优化。 The length of the transmission of the training sequence can be used as packet headers, to allow optimization of the equalizer during the transmission. 跟踪模式期间,均衡器设置的连续或者接近连续的调整允许校正在通信路径中甚至是小的改变导致的数据失真,例如,由于在患者位置的微小移动。 During the tracking mode, continuous or near continuous adjustment of equalizer settings allows correction in the data communication path even small changes result in distortion, e.g., due to a slight movement in the position of the patient. 可选地,可以在每隔n个通信会话时最优化均衡器,或者以预定的方式,例如,每60秒钟,每小时,每天等。 Alternatively, the equalizer may be optimized at every n-th communication session, or in a predetermined manner, for example, every 60 seconds, every hour, day, etc.. 所述训练会话的频率可以因应用而异,例如,取决于通信会话的预期频率和通信路径的声学特性的潜在可变性。 The training session may be application-specific frequency, for example, depending on the potential variability of the expected frequency and the acoustic characteristics of the communication path of the communication session. 例如,如果患者正在睡眠,相比患者处于活动并到处走动的白天, 会出现通信路径的传输特性的较低频度的变化,需要较低频度的均衡器调整。 For example, if the patient is sleeping, compared to patients in the active and walking around during the day, change the lower frequency transmission characteristics of the communication path will need to lower the frequency of the equalizer adjustment. 在一些实施方式中,反馈信号可用来在方框130触发训练会话。 In some embodiments, the feedback signal is used to trigger a training session at block 130. 例如,一定频率或一定数目的数据错误可以触发通信系统请求所述自适应均衡器的再训练。 For example, a certain frequency or a certain number of error data communication system may trigger a request for retraining the adaptive equalizer. 在一些实施方式中,可以降低数据传输速率响应再训练的请求以减少传输错误。 In some embodiments, the data transfer rate may be reduced in response to the request for retraining to reduce transmission errors. 在被请求的训练会话完成后,所述数据传输速率可以再次提高。 After the requested training session is completed, the data transfer rate can be increased again.

还可以预期,指示患者位置变化的位置或者活动感知信号可以触发训练 It is also contemplated that indicates changes in the position of the patient's position or activity sensing signal can trigger training

会话。 Session. 由于疾病状态、生长等因素或者其它解剖学因素造成的患者位置、体 Since the position of the patient disease state, growth factors or other anatomical factors, body

重、保水量和组织成分的变化可以改变通信路径的声学传输特性,促使均衡 Weight, tissue composition and changes in water retention capacity may be varied acoustic transmission characteristics of the communication path, to promote equalization

抽头设置的再优化。 Re-optimization tap settings.

还可以预期,某些生理状况,例如,某些解剖学上的变化可促使重新定 It is also contemplated that certain physiological conditions, for example, certain anatomical changes can contribute to re-set

义存储于方框105的所述训练序列。 Yi training sequence stored in the block 105. 例如,显著的体重增加或者诸如肿瘤生长、 For example, significant weight gain, such as a tumor or growth,

组织肺胀、心脏扩张或者其它组织变化之类的病变组织的发展可以改变沿着特定传输路径的声波信号的特征散射。 Tissue lung inflation, the development of heart dilation or other tissue lesions such variations may change the scattering characteristic of the acoustic signal along particular transmission paths. 这样,训练序列和参考序列可以时常更新,并且为了维持最优均衡训练会话可以如所需要的一样进行重复。 Thus, the training sequence and the reference sequence may be frequently updated, and may be repeated as needed to maintain optimal equilibrium as a training session.

图5是植入式医疗设备的通信网络示意图,所述通信网络包括声波/射频网关节点。 FIG 5 is a schematic view of a communication network implantable medical device, said communication network comprising acoustic / radio gateway node. 在网络200中具有声波/RF网关节点201,网络200包括在声波范围内通信的联网设备和在RF范围内通信的联网设备。 Having acoustic / RF gateway node 201, a communication network 200 including networked devices within the sonic range of networked devices and communication within the network 200 in the RF range. 因此,声波/RF网关节点201 包括通信模块202,通信模块202可以包括声波信号收发器204、 RF信号收发器206和关联的控制电路208。 Thus, sonic / RF gateway node 201 includes a communication module 202, communication module 202 may include control circuitry acoustic signal transceiver 204, RF transceiver 206 and associated signal 208. 在一些实施方式中,声波/RF网关节点201可以用作声波接收机和RF发送机,而不具有声波发送功能和/或RF接收功能。 In some embodiments, the sonic / RF gateway node 201 may be used as an acoustic wave receiver and an RF transmitter, without having acoustic transmission function and / or the RF receiver function. 声波/ RF网关节点201可以包括一个或者多个至少与声波信号收发器204关联的自适应均衡器。 Sonic / RF 201 may comprise a gateway node or at least a plurality of adaptive equalizers associated with the acoustic signal transceiver 204. 声波/RF网关节点201还可以包括处理器/控制模块210、关联的存储器212和感知器/治疗提供模块214 。 Sonic / RF gateway node 201 may further include a processor / control module 210, memory 212 and associated Sensor / module 214 provides therapy.

在一种实施方式中, 一个或者多个RF联网设备222向声波/RF网关节点201 传输数据,并且一个或者多个声波联网设备220向声波/RF网关节点201传输数据。 In one embodiment, one or more RF devices 222 transmit data to the networked sonic / RF gateway node 201, and one or more networked sonic acoustic wave device 220 transmit data to / RF gateway node 201. 声波数据和RF数据可以通过声波/RF网关节点201并行接收。 RF data and acoustic data 201 may be received in parallel by sonic / RF gateway node. 此外或者可选地,网络200可以包括一个或者多个能够向声波/RF网关节点201并行传输声波和RF信号的双通信设备224。 Additionally or alternatively, network 200 may comprise one or a plurality of parallel transmission 201 can be an RF signal to acoustic and acoustic / RF communication device 224 bis gateway node. 声波/RF网关节点201接收声波数据传输和RF 数据传输,并且连接或者融合所述声波数据和RF数据。 Sonic / RF gateway node 201 receives the acoustic data transmission and RF data transmission, and is connected or fused to the sonic data and RF data. 声波/RF网关节点201 可以将接收到的声波数据和RF数据用于控制节点201的感知功能/治疗提供功能。 Sonic / RF gateway node 201 may be received acoustic data and the RF data for controlling the sensing node 201 functions / function provides treatment. 可选地,声波/RF网关节点201可以将声波数据转换成RF数据并传输所述转换后数据至另一被植入设备222或者224,用于控制系统200的治疗提供功能和/或感知功能,所述转换后的数据可与其它接收到的RF数据融合。 Alternatively, sonic / RF gateway node 201 may convert the acoustic data into RF data and transmitting said converted data to another implanted device 222 or 224 is for controlling the treatment system 200 provides functionality and / or awareness , the converted data may be received from other RF data fusion.

声波/RF网关节点201可以通过RF遥测链路218将融合后的数据传输至外部设备230,例如编程器或者主监测器。 Sonic / RF data gateway node 201 may transmit the RF telemetry link 218 fused to 230 by, for example, the programmer or an external monitor main apparatus. 这样,声波/RF网关节点201提供用于将被植入系统获得的声波数据传输至外部通信网络节点的通信链接。 Thus, sonic / RF gateway node 201 for providing acoustic data transmission system to be implanted to obtain the external communication link to the communication network node. 外部设备230可以与远程患者管理网络232或者其它临床医生信息网络相连接,这样使得处于远程患者管理环境中的临床医生、医疗中心或者其它护理人员可以使用外部设备230接收的数据。 External device 230 may be connected with a remote patient management network 232 or other clinician information networks, so that the clinician in data management environment remote patient, health centers or other caregiver using an external device 230 can be received.

声波/RF网关节点201可以在植入式设备(例如:心脏刺激设备、神经刺激器、药物递送设备或者生理监测设备)中或者在不具有监测和/或治疗提供能力的专用通信网络节点中实现。 Sonic / RF gateway node 201 may be implanted device: private communications network node or not having to monitor and / or the ability to provide treatment (e.g. cardiac stimulation device, nerve stimulator, a drug delivery device, or physiological monitoring device) implemented .

图6A是植入式医疗设备的通信网络300的示意图,该通信网络包括声波/RF网关节点302,声波/RF网关节点302实施为被植入设备,并与一个或者多个被植入设备304、 306和308在声波通信网络中通信。 6A is a schematic communication network implantable medical device 300, the communication network comprising acoustic / 302, sonic / RF RF gateway node is a gateway node 302 implemented as an implantable device, and with one or more devices are implanted 304 , 306 and 308 in the acoustic communication in a communication network. 声波/RF网关节点302沿着各自的体内通信路径接收来自设备304、 306和308中的每一个的声波通信信号。 Sonic / RF gateway node 302 receives 304, acoustic communication signal of each of the devices 306 and 308 from the body along a respective communication path. 网关节点302融合接收到的声波数据,并且还可以对所述数据进行过滤、 处理或者区分优先次序。 The gateway node 302 receives the sonic data fusion, and may also filter the data, processing or prioritized. 网关节点302将所述融合后的声波数据转换成RF数据并且将所述RF数据通过RF遥测链路312传输至外部设备310。 The gateway node 302 to the acoustic data into an RF data fusion and the RF data transmitted via RF telemetry link 312 to the external device 310.

图6B是植入式医疗设备通信网络的示意图,该通信网络包括实施为外部设备的声波/RF网关节点322,所述声波/RF网关节点322具有表面323,该表面适于与患者皮肤324亲密接触从而以声波方式与患者身体连接。 6B is a schematic diagram of an implantable medical device communications network, the communications network comprises a sonic embodiment of an external device / RF gateway node 322, the acoustic / RF gateway node 322 has a surface 323, which surface is adapted to close the skin of the patient 324 sonic in contact so as to connect with the patient's body. 声波/RF网关节点322配置为接收/人植入患者体内的一个或者多个设备326、 328和330发送的声波信号。 Sonic / RF gateway node 322 is configured to receive / person implanting the patient one or more devices 326, 328 and 330 transmitted acoustic signals. 可以理解,声波/RF网关节点322可以以手表状的设备、呼机状的设备或者其它患者可舒适佩戴的外部设备的形式来实现,并且提供用于接收由被植入设备326、 328和330发送的声波信号所需要的声波连接。 It will be appreciated, acoustic / RF gateway node 322 may be a watch-like device, a pager-like device or other external device in the form of a patient may be wearing comfort is achieved and provides for receiving 326, 328 and 330 are transmitted by the implantable device the acoustic wave signal connections required.

还可以预期,在某些实施方式中,可以不需要与患者皮肤324的亲密接触来实现声波通信路径。 It is further contemplated, in some embodiments, the close contact may not be required and the patient's skin 324 to achieve acoustic communication path. 声波/RF网关节点322可以靠近患者皮肤但不进行亲密接触、并且仍然充分地与被植入设备326、 328和330具有声波连4妻。 Sonic / RF gateway node 322 may be close to the patient's skin but not intimate contact and still be sufficiently with the implant device 326, 328 and 330 have acoustic 4 connected wife. 例如在患者皮肤324与节点322之间可以有布层。 For example, between a patient's skin 324 and the node 322 may have a fabric layer. 网关节点322融合接收到的声波数据并将所述声波数据转换成RF信号,该RF信号通过RF遥测链路334传输至外部设备332。 Fused gateway node 322 receives the acoustic data and acoustic data into an RF signal, the RF signal RF transmitted through a telemetry link 334 to the external apparatus 332.

图6C是声^/RF网关节点342实施为经皮的设备的示意图。 It is a schematic view of the device of FIG. 6C transdermal acoustic ^ / RF gateway node 342 embodiment. 声波/RF网关节点342包括体外部分344和延伸通过患者皮肤350的经皮部分346。 Sonic / RF 342 comprises a gateway node extracorporeal portion 344 extending through the patient's skin and the percutaneous part 350 346. 经皮部分346 Percutaneous portion 346

14备352、 354、和356之间的声波连接。 14 Preparation of 352, 354, and 356 are connected between the sound wave. 网关节点342沿着各自的体内声波通信路径从被植入设备352、 354和356接收声波数据,并将融合的声波数据转换为RF信号,该RF信号通过遥测链路362传输至外部设备360的。 Gateway node 342 along respective acoustic receiving acoustic data communication path within the implantable device 352 is, from 354 and 356, and converts the sonic data fusion into an RF signal, the RF signal is transmitted through a telemetry link 362 to the external device 360 .

如图6A到6C中所示的网络300、 320和340中的任意一个中,植入式设备可以包括彼此连接的声波通信链接和RF通信链接以及声波/RF网关,沿着并行的RF数据传输和声波数据传输。 The network 300 shown in FIG. 6A to 6C, any one of 320 and 340, the implanted device may comprise an acoustic wave and a communication link connected to each other RF communication links and acoustic / RF gateway, the RF data transmission along parallel and sonic data transmission. 并行的声波数据传输和RF数据传输可以允许设备间的快速数据传递,缩短通信会话的持续时间,因而提高数据传递的成功率。 Acoustic data transmission and parallel data transmission RF allows fast data transfer between devices, shorten the duration of the communication session, thus improving the success rate of data transfer. 声波/RF网关节点提供将声波数据传输到外部设备或网络的通信路径。 Sonic / RF transmit sonic gateway node provides data to an external device or communication network path. 声波/RF网关节点可以进一步提供如前所述的声波数据和RF数据的融合。 Sonic / RF gateway node as described above may further provide acoustic data fusion and RF data.

图7是涉及在植入式医疗设备通信网络中使用的通信方法的流程图。 7 is a flowchart of a communication method for use in an implantable medical device relates to a communication network. 在方框405,开始被植入设备或者外部网络设备与声波/RF网关节点之间的声波数据传输。 At block 405, acoustic data transmission starts between the implanted device and the network device or an external acoustic / RF gateway node. 如上所述,所述声波/RF网关可以被植入、位于体外的、经皮的或者适于佩戴在患者体表的。 As described above, the acoustic / RF gateway may be implanted, is located in vitro, transdermal, or adapted to be worn in the patient's body surface. 可以以预定方式开始声波数据传输以响应触发事件, 和/或响应通过传输设备或者其它专用网络节点接收的唤醒信号。 Acoustic data transmission can be started in a predetermined manner in response to a triggering event, and / or in response to wake-up signal received through the transmission device or other private network nodes. 所述声波/RF 网关或者其它任何网络设备可以将唤醒信号传输至另一设备以开始声波数据传输。 The acoustic / RF Gateway or any other network device may begin transmitting the acoustic data signal to the wake-up another device.

设备的RF数据传输。 RF data transmission device. RF数据传输与声波数据传输可以同时或者顺序出现。 RF data transmission and acoustic data transfer may occur simultaneously or sequentially. 传递的数据可以包括设备编程数据、软件更新、生理相关数据和/或设备相关数据,其中可以包括患者或者医生的警告信号以及用来接收机均衡、安全、设 The data transfer device may include programming data, software update, the physiological data and / or device related data, which may include the patient or physician and an alarm signal for receiver equalization, safe, provided

备识别、数据识别或者其它诸如日期、时间等的参数信息的数据头标识码。 Preparation of identification, data header parameter information or other identifying data such as date, time, etc. identification code. 在方框415,被传输的数据在声波/RF网关处接收。 , Received data is transmitted in the acoustic / RF block 415 in the gateway. 在方框420,所述声波/RF 网关可以融合从多个设备接收到的声波数据和RF数据,并且可根据具体应用进行信号处理与分析。 In block 420, the acoustic / RF acoustic data gateway can be fused and RF data received from the apparatus to the plurality of signal processing and can be analyzed according to the particular application. 所述声波/RF网关可以使用经处理的或者经分析的数据用于设备控制操作和/或可以采用声波通信路径和/或RF通信路径将经处理的数据或者分析结果传输至任何其它被植入网络设备。 The acoustic data / RF gateway may be used or processed by the analysis apparatus for controlling operation and / or acoustic communication path and / or RF communication path may be used or processed data results are transferred to any other implant Network equipment.

此外或者可选地,所述声波/RF网关节点可以在方框425处将所有声波数据转换为RF信号,用于在方框430处通过RF遥测链路传输至另一被植入设备或者外部设备。 Additionally or alternatively, the acoustic / RF gateway node may be an RF signal at block 425 all the sonic data conversion, at 430. for RF telemetry downlink transmission by the implanted device or to another external block device. 可选地或者此外,所述声波/RF网关节点可以在方框425处将所有的RF数据转换成声波数据信号,用于在方框430处通过声波链接传输至另一被植入设备、经皮设备或者体表佩戴设备。 Alternatively or in addition, the acoustic / RF gateway node may convert at block 425 all of the RF data signal into an acoustic wave data, at block 430 for the acoustic wave transmitted through the link to another device is implanted, the equipment or equipment worn leather surface.

因此,在以上结合具体实施方式的描述中提供了一种植入式医疗设备的通信系统。 Accordingly, there is provided an implantable medical device communication system in the above description of embodiments with reference to specific embodiment. 应当理解,在不偏离后附权利要求中阐明的本发明保护范围的前提下,可以对所结合的实施方式进行各种修改。 It should be understood that the present protective scope of the invention set forth in the appended claims without departing from, various modifications may be bonded to the embodiment.

Claims (15)

1.一种医疗设备,包括: 通信模块,所述通信模块与适于沿着通信路径接收来自传输设备的数据的通信网络无线连接,其中,至少部分通信路径延伸通过患者的部分身体;以及均衡器,所述均衡器与所述通信模块连接,用于减少接收到的数据沿着所述通信路径的信号失真。 1. A medical device, comprising: a communication module, a communication module adapted to receive data from the transmission device along a communication path connected to a wireless network, wherein the communication path extends at least partially through the patient's body part; and an equalizer , said equalizer is connected with the communication module, for reducing the distortion of the received data signal along said communication path.
2. 根据权利要求1所述的医疗设备,其中,所述通信模块还适于传输数据。 2. The medical device according to claim 1, wherein the communication module is further adapted to transmit data.
3. 根据权利要求1所述的医疗设备,其中,所述均衡器包括多个可调抽头。 3. The medical device according to claim 1, wherein said equalizer comprises a plurality of adjustable taps.
4. 根据权利要求3所述的医疗设备,还包括用于存储参考序列的存储器, 所述参考序列用于自动调整所述多个可调抽头。 4. The medical device of claim 3, further comprising a memory for storing a reference sequence, the reference sequence for automatically adjusting the plurality of adjustable taps.
5. 根据权利要求3所述的医疗设备,其中,所述多个可调抽头均包括至少下列之一:增益可调设置、相位可调设置、延迟可调设置。 The medical apparatus according to claim 3, wherein said plurality of adjustable taps comprises at least one of the following: a gain adjustable settings, phase settings adjustable, adjustable delay settings.
6. 冲艮据权利要求3所述的医疗设备,还包括用于存储参考序列的存储器以及用于自动调整所述多个可调抽头以响应所述设备从所述传输i殳备接收训练序列的控制电路,其中,将接收到的训练序列与存储的参考序列匹配以相应地调整所述可调抽头。 6. According to Burgundy red medical device according to claim 3, further comprising a memory for storing the reference sequence, and means for automatically adjusting the adjustable taps of the plurality of devices in response to the received training sequence from the transmitting apparatus Shu i a control circuit, wherein the received training sequence with a stored reference sequence matches correspondingly adjust the adjustable tap.
7. 根据权利要求1所述的医疗设备,其中,所述通信网络包括下列之一: 时分多址信道规划、频分多址信道规划、码分多址信道规划。 7. The medical device according to claim 1, wherein said communication network comprises one of the following: time division multiple access channel planning, frequency division multiple access channel planning, CDMA channel planning.
8. 根据权利要求1所述的医疗设备,还包括下列之一:感知模块以及治疗提供模块。 8. The medical device according to claim 1, further comprising one of the following: a sensing module and provide treatment modules.
9. 根据权利要求8所述的医疗设备,其中,所述感知器模块包括下列之一:电极、压力感知器、流量感知器、化学感知器、声波感知器、超声波感知器以及加速度计。 9. The medical device according to claim 8, wherein said sensing module comprises one of the following: an electrode, a pressure sensing, flow sensing, a chemical sensing device, the acoustic wave sensing, ultrasonic sensing device and an accelerometer.
10. 根据权利要求8所述的医疗设备,其中,所述治疗提供模块包括下列之一:电刺激治疗模块以及药物递送模块。 10. The medical device according to claim 8, wherein said treatment providing module comprises one of the following: electrical stimulation therapy module and drug delivery module.
11. 根据权利要求1所述的医疗设备,其中,所述均衡器包括下列之一: 移位寄存器、数字信号处理器、状态机以及微处理器。 11. The medical device according to claim 1, wherein said equalizer comprises one of the following: a shift register, a digital signal processor, a state machine, and a microprocessor.
12. 根据权利要求1所述的医疗设备,其中,所述通信网络包括下列之一: 网状网络、星型网络、adhoc网络以及ALOHA网络。 12. The medical device according to claim 1, wherein said communication network comprises one of the following: a mesh network, star network, an adhoc network, and the network ALOHA.
13. 根据权利要求1所述的医疗设备,其中,所述通信模块适于接收下列信号之一:声波数据信号以及射频信号。 13. The medical device according to claim 1, wherein the communication module is adapted to receive one of the following signals: a data signal and a radio frequency acoustic signals.
14. 根据权利要求1所述的医疗设备,其中,所述传输设备植于患者体内。 14. The medical device according to claim 1, wherein said transmission device implanted in a patient.
15. —种植入式医疗设备系统,包括:第一设备,所述第一设备包括与无线通信网络连接的用于传输数据的第一通信才莫块;以及第二设备,所述第二设备适于植入患者体内,所述第二设备包括与所述无线通信网络连接的第二通信模块,并且所述第二通信模块适于接收来自所述第一设备的数据,所述第二设备还包括与所述第二通信模块连接的均衡器, 用于减少对于穿过患者身体以无线方式接收到的数据的信号散射效应。 15. - planting the medical device system, comprising: a first device, the first device comprises a first communication connection with a wireless communication network for transmitting data blocks only Mo; and a second device, the second device adapted for implantation in a patient, the second device comprises a second communication module connected to the wireless communication network and the second communication module is adapted to receive data from the first device, the second device further comprising an equalizer connected to the second communication module, a signal for reducing the effect of scattering through a patient's body for wirelessly received data is.
CN 200780033906 2006-08-18 2007-08-10 Wireless communication network for an implantable medical device system CN101517940A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US82277006P true 2006-08-18 2006-08-18
US60/822,770 2006-08-18

Publications (1)

Publication Number Publication Date
CN101517940A true CN101517940A (en) 2009-08-26

Family

ID=38743555

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 200780033906 CN101517940A (en) 2006-08-18 2007-08-10 Wireless communication network for an implantable medical device system

Country Status (3)

Country Link
EP (1) EP2060034A1 (en)
CN (1) CN101517940A (en)
WO (1) WO2008022010A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103189101A (en) * 2010-10-29 2013-07-03 美敦力公司 Automatic personalization of parameter settings and algorithms in a medical device
CN106934204A (en) * 2015-12-31 2017-07-07 创领心律管理医疗器械(上海)有限公司 Follow-up visit system of medical apparatus and use method of system

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1880298B1 (en) 2005-02-17 2016-07-13 Metacure Limited Charger with data transfer capabilities
EP2037999B1 (en) 2006-07-07 2016-12-28 Proteus Digital Health, Inc. Smart parenteral administration system
US20080046037A1 (en) * 2006-08-18 2008-02-21 Haubrich Gregory J Wireless Communication Network for an Implantable Medical Device System
EP2211974A4 (en) 2007-10-25 2013-02-27 Proteus Digital Health Inc Fluid transfer port information system
WO2009067463A1 (en) 2007-11-19 2009-05-28 Proteus Biomedical, Inc. Body-associated fluid transport structure evaluation devices
CN102946798A (en) 2010-02-01 2013-02-27 普罗秋斯数字健康公司 Data gathering system
WO2011094608A2 (en) 2010-02-01 2011-08-04 Proteus Biomedical, Inc. Two-wrist data gathering system
WO2015092747A2 (en) * 2013-12-18 2015-06-25 Tylerton International Inc. Medical device with separate control
US10188866B2 (en) 2015-06-24 2019-01-29 Impulse Dynamics Nv Simple control of complex bio-implants

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4329898A1 (en) 1993-09-04 1995-04-06 Marcus Dr Besson Wireless medical diagnostic and monitoring equipment
US5752976A (en) 1995-06-23 1998-05-19 Medtronic, Inc. World wide patient location and data telemetry system for implantable medical devices
US6497655B1 (en) 1999-12-17 2002-12-24 Medtronic, Inc. Virtual remote monitor, alert, diagnostics and programming for implantable medical device systems
US6480745B2 (en) 1999-12-24 2002-11-12 Medtronic, Inc. Information network interrogation of an implanted device
DE60321826D1 (en) 2002-04-22 2008-08-07 Medtronic Inc Seamless communication between an implantable medical device and a remote system
US7289580B2 (en) 2002-05-31 2007-10-30 Zenith Electronics Corporation Channel estimator using one or more correlation reference vectors to eliminate data related noise
US20050113885A1 (en) 2003-11-26 2005-05-26 Haubrich Gregory J. Patient notification of medical device telemetry session
US20050201454A1 (en) 2004-03-12 2005-09-15 Intel Corporation System and method for automatically calibrating two-tap and multi-tap equalization for a communications link
US7409019B2 (en) 2004-09-30 2008-08-05 International Business Machines Corporation High Speed Multi-Mode Receiver with adaptive receiver equalization and controllable transmitter pre-distortion

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103189101A (en) * 2010-10-29 2013-07-03 美敦力公司 Automatic personalization of parameter settings and algorithms in a medical device
CN106934204A (en) * 2015-12-31 2017-07-07 创领心律管理医疗器械(上海)有限公司 Follow-up visit system of medical apparatus and use method of system

Also Published As

Publication number Publication date
WO2008022010A1 (en) 2008-02-21
EP2060034A1 (en) 2009-05-20

Similar Documents

Publication Publication Date Title
US9595187B2 (en) Wearable computing device for secure control of physiological sensors and medical devices, with secure storage of medical records, and bioimpedance biometric
EP1075311B1 (en) Audible sound confirmation of programming an implantable medical device
US7978062B2 (en) Medical data transport over wireless life critical network
JP4429310B2 (en) Body communication for acoustic telemetry device
US7818051B2 (en) Wireless ECG in implantable devices
EP2185065B1 (en) Medical data transport over life critical network
US7444184B2 (en) Method and system for providing therapy for bulimia/eating disorders by providing electrical pulses to vagus nerve(s)
US8744585B2 (en) Implantable medical device providing adaptive neurostimulation therapy for incontinence
JP5052596B2 (en) Synchronization of the vagus nerve stimulation by the heart cycle of the patient
CN103189099B (en) Based on low-power high-accuracy calibration of the system clock of the reference clock
EP2008581B1 (en) Patient monitoring, diagnosis, and/or therapy systems and methods
EP1855758B1 (en) Implantable cardiac device with dyspnea measurement
EP1485164B1 (en) Device telemetry module with configurable physical layer for use with an implantable medical device
US20100198103A1 (en) System and method for neural stimulation
US20030171789A1 (en) Method and apparatus for programming an implantable medical device
EP1676142B1 (en) Controlling telemetry during magnetic resonance imaging
JP5174655B2 (en) Neurostimulator is synchronized to the cardiac cycle
US8175715B1 (en) Frequency agile telemetry system for implantable medical device
US6645153B2 (en) System and method for evaluating risk of mortality due to congestive heart failure using physiologic sensors
JP5462848B2 (en) Pacing and cardiac system with no leads for the arrhythmia treatment
JP5352240B2 (en) Optimization of cardiac resynchronization therapy parameters
JP5224478B2 (en) Nerve stimulation system that measures the patient's activity
US7065409B2 (en) Device communications of an implantable medical device and an external system
US20040088027A1 (en) Aggregation of data from external data sources within an implantable medical device
US6970742B2 (en) Method for detecting, diagnosing, and treating cardiovascular disease

Legal Events

Date Code Title Description
C06 Publication
C10 Entry into substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)