CN101504770A - Structural light strip center extraction method - Google Patents
Structural light strip center extraction method Download PDFInfo
- Publication number
- CN101504770A CN101504770A CNA2009100801189A CN200910080118A CN101504770A CN 101504770 A CN101504770 A CN 101504770A CN A2009100801189 A CNA2009100801189 A CN A2009100801189A CN 200910080118 A CN200910080118 A CN 200910080118A CN 101504770 A CN101504770 A CN 101504770A
- Authority
- CN
- China
- Prior art keywords
- center
- light bar
- center point
- light
- light strip
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Image Analysis (AREA)
Abstract
本发明公开一种结构光光条中心的提取方法,包括:获取初始光条中心点列;通过光条中心点与所述光条中心点处法线方向之间的多次迭代,获取结构光光条中心;对所述获取的结构光光条中心进行平滑操作,提取最终的结构光光条中心。采用本发明结构光光条中心的提取方法,基于一维光条中心的提取,通过光条中心点列与光条中心点处法线方向之间的多次迭代,实现高精度的光条中心的提取,不涉及图像滤波的大量加乘操作,所以,能够在保证检测精度的同时,减少运算量、提高处理速度;另外,通过迭代可以较好的计算出光条各中心点的法线方向,光条图像的形状对提取精度影响很小,本发明通用性良好、抗干扰能力强。
The invention discloses a method for extracting the center of a structured light strip, comprising: obtaining an initial column of light strip center points; and obtaining structured light through multiple iterations between the center point of the light strip and the normal direction at the center point of the light strip The center of the light bar: performing a smoothing operation on the obtained center of the structured light bar to extract the final center of the structured light bar. Using the method for extracting the center of the structured light strip of the present invention, based on the extraction of the center of the one-dimensional light strip, through multiple iterations between the center point column of the light strip and the normal direction at the center point of the light strip, the high-precision light strip center can be realized The extraction does not involve a large number of addition and multiplication operations of image filtering, so it can reduce the amount of calculation and improve the processing speed while ensuring the detection accuracy; in addition, the normal direction of each center point of the light strip can be better calculated through iteration, The shape of the light strip image has little influence on the extraction precision, and the invention has good universality and strong anti-interference ability.
Description
技术领域 technical field
本发明涉及结构光视觉测量技术,尤其涉及一种结构光光条中心的提取方法。The invention relates to a structured light vision measurement technology, in particular to a method for extracting the center of a structured light strip.
背景技术 Background technique
结构光视觉测量中,结构光光条的快速、高精度提取是关键技术之一。高速动态结构光视觉测量系统要求光条中心提取速度在几个毫秒以内,而且为了保证测量系统的精度和稳定性,要求光条中心提取的精度在亚像素级。In structured light vision measurement, fast and high-precision extraction of structured light strips is one of the key technologies. The high-speed dynamic structured light vision measurement system requires that the extraction speed of the light strip center be within a few milliseconds, and in order to ensure the accuracy and stability of the measurement system, the accuracy of the light strip center extraction is required to be at the sub-pixel level.
现有的亚像素级光条中心提取算法主要有:光条截面拟合法(M.A.G.,Sub-pixel measurement of 3D surfaces by laser scanning,Sensors and Actuators A:Physical,1999,76(1-3):1~8;McIvor A M,Substripe localisation for improvedstructured light system performance,Proc Of DICTA/IVCNZ97.New Zealand:Massey University,1997,309~314)、多方向模板法(胡斌,基于方向模板的结构光条纹中心检测方法,计算机工程与应用,2002,38(11):59-60,109;雷海军,一种结构光条纹中心快速检测方法,华中科技大学学报(自然科学版),2003,31(1):74-76)和Hessian矩阵法(Carsten Steger,Unbiased Extraction ofCurvilinear Structures from 2D and 3DImages,Germany:Technische München,1998.27~81;D.Eberly,R.Gardner,Ridges for image analysis.Journal ofMathematical Imaging and Vision,1994,4:353~373;胡坤,一种快速结构光条纹中心亚像素精度提取方法,仪器仪表学报,2006,27(10),1326~1329;周富强,结构光光条提取的混合图像处理方法,光电子与激光,2008,19(11),1534~1537)。The existing sub-pixel level light bar center extraction algorithms mainly include: light bar section fitting method (MAG, Sub-pixel measurement of 3D surfaces by laser scanning, Sensors and Actuators A: Physical, 1999, 76 (1-3): 1 ~8; McIvor A M, Substripe localization for improved structured light system performance, Proc Of DICTA/IVCNZ97. New Zealand: Massey University, 1997, 309~314), multi-directional template method (Hu Bin, detection of structured light stripe center based on directional template Methods, Computer Engineering and Application, 2002, 38(11): 59-60, 109; Lei Haijun, A fast detection method for structured light fringe center, Journal of Huazhong University of Science and Technology (Natural Science Edition), 2003, 31(1): 74-76) and the Hessian matrix method (Carsten Steger, Unbiased Extraction of Curvilinear Structures from 2D and 3DImages, Germany: Technische München, 1998.27~81; D.Eberly, R.Gardner, Ridges for image analysis.Journal of Mathematical Imaging and Vision, 1994, 4:353~373; Hu Kun, a fast method for extracting sub-pixel accuracy in the center of structured light stripes, Instrument Journal of Instrumentation, 2006, 27(10), 1326~1329; Zhou Fuqiang, Hybrid image processing method for structured light strip extraction, Optoelectronics and Laser, 2008, 19(11), 1534~1537).
上述光条截面拟合法对于光条法线方向变化不大的图像,在光条截面上进行高斯或抛物线拟合,再通过求其极值点来得到光条中心的亚像素位置,该方法依赖于光条的形状,通用性不好;对于法线方向变化较大的光条可以采用上述多方向模板法,检测其亚像素中心位置,但采用该方法运算量大;上述Hessian矩阵法本质上属于拟合内插算法,利用了图像的Hessian矩阵,有较好的通用性,但是需要对图像反复进行卷积运算,处理速度比较慢。The above-mentioned light strip cross-section fitting method performs Gaussian or parabolic fitting on the light strip cross-section for images with little change in the normal direction of the light strip, and then obtains the sub-pixel position in the center of the light strip by finding its extreme point. This method relies on Due to the shape of the light strip, the versatility is not good; for the light strip with a large change in the normal direction, the above-mentioned multi-directional template method can be used to detect the center position of the sub-pixel, but this method has a large amount of calculation; the above-mentioned Hessian matrix method is essentially It belongs to the fitting interpolation algorithm, which uses the Hessian matrix of the image and has good versatility, but it needs to perform convolution operations on the image repeatedly, and the processing speed is relatively slow.
发明内容 Contents of the invention
有鉴于此,本发明的主要目的在于提供一种结构光光条中心的提取方法,能够在保证检测精度的同时,减少运算量、提高处理速度,且通用性良好、抗干扰能力强。In view of this, the main purpose of the present invention is to provide a method for extracting the center of a structured light strip, which can reduce the amount of calculation and improve the processing speed while ensuring the detection accuracy, and has good versatility and strong anti-interference ability.
为达到上述目的,本发明的技术方案是这样实现的:In order to achieve the above object, technical solution of the present invention is achieved in that way:
一种结构光光条中心的提取方法,包括:A method for extracting the center of a structured light strip, comprising:
获取结构光光条的初始光条中心点列;Obtain the initial bar center point column of the structured light bar;
通过所述初始光条中心点列中的光条中心点与所述光条中心点处法线方向之间的多次迭代,获取结构光光条中心;Obtaining the center of the structured light light bar through multiple iterations between the center point of the light bar in the initial light bar center point column and the normal direction at the center point of the light bar;
对所述获取的结构光光条中心进行平滑操作,提取最终的结构光光条中心。A smoothing operation is performed on the acquired center of the structured light bar to extract the final center of the structured light bar.
所述获取初始光条中心点列为:确定所述结构光光条的初始法线方向后,根据所确定的光条的初始法线方向获取初始光条中心点列。The acquiring the initial light bar center point column includes: after determining the initial normal direction of the structured light light bar, obtaining the initial light bar center point column according to the determined initial normal line direction of the light bar.
所述确定光条的初始法线方向为:The initial normal direction of the determined light strip is:
二值化光条图像;binarized light strip image;
分别计算二值图像在水平和垂直方向的一维投影矩阵;Calculate the one-dimensional projection matrix of the binary image in the horizontal and vertical directions respectively;
确定拥有较少非零值的一维投影矩阵对应的方向为光条的初始法线方向。Determines the direction corresponding to the one-dimensional projection matrix with fewer non-zero values as the initial normal direction of the light bar.
所述根据确定的光条的初始法线方向获取初始光条中心点列为:The column of obtaining the initial light bar center point according to the determined initial normal direction of the light bar is:
初始法线方向为水平方向,按行扫描获取初始光条中心点列;或者,初始法线方向为垂直方向,按列扫描获取初始光条中心点列。The initial normal direction is the horizontal direction, and the initial light bar center point column is obtained by scanning in rows; or, the initial normal direction is in the vertical direction, and the initial light bar center point column is obtained by column scanning.
所述通过光条中心点与所述光条中心点处法线方向之间的多次迭代,提取结构光光条中心包括:The multiple iterations between the center point of the light bar and the normal direction at the center point of the light bar, and extracting the center of the structured light bar include:
a、提取所获取的初始光条中心点列中的多个光条中心点,计算所述每个光条中心点的法线方向;a. Extracting multiple light bar center points in the obtained initial light bar center point column, and calculating the normal direction of each light bar center point;
b、根据所述光条中心点的法线方向计算新的光条中心点;b. Calculate a new center point of the light bar according to the normal direction of the center point of the light bar;
c、判断是否停止迭代,如果是,则执行所述平滑操作;否则,计算步骤b所述新的光条中心点的法线方向,返回步骤b。c. Judging whether to stop the iteration, if so, performing the smoothing operation; otherwise, calculating the normal direction of the new central point of the light strip in step b, and returning to step b.
所述判断是否停止迭代为:判断
该方法进一步包括:设置迭代次数的上限T;The method further includes: setting an upper limit T of the number of iterations;
相应的,所述判断是否停止迭代为:判断迭代次数t=T是否成立。Correspondingly, the judging whether to stop the iteration is: judging whether the number of iterations t=T holds true.
本发明结构光光条中心的提取方法,基于一维光条中心的提取方法,通过光条中心点列与光条法线方向之间的多次迭代,实现高精度的光条中心的提取,由于本发明不涉及图像滤波的大量加乘操作,所以,能够在保证检测精度的同时,减少运算量、提高处理速度。The method for extracting the center of the structured light strip in the present invention is based on the extraction method of the center of the one-dimensional light strip, and realizes the extraction of the center of the light strip with high precision through multiple iterations between the center point column of the light strip and the normal direction of the light strip. Since the present invention does not involve a large number of addition and multiplication operations of image filtering, it can reduce the amount of calculation and improve the processing speed while ensuring the detection accuracy.
另外,由于本发明采用了迭代的思想,可以较好的计算出光条各点的法线方向,所以光条图像的形状对本发明的提取精度影响很小,换言之,本发明通用性良好、抗干扰能力强。In addition, since the present invention adopts an iterative idea, the normal direction of each point of the light strip can be better calculated, so the shape of the light strip image has little influence on the extraction accuracy of the present invention. In other words, the present invention has good versatility and anti-interference strong ability.
附图说明 Description of drawings
图1为本发明结构光光条中心提取方法的流程图;Fig. 1 is a flow chart of the method for extracting the center of the structured light strip of the present invention;
图2为理想状态下,光条灰度分布函数示意图;Fig. 2 is a schematic diagram of the distribution function of the gray scale of the light bar in an ideal state;
图3为实际应用中,光条灰度分布函数示意图;Fig. 3 is a schematic diagram of the light bar gray scale distribution function in practical applications;
图4为本发明获取较高精度的光条中心点列的方法流程图;Fig. 4 is the flow chart of the method for obtaining the center point column of the light bar with higher precision in the present invention;
图5为计算机生成的具有如图3灰度分布的理想光条图像示意图;Fig. 5 is a schematic diagram of an ideal light strip image generated by a computer with a gray scale distribution as shown in Fig. 3;
图6为采用自适应阈值法得到的二值化光条图像示意图;Fig. 6 is the schematic diagram of the binarized light strip image obtained by adopting the adaptive threshold method;
图7为仿真图5所示光条的的部分提取效果示意图。FIG. 7 is a schematic diagram of a partial extraction effect of simulating the light bar shown in FIG. 5 .
具体实施方式 Detailed ways
本发明的基本思想是:基于一维光条中心的提取方法,通过光条中心点列与光条法线方向之间的多次迭代,实现高精度的光条中心的提取。The basic idea of the present invention is: based on the extraction method of the one-dimensional light strip center, through multiple iterations between the light strip center point column and the light strip normal direction, the high-precision light strip center extraction is realized.
为使本发明的目的、技术方案和优点更加清楚明白,以下举实施例并参照附图,对本发明进一步详细说明。In order to make the object, technical solution and advantages of the present invention clearer, the present invention will be further described in detail by citing the following embodiments and referring to the accompanying drawings.
图1为本发明结构光光条中心提取方法的流程图,如图1所示,本发明结构光光条中心的提取方法主要包括以下步骤:Fig. 1 is a flow chart of the method for extracting the center of the structured light strip of the present invention. As shown in Fig. 1, the method for extracting the center of the structured light strip of the present invention mainly includes the following steps:
步骤11:确定结构光光条的初始法线方向。Step 11: Determine the initial normal direction of the structured light strip.
光条的初始法线方向只有两种可能:水平或者垂直,其取决于光条图像在水平方向和垂直方向的投影长度,在某一方向投影长度长,则认为该方向更接近于光条的走向,从而确定与其垂直的另一方向为光条的初始法线方向。比如,光条图像在水平方向的投影长度更长,则认为光条的走向更加近似于水平,其初始法线方向为垂直方向。所以,可通过计算二值图像在水平方向和垂直方向的一维投影矩阵,判断一维投影矩阵非零值的数目以得到光条的初始法线方向。There are only two possibilities for the initial normal direction of the light bar: horizontal or vertical, which depends on the projection length of the light bar image in the horizontal and vertical directions. If the projection length in a certain direction is long, the direction is considered to be closer to the light bar. direction, so that another direction perpendicular to it is determined as the initial normal direction of the light bar. For example, if the projection length of the light strip image in the horizontal direction is longer, it is considered that the direction of the light strip is more similar to the horizontal direction, and its initial normal direction is the vertical direction. Therefore, the initial normal direction of the light strip can be obtained by calculating the one-dimensional projection matrix of the binary image in the horizontal direction and the vertical direction, and judging the number of non-zero values of the one-dimensional projection matrix.
这里,首先采用自适应阈值法二值化光条图像,然后分别计算二值图像在水平方向和垂直方向的一维投影矩阵,比较两个一维投影矩阵中非零值的数目,拥有较多非零值的一维投影矩阵对应光条的走向,其相应的垂直方向即为光条的初始法线方向(nx,ny),即拥有较少非零值的一维投影矩阵对应光条的初始法线方向。上述采用自适应阈值法二值化光条图像(Otsu N.A threshold selectionmethod from gray level histograms[J].Transaction on System Man and Cybernetic,1979,9(1):62-66)为现有技术,在此不作详细介绍。Here, firstly, the adaptive threshold method is used to binarize the light strip image, and then the one-dimensional projection matrix of the binary image in the horizontal direction and the vertical direction is calculated respectively, and the number of non-zero values in the two one-dimensional projection matrices is compared, and there are more A one-dimensional projection matrix with non-zero values corresponds to the direction of the light strip, and its corresponding vertical direction is the initial normal direction (n x , n y ) of the light strip, that is, a one-dimensional projection matrix with fewer non-zero values corresponds to the light The initial normal direction of the bar. The above-mentioned binarization of light stripe images using adaptive threshold method (Otsu NA threshold selection method from gray level histograms [J]. Transaction on System Man and Cybernetic, 1979, 9 (1): 62-66) is a prior art, here No detailed introduction.
步骤12:根据步骤11所确定的结构光光条的初始法线方向计算结构光光条的初始光条中心点列。Step 12: According to the initial normal direction of the structured light strip determined in
在理想情况下,一维光条图像可以近似为沿光条中心线法线方向具有高斯型灰度分布的线条状结构,如图2所示。以一维光条中心点为原点、沿该点光条法线方向图像灰度分布的一维数学模型可以表示为
其中,x0是光条中心的坐标,a,b为一维光条的两个边界。由于I(x)在x0的左右两边的积分是相等的,所以x0也可以称为能量中心。实际应用中,由于相机灰度采样深度的限制,光条灰度分布函数将如图3所示,它同样可以通过公式(1)得到光条中心点x0。显然,两种灰度分布函数通过公式(1)得到的能量中心点是相同的。Among them, x 0 is the coordinate of the center of the light strip, and a, b are the two boundaries of the one-dimensional light strip. Since the integrals of I(x) on the left and right sides of x 0 are equal, x 0 can also be called the energy center. In practical applications, due to the limitation of camera gray sampling depth, the gray distribution function of the light bar will be shown in Figure 3, and it can also obtain the center point x 0 of the light bar through formula (1). Obviously, the energy centers obtained by the two gray distribution functions through the formula (1) are the same.
这里,考虑到图像的离散性,对于点(x,y)及其归一化初始法线方向(nx,ny),按照步长l可以取得多个,如2m+1个亚像素坐标:(x+k×l×nx,y+k×l×ny),(k∈{-m,-m+1,…,m}),其中,步长l的物理意义是离散点的距离,一般在0.2~0.4之间,m表示亚像素点在(nx,ny)方向上偏离(x,y)点的距离,这些点以间隔l位于光条过点(x,y)的截面上,公式(1)变为公式(2):Here, considering the discreteness of the image, for a point (x, y) and its normalized initial normal direction (n x , n y ), multiple sub-pixel coordinates can be obtained according to the step size l, such as 2m+1 sub-pixel coordinates : (x+k×l×n x , y+k×l×n y ), (k∈{-m,-m+1,...,m}), where the physical meaning of the step size l is a discrete point The distance, generally between 0.2 and 0.4, m represents the distance between the sub-pixel points in the (n x , n y ) direction away from the (x, y) point, and these points are located at the light bar passing point (x, y) with an interval l ), formula (1) becomes formula (2):
(2) (2)
其中,k,x0∈{-m,……,m},I(x+k×l×nx,y+k×l×ny)表示离散像素点的灰度,通过利用已知的整数坐标灰度插值得到,Δ∈(0,1),则(x+(x0+Δ)×l×nx,y+(x0+Δ)×l×ny)就是光条截面所求的光条中心。Among them, k, x 0 ∈{-m,...,m}, I(x+k×l×n x , y+k×l×n y ) represents the gray level of discrete pixels, by using the known Integer coordinate grayscale interpolation is obtained, Δ∈(0, 1), then (x+(x 0 +Δ)×l×n x , y+(x 0 +Δ)×l×n y ) is what is obtained for the light strip section center of light bar.
根据步骤11,初始法线方向只可能是水平或者垂直,所以通过按行扫描或者按列扫描图像,运用公式(2),就可以得到n个初始光条中心点,即初始光条中心点列。According to step 11, the initial normal direction can only be horizontal or vertical, so by scanning the image by row or column, using formula (2), you can get n initial light bar center points, that is, the initial light bar center point column .
步骤13:通过光条中心点列与光条中心点处法线方向之间的多次迭代,获取较高精度的结构光光条中心点列。Step 13: Through multiple iterations between the center point column of the light bar and the normal direction at the center point of the light bar, obtain a center point column of the structured light bar with higher precision.
步骤13所述多次迭代的具体实现流程如图4所示,包括以下步骤:The specific implementation process of the multiple iterations described in
步骤131:提取步骤12获取的初始光条中心点列中的多个光条中心点。Step 131: Extract multiple light bar center points in the initial light bar center point column obtained in
这里,所述提取是指:对于获取的光条中心点列中任意一点(xi,yi),在所述光条中心点列中取其最邻近的2q个光条中心点,此处,q为正整数。Here, the extraction refers to: for any point (x i , y i ) in the obtained light bar center point column, take its nearest 2q light bar center points in the light bar center point column, where , q is a positive integer.
步骤132:计算步骤131所获取光条中心点对应的法线方向。Step 132: Calculate the normal direction corresponding to the central point of the light strip obtained in
这里,根据公式(3)~(5),计算步骤131所取的每个光条中心点的归一化法线方向,得到:(nx1,ny1),......,(nxn,nyn)。其中,(nxn,nyn)表示光条中心点(xn,yn)处的法线方向。Here, according to formulas (3)-(5), calculate the normalized normal direction of each light bar center point taken in
步骤133:利用步骤132计算的各光条中心点的法线方向,通过公式(2)计算新的光条中心点列:
步骤134:判断是否停止迭代,如果是,步骤13处理流程结束;否则,执行步骤135。Step 134: Determine whether to stop the iteration, if yes, the processing flow of
这里,判断是否停止迭代的依据可以有多种选择。例如,可以通过判断
步骤135:根据步骤133计算的光条中心点列通过公式(3)~(5),计算新的光条中心点列的法线方向后,返回步骤133。Step 135: According to the light bar center point column calculated in
步骤14:对步骤13获取的较高精度的光条中心点列进行平滑操作,提取最终的结构光光条中心。Step 14: Perform a smoothing operation on the relatively high-precision light bar center point sequence obtained in
将步骤13迭代得到的光条能量中心点列记为:(x1,y1),(x2,y2),......(xn,yn)。Record the energy center points of the light bar obtained through iteration in
基于公式(6):Based on formula (6):
对上述点列进行一次平滑后,得到点列
以下为一关于本发明的仿真实例:The following is a simulation example about the present invention:
首先,由计算机生成具有如图3所示灰度分布的理想光条图像,如图5所示,其分辨率为768×576,用来模拟光条灰度的理想空间分布,然后,加入均值为0,标准差为σ的高斯分布噪声,用来模拟空间光条的实际图像。对图5所示光条图像进行提取的具体过程如下:First, the computer generates an ideal light strip image with the grayscale distribution shown in Figure 3, as shown in Figure 5, with a resolution of 768×576, which is used to simulate the ideal spatial distribution of the grayscale of the light strip, and then add the mean is 0, and the Gaussian distribution noise with standard deviation σ is used to simulate the actual image of spatial light stripes. The specific process of extracting the light strip image shown in Figure 5 is as follows:
根据上述步骤11,采用自适应阈值法得到二值化光条图像,如图6所示,然后分别计算二值图像在水平和垂直方向的一维投影矩阵如下:According to the
水平方向的一维投影矩阵:[0,......,0,2,3,4,6,7,7,......,127,109,89,63,1,0,0,......,0],其大小为1×768,非零值数目为104。One-dimensional projection matrix in the horizontal direction: [0, ..., 0, 2, 3, 4, 6, 7, 7, ..., 127, 109, 89, 63, 1, 0 ,0,...,0], its size is 1×768, and the number of non-zero values is 104.
垂直方向的一维投影矩阵:[5,5,4,5,5,5,4,4,......,5,5,4,5,5,5,4]’,其大小为576×1,非零值数目为576。One-dimensional projection matrix in the vertical direction: [5, 5, 4, 5, 5, 5, 4, 4, ..., 5, 5, 4, 5, 5, 5, 4]', whose size is 576×1, and the number of non-zero values is 576.
由于水平方向的一维投影矩阵拥有较少非零值,所以,光条的初始法线方向为水平方向。Since the one-dimensional projection matrix in the horizontal direction has fewer non-zero values, the initial normal direction of the light bar is the horizontal direction.
根据上述步骤12,由于光条初始法线方向为水平方向,认为每一行像素就是光条的一个一维截面,从而按行扫描图像,利用式(2),选择参数l=0.3和m=15,计算得到576个初始光条中心点:(400.068,0),(400.497,1),(401.248,2),......,(416.95,574),(416.094,575)。According to the
根据步骤13,选取计算得到的所有初始光条中心点进行迭代,迭代过程中,相关参数选择为:q=5,l=0.3,m=15,T=10,ε=0.05,最终迭代得到包含575个点的光条中心点列:(400.146,-0.0557085),(400.619,0.912298),(401.13,2.06592),......,(417.975,571.868),(416.959,572.947),(416.581,573.811)。According to step 13, select all the calculated initial center points of light strips for iteration. During the iteration process, the relevant parameters are selected as: q=5, l=0.3, m=15, T=10, ε=0.05, and the final iteration contains 575 points of light bar center point column: (400.146, -0.0557085), (400.619, 0.912298), (401.13, 2.06592), ..., (417.975, 571.868), (416.959, 572.947), (416.581 , 573.811).
根据步骤14,使用式(6)对上述点列进行10次平滑后,得到包含565个点的最终结果点列:(407.07,10.1059),(407.763,11.0993),(408.454,12.0798),......,(424.24,561.87),(423.619,562.859),(423.01,563.86)。According to step 14, after smoothing the above point sequence 10 times using formula (6), the final result point sequence containing 565 points is obtained: (407.07, 10.1059), (407.763, 11.0993), (408.454, 12.0798), .. ...., (424.24, 561.87), (423.619, 562.859), (423.01, 563.86).
图7为仿真图5所示光条的部分提取效果示意图,表1为仿真图像加高斯噪声光条中心提取精度数据:Figure 7 is a schematic diagram of the partial extraction effect of the simulated light strip shown in Figure 5, and Table 1 is the extraction accuracy data of the simulated image plus Gaussian noise light strip center:
表1Table 1
本仿真实例中,计算机配置为:CPU为Intel Core 2.0G,内存1G,操作系统为Windows XP,编译工具为VC 6.0,待处理图像的大小均为768×576,采用本发明的结构光光条中心提取方法,消耗时间为6.5毫秒。In this simulation example, the computer configuration is: CPU is Intel Core 2.0G, memory 1G, operating system is Windows XP, compiling tool is VC 6.0, the size of the image to be processed is 768×576, and the structured light strip of the present invention is adopted The center extraction method consumes 6.5 milliseconds.
由上可以看出,本发明完全不涉及图像滤波的大量加乘操作,对于768×576像素的图像,仅仅消耗6.5毫秒,而使用经过改进滤波方法的基于Hessian矩阵的光条中心亚像素提取算法,采用2.4G主频的处理器,需要消耗上百毫秒,如果结合使用图像预处理手段,提取光条所在的部分图像区域进行处理,同样利用Hessian矩阵法,消耗时间也需40毫秒左右,所以本发明处理速度较快;从提取精度上来讲,针对图4所示图像,本发明的提取精度优于0.12像素,完全可以满足结构光视觉测量系统的要求。从通用性上来讲,由于本发明采用了迭代的思想,可以较好的计算出光条各点的法线方向,所以光条图像的形状对本发明的提取精度影响很小。另外,从实验结果可以看出,本发明对于图像具有较好的噪声抗干扰能力。因此,本发明能够在保证检测精度的同时,减少运算量、提高处理速度,且通用性良好、抗干扰能力强。It can be seen from the above that the present invention does not involve a large number of addition and multiplication operations of image filtering at all. For an image of 768×576 pixels, it only consumes 6.5 milliseconds, while using the improved filtering method based on the Hessian matrix-based light bar center sub-pixel extraction algorithm , using a processor with a main frequency of 2.4G needs to consume hundreds of milliseconds. If image preprocessing methods are used in combination to extract part of the image area where the light bar is located for processing, the same Hessian matrix method will consume about 40 milliseconds, so The processing speed of the present invention is fast; in terms of extraction accuracy, for the image shown in Figure 4, the extraction accuracy of the present invention is better than 0.12 pixels, which can fully meet the requirements of the structured light vision measurement system. In terms of versatility, since the present invention adopts an iterative idea, the normal direction of each point of the light strip can be better calculated, so the shape of the light strip image has little influence on the extraction accuracy of the present invention. In addition, it can be seen from the experimental results that the present invention has better noise anti-interference ability for images. Therefore, the present invention can reduce the calculation amount and improve the processing speed while ensuring the detection accuracy, and has good versatility and strong anti-interference ability.
以上所述,仅为本发明的较佳实施例而已,并非用于限定本发明的保护范围。The above descriptions are only preferred embodiments of the present invention, and are not intended to limit the protection scope of the present invention.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2009100801189A CN101504770B (en) | 2009-03-19 | 2009-03-19 | A method for extracting the center of a structured light strip |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2009100801189A CN101504770B (en) | 2009-03-19 | 2009-03-19 | A method for extracting the center of a structured light strip |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101504770A true CN101504770A (en) | 2009-08-12 |
CN101504770B CN101504770B (en) | 2010-04-21 |
Family
ID=40977005
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2009100801189A Expired - Fee Related CN101504770B (en) | 2009-03-19 | 2009-03-19 | A method for extracting the center of a structured light strip |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN101504770B (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103400399A (en) * | 2013-08-07 | 2013-11-20 | 长春工业大学 | Spatial moment based line structured light center extraction method |
CN103411562A (en) * | 2013-08-22 | 2013-11-27 | 电子科技大学 | Structured light laser strip center extraction method based on dynamic programming and mean-shift |
CN104930985A (en) * | 2015-06-16 | 2015-09-23 | 大连理工大学 | Binocular vision three-dimensional morphology measurement method based on time and space constraints |
CN105005981A (en) * | 2014-04-18 | 2015-10-28 | 北京航空航天大学 | Light stripe center extraction method and apparatus based on multiple dimensions |
CN105931232A (en) * | 2016-04-18 | 2016-09-07 | 南京航空航天大学 | High-precision sub-pixel extraction method for centers of light bars of structured light |
CN106097430A (en) * | 2016-06-28 | 2016-11-09 | 哈尔滨工程大学 | A kind of laser stripe center line extraction method of many gaussian signals matching |
CN107687819A (en) * | 2017-08-01 | 2018-02-13 | 大连理工大学 | A fast and high-precision method for extracting sub-pixels in the center of light bars |
CN108564621A (en) * | 2018-04-28 | 2018-09-21 | 中国科学院电子学研究所 | Structured light strip center extraction method and device for rut detection |
CN110044292A (en) * | 2018-01-16 | 2019-07-23 | 郑州宇通客车股份有限公司 | A kind of method for three-dimensional measurement and system based on line-structured light |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100491899C (en) * | 2005-11-22 | 2009-05-27 | 北京航空航天大学 | A fast and high-precision extraction method for the center of structured light stripes |
CN101178812A (en) * | 2007-12-10 | 2008-05-14 | 北京航空航天大学 | A hybrid image processing method for extracting the centerline of structured light stripes |
CN101178811A (en) * | 2007-12-10 | 2008-05-14 | 北京航空航天大学 | A three-step method for image feature extraction of structured light linear light strips |
-
2009
- 2009-03-19 CN CN2009100801189A patent/CN101504770B/en not_active Expired - Fee Related
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103400399B (en) * | 2013-08-07 | 2016-03-02 | 长春师范大学 | A kind of line-structured light center extraction method based on spatial moment |
CN103400399A (en) * | 2013-08-07 | 2013-11-20 | 长春工业大学 | Spatial moment based line structured light center extraction method |
CN103411562A (en) * | 2013-08-22 | 2013-11-27 | 电子科技大学 | Structured light laser strip center extraction method based on dynamic programming and mean-shift |
CN103411562B (en) * | 2013-08-22 | 2016-01-13 | 电子科技大学 | A kind of structured light strip center extraction method based on dynamic programming and average drifting |
CN105005981A (en) * | 2014-04-18 | 2015-10-28 | 北京航空航天大学 | Light stripe center extraction method and apparatus based on multiple dimensions |
CN104930985B (en) * | 2015-06-16 | 2017-08-22 | 大连理工大学 | Binocular vision 3 D topography measurement method based on space-time restriction |
CN104930985A (en) * | 2015-06-16 | 2015-09-23 | 大连理工大学 | Binocular vision three-dimensional morphology measurement method based on time and space constraints |
CN105931232A (en) * | 2016-04-18 | 2016-09-07 | 南京航空航天大学 | High-precision sub-pixel extraction method for centers of light bars of structured light |
CN105931232B (en) * | 2016-04-18 | 2019-02-19 | 南京航空航天大学 | High-precision sub-pixel extraction method for the center of structured light strips |
CN106097430A (en) * | 2016-06-28 | 2016-11-09 | 哈尔滨工程大学 | A kind of laser stripe center line extraction method of many gaussian signals matching |
CN107687819A (en) * | 2017-08-01 | 2018-02-13 | 大连理工大学 | A fast and high-precision method for extracting sub-pixels in the center of light bars |
CN110044292A (en) * | 2018-01-16 | 2019-07-23 | 郑州宇通客车股份有限公司 | A kind of method for three-dimensional measurement and system based on line-structured light |
CN108564621A (en) * | 2018-04-28 | 2018-09-21 | 中国科学院电子学研究所 | Structured light strip center extraction method and device for rut detection |
CN108564621B (en) * | 2018-04-28 | 2021-09-24 | 中国科学院电子学研究所 | Structured light strip center extraction method and device for rutting detection |
Also Published As
Publication number | Publication date |
---|---|
CN101504770B (en) | 2010-04-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101504770B (en) | A method for extracting the center of a structured light strip | |
CN109903327B (en) | A target size measurement method for sparse point cloud | |
CN105300316B (en) | Optical losses rapid extracting method based on grey scale centre of gravity method | |
CN107301648B (en) | Redundant point cloud removing method based on overlapping area boundary angle | |
CN111462214B (en) | Line structure light stripe center line extraction method based on Hough transformation | |
CN102521835B (en) | Method for extracting point cloud data of tree height based on space three-dimensional template | |
CN101499168A (en) | Structured light strip center extraction method based on ridge line tracing and Hessian matrix | |
CN103729846B (en) | LiDAR point cloud data edge detection method based on triangular irregular network | |
AU2016385541A1 (en) | Object surface deformation feature extraction method based on line scanning three-dimensional point Cloud | |
CN101408985A (en) | Method and apparatus for extracting circular luminous spot second-pixel center | |
CN101137003A (en) | A Subpixel Edge Extraction Method Based on Gray Relational Analysis | |
CN103455813A (en) | Method for facula center positioning of CCD image measurement system | |
CN105095822B (en) | A kind of Chinese letter co pattern image detection method and system | |
CN109583377B (en) | Control method and device for pipeline model reconstruction and upper computer | |
CN113674360B (en) | A covariant-based method for line structured light and light plane calibration | |
CN101178811A (en) | A three-step method for image feature extraction of structured light linear light strips | |
CN113256706A (en) | ZYNQ-based real-time light stripe center extraction system and method | |
CN112241964B (en) | Light strip center extraction method for line structured light non-contact measurement | |
CN116681753A (en) | Method and system for extracting center of line structured light based on spatial gray-scale center of gravity advancement | |
CN101526480A (en) | Real-time detection method of butt weld of thin plates based on visual sense | |
Yang et al. | Accurate extraction method of multi-laser stripes for stereo-vision based handheld scanners in complex circumstances | |
CN103411562B (en) | A kind of structured light strip center extraction method based on dynamic programming and average drifting | |
CN103886289B (en) | Direction self-adaptive method and system for identifying on-water bridge targets | |
CN109556533B (en) | An automatic extraction method for multi-line structured light fringe images | |
CN104573144A (en) | System and method for simulating offline point cloud of measuring equipment |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20100421 Termination date: 20200319 |