CN101483483B - 一种产生多频率高频微波信号源的方法及装置 - Google Patents

一种产生多频率高频微波信号源的方法及装置 Download PDF

Info

Publication number
CN101483483B
CN101483483B CN2009100953181A CN200910095318A CN101483483B CN 101483483 B CN101483483 B CN 101483483B CN 2009100953181 A CN2009100953181 A CN 2009100953181A CN 200910095318 A CN200910095318 A CN 200910095318A CN 101483483 B CN101483483 B CN 101483483B
Authority
CN
China
Prior art keywords
frequency
optical fiber
light
microwave signal
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN2009100953181A
Other languages
English (en)
Other versions
CN101483483A (zh
Inventor
高士明
高莹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University ZJU
Original Assignee
Zhejiang University ZJU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University ZJU filed Critical Zhejiang University ZJU
Priority to CN2009100953181A priority Critical patent/CN101483483B/zh
Publication of CN101483483A publication Critical patent/CN101483483A/zh
Application granted granted Critical
Publication of CN101483483B publication Critical patent/CN101483483B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Optical Communication System (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

本发明公开了一种产生多频率高频微波信号源的方法及装置。激光器产生的光波经第一光放大器通过第一耦合器/分束器后分成两路,一路作为泵浦光入射到布里渊频移模块中产生具有频移的斯托克斯光;另一路光波经过强度调制器、第二光放大器、高非线性光纤,两路光接入第二耦合器/分束器后,在光电探测器上发生光学拍频,产生多频率高频微波信号。采用全光方案,可以突破电子瓶颈的限制,易于实现高频微波信号的产生;利用光纤中的受激布里渊散射结合光载波的强度调制以及光纤四波混频的均衡和稳定效应,可以方便地实现多频率高频微波,其中心频率由布里渊频移量决定,频率间隔可以通过驱动微波频率自由调节,满足副载波复用无线通信等应用的需要。

Description

一种产生多频率高频微波信号源的方法及装置
技术领域
本发明涉及光电子及微波光子学领域,尤其是涉及一种产生多频率高频微波信号源的方法及装置。
背景技术
近年来,随着数据、语音、视频和多媒体等形式的信息迅速增长,通信系统带宽的提高已经十分迫切。在无线通信系统中,为了获得更高的数据传输速率,一个有效方法是提高无线载波的工作频率。目前大多数无线通信业务的工作频率都集中在5GHz以下,如果采用高频微波信号作为载波,系统容量将得到大大提升。另一方面,随着光纤无线通信(Radio-over-Fiber,RoF)技术的不断发展和趋向成熟,波分复用和副载波复用也成为扩展系统容量的重要选择,特别是将高频微波和副载波复用技术相结合,代表了未来光纤无线通信系统的发展方向。在这样的系统中,多频率微波信号源是实现副载波复用的基本组成部分之一。
由于电子瓶颈的限制,电学方法产生的微波信号频率很难提升。相比之下,光学方法在频率上不受限制,成为一条产生高频微波信号的重要途径。利用光纤中的受激布里渊散射(Stimulated Brillouin Scattering,SBS)效应,可以很容易实现一个微波波段的频移,进而通过光学拍频方法获得高频微波。如果在拍频之前通过强度调制产生出多个不同波长的光学边带,通过频率就可以实现多频率微波信号产生,满足副载波复用光纤无线通信系统的需要。
发明内容
本发明的目的在于提供一种产生多频率高频微波信号源的方法及装置。
本发明采用的技术方案是:
一、一种产生多频率高频微波信号源的方法:
利用光纤中的受激布里渊散射结合光载波的强度调制,通过光纤中的四波混频效应实现光学边带的均衡和稳定,然后将斯托克斯光和光载波调制产生的光学边带进行光学拍频产生多频率微波信号。
将一束光分成两部分,一部分作为受激布里渊散射的泵浦光在光纤中产生具有一定频移的斯托克斯光,引起的频移量由光纤的斯托克斯频移及所用的频移级次决定;另一部分光波经过强度调制,在低频微波的驱动下产生多级次的光学边带,各个光学边带通过高非线性介质中的四波混频进行能量的均衡和稳定,然后将两部分合并起来通过光学拍频即可产生多频率高频微波信号。产生微波信号的中心频率由斯托克斯光相对于光载波的频移量所决定,通过改变驱动微波的频率可以方便地调节多频率微波的频率间隔。
二、一种产生多频率高频微波信号源的装置:
激光器产生的光波经第一光放大器通过第一耦合器/分束器后分成两路,一路作为泵浦光入射到布里渊频移模块中产生具有频移的斯托克斯光;另一路光波经过低频信号源驱动的强度调制器、第二光放大器、高非线性光纤,两路光接入第二耦合器/分束器后,在光电探测器上发生光学拍频,产生多频率高频微波信号。
所述的利用光纤受激布里渊散射产生高频微波信号方法的装置,其特征在于:所述的布里渊频移模块包括三端口环行器和光纤;环行器的输入端口a接第一耦合器/分束器的输出端,端口b接光纤,输出端口c接第二耦合器/分束器的输入端。
所述的布里渊频移模块包括四端口环行器和光纤,环行器的输入端口a接第一耦合器/分束器3的输出端,端口b和c之间接光纤,输出端口d接第二耦合器/分束器的输入端。
本发明具有的有益效果是:
采用全光方案,可以突破电子瓶颈的限制,易于实现高频微波信号的产生;利用光纤中的受激布里渊散射结合光载波的强度调制以及光纤四波混频的均衡和稳定效应,可以方便地实现多频率高频微波,其中心频率由布里渊频移决定,频率间隔可以通过驱动微波频率自由调节,满足副载波复用无线通信等应用的需要。
附图说明
图1是多频率高频微波信号源产生的装置图。
图2是一次及二次布里渊频移模块的一种实现方法的结构示意图。
图3是原始的激光器输出光谱、强度调制后的输出光谱、四波混频后的输出光谱对比图。
图4是分别采用一次以及二次布里渊频移模块得到的合并后的光谱图。
图5是采用一次布里渊频移模块时驱动微波频率分别为1GHz和500MHz产生的多频率微波信号频谱图。
图6是采用二次布里渊频移模块时驱动微波频率分别为1GHz和500MHz产生的多频率微波信号频谱图。
图中:1.激光器,2.光放大器,3.耦合器/分束器,4.低频微波信号源,5.强度调制器,6.高非线性光纤,7.光电探测器,8.布里渊频移模块,9.光纤,10.环行器。
具体实施方式
利用光纤受激布里渊散射产生高频微波信号的装置如图1所示,激光器1产生的光波经第一光放大器2通过第一耦合器/分束器3后分成两路:
一路作为泵浦光入射到布里渊频移模块8中发生受激布里渊散射,产生具有一定频移的斯托克斯光,该模块输出的斯托克斯光和原始的光载波之间的频移量由光纤的布里渊频移及所用的布里渊级次决定。一种产生一次布里渊频移的模块结构如图2(a)所示,包括三端口环行器10和光纤9,环行器10的输入端口a接第一耦合器/分束器3的输出端,端口b接光纤9,输出端口c接第二耦合器/分束器3的输入端。从第一耦合器/分束器3输出端入射的光载波作为泵浦光,在光纤中发生受激布里渊散射产生一级斯托克斯光,由于斯托克斯光是后向传播的,所以产生的一次斯托克斯光经环行器从端口c输出,该斯托克斯光和光载波之间的频率差为一次布里渊频移。
一种产生二次布里渊频移的模块结构如图2(b)所示,包括四端口环行器10和光纤9,环行器10的输入端口a接第一耦合器/分束器3的输出端,端口b和c之间接光纤9,输出端口d接第二耦合器/分束器3的输入端。入射的光载波产生的一次斯托克斯光被约束在环形结构内,继续作为泵浦光激发二次斯托克斯光,产生的二级斯托克斯光由输出端口输出,因而该结构可以产生二次布里渊频移。
另一路光波经过低频微波信号源4驱动的强度调制器5、第二光放大器2、高非线性光纤6,然后与第一路光经第二耦合器/分束器3合并后,在光电探测器7上发生光学拍频,产生多频率高频微波信号。在强度调制器5中光载波受到低频驱动微波4的调制产生多级的光学边带,光学边带之间的频率间隔与驱动微波的频率相等。光学边带产生后在高非线性光纤中发生四波混频效应,能量在强弱不同的光学边带之间相互交换,从而形成均衡而稳定的多波长光波输出。将两部分通过耦合器合并后发生光学拍频,每个光学边带和斯托克斯光之间都会产生一个微波,从而实现多频率微波信号的光学产生。
实施例1:
高非线性光纤中四波混频的作用可以通过图3加以说明。图3(a)是激光器产生的光载波在进入强度调制器之前的光谱图。在强度调制器上施加频率为8GHz的微波驱动信号,光载波的两侧将产生多级次的光学边带,如图3(b)所示。但是,直接调制产生的光学边带数目有限,而且各个边带之间强度相差较大,这将影响拍频产生的微波信号频率数和强度均衡性。将调制后的光载波入射到高非线性光纤发生四波混频,通过该效应使得各个光学边带之间充分进行能量交换,从而增加了输出的光波数目,并且减小了各个光波之间的强度差别,混频后的光谱如图3(c)所示。
实施例2:
采用图2(a)所示的一级布里渊频移模块,将激光器输出的波长为1555.4nm的激光作为入射光,该光波经过调制、四波混频后与在布里渊频移模块中产生的一级斯托克斯光的合并光谱如图4(a)所示,两个峰值之间的频率差为11.8GHz。将它们入射到光电探测器上发生光学拍频,得到的多频率微波信号频谱如图5所示,其中心频率为11.8GHz。图5(a)中所用的驱动信号频率为1GHz,图5(b)中所用的驱动信号频率为500MHz,多频率微波信号的频率间隔与驱动微波信号频率相同,分别为1GHz和500MHz。
实施例3:
采用图2(b)所示的二级布里渊频移模块,将激光器输出的波长为1555.4nm的激光作为入射光,该光波经过调制、四波混频后与在布里渊频移模块中产生的一级斯托克斯光的合并光谱如图4(b)所示,两个峰值之间的频率差为21.6GHz。将它们入射到光电探测器上发生光学拍频,得到的多频率微波信号频谱如图6所示,其中心频率为21.6GHz。图6(a)中所用的驱动信号频率为1GHz,图6(b)中所用的驱动信号频率为500MHz,多频率微波信号的频率间隔与驱动微波信号频率相同,分别为1GHz和500MHz。
在本发明中,激光器、光放大器、耦合器/分束器、低频微波信号源、强度调制器、高非线性光纤、光电探测器、布里渊频移模块、光纤和环行器均可选用各种商业化元器件。光纤可采用各种规格的商用光纤,如标准单模光纤、色散位移光纤、微结构光纤等。

Claims (4)

1.一种产生多频率高频微波信号源的方法,其特征在于:利用光纤中的受激布里渊散射结合光载波的强度调制,通过光纤中的四波混频效应实现光学边带的均衡和稳定,然后将斯托克斯光和光载波调制产生的光学边带进行光学拍频产生多频率微波信号;将一束光分成两部分,一部分作为受激布里渊散射的泵浦光在光纤中产生具有一定频移的斯托克斯光,引起的频移量由光纤的斯托克斯频移及所用的频移级次决定;另一部分光波经过强度调制,在低频微波的驱动下产生多级次的光学边带,各个光学边带通过高非线性介质中的四波混频进行能量的均衡和稳定,然后将两部分合并起来通过光学拍频即可产生多频率高频微波信号,产生微波信号的中心频率由斯托克斯光相对于光载波的频移量所决定,通过改变驱动微波的频率可以方便地调节多频率微波的频率间隔。
2.一种利用权利要求1所述方法产生多频率高频微波信号源(4)的装置,包括激光器(1),两个光放大器,两个耦合器/分束器,低频微波信号源(4),强度调制器(5),高非线性光纤(6),光电探测器(7)和布里渊频移模块(8);其特征在于:激光器(1)产生的光波经第一光放大器通过第一耦合器/分束器后分成两路,一路作为泵浦光入射到布里渊频移模块(8)中产生具有频移的斯托克斯光;另一路光波经过低频微波信号源(4)驱动的强度调制器(5)、第二光放大器、高非线性光纤(6),两路光接入第二耦合器/分束器后,在光电探测器(7)上发生光学拍频,产生多频率高频微波信号。
3.根据权利要求2所述的一种产生多频率高频微波信号源的装置,其特征在于:所述的布里渊频移模块(8)包括三端口环行器(10)和光纤(9),环行器(10)的输入端口a接第一耦合器/分束器(3)的输出端,端口b接光纤(9),输出端口c接第二耦合器/分束器(3)的输入端。
4.根据权利要求2所述的一种产生多频率高频微波信号源的装置,其特征在于:所述的布里渊频移模块(8)包括四端口环行器(10)和光纤(9),环行器(10)的输入端口a接第一耦合器/分束器(3)的输出端,端口b和c之间接光纤(9),输出端口d接第二耦合器/分束器(3)的输入端。
CN2009100953181A 2009-01-08 2009-01-08 一种产生多频率高频微波信号源的方法及装置 Expired - Fee Related CN101483483B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2009100953181A CN101483483B (zh) 2009-01-08 2009-01-08 一种产生多频率高频微波信号源的方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2009100953181A CN101483483B (zh) 2009-01-08 2009-01-08 一种产生多频率高频微波信号源的方法及装置

Publications (2)

Publication Number Publication Date
CN101483483A CN101483483A (zh) 2009-07-15
CN101483483B true CN101483483B (zh) 2011-06-08

Family

ID=40880437

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2009100953181A Expired - Fee Related CN101483483B (zh) 2009-01-08 2009-01-08 一种产生多频率高频微波信号源的方法及装置

Country Status (1)

Country Link
CN (1) CN101483483B (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101794964A (zh) * 2010-03-25 2010-08-04 上海交通大学 基于双波长布里渊光纤激光器的光生微波装置
CN102571144B (zh) * 2012-01-11 2013-11-06 中国科学院半导体研究所 频带可调谐的光载超宽带无线电信号发生器
CN103872552B (zh) * 2014-01-24 2016-11-23 长春理工大学 超窄线宽可调谐微波信号源
CN106053938B (zh) * 2016-06-18 2018-09-28 西安电子科技大学 利用双偏振调制器实现瞬时微波频率测量的装置及方法
CN106959167B (zh) * 2017-05-12 2019-03-08 暨南大学 测量装置、布里渊光时域反射仪及布里渊频移测量系统
CN109616532B (zh) * 2018-11-07 2020-04-03 三明学院 基于硅基锗光电探测器的光电探测方法和系统及设备
CN109586798B (zh) * 2018-12-17 2021-05-25 吉林大学 一种可调谐多输出微波信号的光子学产生装置
CN112054374B (zh) * 2020-09-10 2021-11-05 中国人民解放军国防科技大学 频率可调谐的窄带和超宽带相结合的高功率微波源
CN114499670B (zh) * 2021-12-31 2023-09-15 北京无线电计量测试研究所 一种微波信号处理装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101247181A (zh) * 2008-03-18 2008-08-20 浙江大学 利用光纤受激布里渊散射产生高频微波信号的方法及装置
CN101247180A (zh) * 2008-03-18 2008-08-20 浙江大学 基于光纤受激布里渊散射的微波信号频率变换方法及装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101247181A (zh) * 2008-03-18 2008-08-20 浙江大学 利用光纤受激布里渊散射产生高频微波信号的方法及装置
CN101247180A (zh) * 2008-03-18 2008-08-20 浙江大学 基于光纤受激布里渊散射的微波信号频率变换方法及装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
苗向蕊等.基于光纤四波混频效应的新型组播方法.《物理学报》.2008,第57卷(第12期),7699-7704. *
高莹等.Stable multi-wavelength erbium-doped fiber laser based on dispersion-shifted fiber and Sagnac loop filter.《Chinese Optics Letters》.2007,第5卷(第9期),519-521. *

Also Published As

Publication number Publication date
CN101483483A (zh) 2009-07-15

Similar Documents

Publication Publication Date Title
CN101483483B (zh) 一种产生多频率高频微波信号源的方法及装置
Corcoran et al. Ultra-dense optical data transmission over standard fibre with a single chip source
Chow et al. 100 GHz ultra-wideband (UWB) fiber-to-the-antenna (FTTA) system for in-building and in-home networks
CN101833221B (zh) 基于硅基微环谐振腔的全光单边带上变频产生装置
CN104330939B (zh) 一种sbs宽带可调谐光纤延迟系统
CN102608832A (zh) 一种具有波长转换功能的全光码型转换方法
CN104601240B (zh) 基于硫系玻璃光纤四波混频效应的毫米波生成系统及方法
Zhang et al. Simultaneous multi-channel CMW-band and MMW-band UWB monocycle pulse generation using FWM effect in a highly nonlinear photonic crystal fiber
CN101247181B (zh) 利用光纤受激布里渊散射产生高频微波信号的方法及装置
Ma et al. Demonstration of digital fronthaul over self-seeded WDM-PON in commercial LTE environment
Singh et al. Analysis of all-optical wavelength converter based on FWM effect in HNLF for coherent 100 Gbps dual-polarized DQPSK signal
Singh et al. Design of all optical contention detection circuit based on HNLF at the data rate of 120 Gbps
Martí et al. Microwave photonics and radio-over-fiber research
JP2011501618A (ja) 光−ミリメートル波変換
CN203119913U (zh) 一种具有波长组播功能的全光码型转换装置
CN101247180B (zh) 基于光纤受激布里渊散射的微波信号频率变换方法及装置
CN102929072B (zh) 无偏振串扰的偏振复用系统全光波长变换简化装置及方法
CN102681287A (zh) 基于受激布里渊散射效应的全光码型转换系统
Goyal et al. Single tone and multi tone microwave over fiber communication system using direct detection method
Lebedev et al. Demonstration and comparison study for V-and W-band real-time high-definition video delivery in diverse fiber-wireless infrastructure
CN103199795B (zh) 一种独立非相干双激光低相位噪声16倍频信号生成装置
CN105391512A (zh) 一种基于色散平坦光纤单级调制的多载波产生系统
Alic et al. Two-pump parametric optical delays
CN111856836A (zh) 一种正交模式光参量放大方法及装置
Arief et al. The SCM/WDM system model for radio over fiber communication link

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20110608

Termination date: 20140108