CN101480560B - Method for processing Claus tail gases by membrane separation - Google Patents
Method for processing Claus tail gases by membrane separation Download PDFInfo
- Publication number
- CN101480560B CN101480560B CN2008100557965A CN200810055796A CN101480560B CN 101480560 B CN101480560 B CN 101480560B CN 2008100557965 A CN2008100557965 A CN 2008100557965A CN 200810055796 A CN200810055796 A CN 200810055796A CN 101480560 B CN101480560 B CN 101480560B
- Authority
- CN
- China
- Prior art keywords
- gas
- weight
- membrane
- nitrogen
- claus
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000007789 gas Substances 0.000 title claims abstract description 108
- 239000012528 membrane Substances 0.000 title claims abstract description 78
- 238000000034 method Methods 0.000 title claims abstract description 52
- 238000000926 separation method Methods 0.000 title abstract description 21
- 238000012545 processing Methods 0.000 title description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims abstract description 72
- 229910052757 nitrogen Inorganic materials 0.000 claims abstract description 35
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 claims abstract description 26
- 239000012466 permeate Substances 0.000 claims abstract description 17
- 238000011084 recovery Methods 0.000 claims abstract description 14
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 claims description 13
- 239000003546 flue gas Substances 0.000 claims description 13
- 238000006243 chemical reaction Methods 0.000 claims description 9
- 230000018044 dehydration Effects 0.000 claims description 6
- 238000006297 dehydration reaction Methods 0.000 claims description 6
- 229920002492 poly(sulfone) Polymers 0.000 claims description 6
- 239000007787 solid Substances 0.000 claims description 6
- 239000000463 material Substances 0.000 claims description 5
- 229920002379 silicone rubber Polymers 0.000 claims description 4
- 239000004945 silicone rubber Substances 0.000 claims description 4
- 229920002301 cellulose acetate Polymers 0.000 claims description 3
- 229920001721 polyimide Polymers 0.000 claims description 3
- 239000001856 Ethyl cellulose Substances 0.000 claims description 2
- ZZSNKZQZMQGXPY-UHFFFAOYSA-N Ethyl cellulose Chemical compound CCOCC1OC(OC)C(OCC)C(OCC)C1OC1C(O)C(O)C(OC)C(CO)O1 ZZSNKZQZMQGXPY-UHFFFAOYSA-N 0.000 claims description 2
- -1 Merlon Polymers 0.000 claims description 2
- 239000004642 Polyimide Substances 0.000 claims description 2
- 229910001873 dinitrogen Inorganic materials 0.000 claims description 2
- 238000001035 drying Methods 0.000 claims description 2
- 229920001249 ethyl cellulose Polymers 0.000 claims description 2
- 235000019325 ethyl cellulose Nutrition 0.000 claims description 2
- 229910010272 inorganic material Inorganic materials 0.000 claims description 2
- 239000011147 inorganic material Substances 0.000 claims description 2
- 239000007769 metal material Substances 0.000 claims description 2
- 230000008595 infiltration Effects 0.000 claims 5
- 238000001764 infiltration Methods 0.000 claims 5
- 229920000784 Nomex Polymers 0.000 claims 1
- 239000004721 Polyphenylene oxide Substances 0.000 claims 1
- 239000005864 Sulphur Substances 0.000 claims 1
- 150000001875 compounds Chemical class 0.000 claims 1
- 125000000118 dimethyl group Chemical group [H]C([H])([H])* 0.000 claims 1
- 235000012489 doughnuts Nutrition 0.000 claims 1
- 239000004763 nomex Substances 0.000 claims 1
- 229920006380 polyphenylene oxide Polymers 0.000 claims 1
- 238000005096 rolling process Methods 0.000 claims 1
- 229920005573 silicon-containing polymer Polymers 0.000 claims 1
- 229910052717 sulfur Inorganic materials 0.000 abstract description 26
- 239000011593 sulfur Substances 0.000 abstract description 25
- 239000012465 retentate Substances 0.000 abstract description 9
- 238000005265 energy consumption Methods 0.000 abstract description 5
- 239000006227 byproduct Substances 0.000 abstract 1
- 238000006477 desulfuration reaction Methods 0.000 description 23
- 230000023556 desulfurization Effects 0.000 description 23
- 239000000428 dust Substances 0.000 description 18
- 239000012510 hollow fiber Substances 0.000 description 17
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 10
- 239000002131 composite material Substances 0.000 description 10
- 238000010521 absorption reaction Methods 0.000 description 8
- 238000005516 engineering process Methods 0.000 description 7
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 6
- 239000007788 liquid Substances 0.000 description 6
- 239000000203 mixture Substances 0.000 description 5
- 238000001179 sorption measurement Methods 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- 239000002253 acid Substances 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 239000002245 particle Substances 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- MWUXSHHQAYIFBG-UHFFFAOYSA-N nitrogen oxide Inorganic materials O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 3
- 229920005597 polymer membrane Polymers 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 2
- RAHZWNYVWXNFOC-UHFFFAOYSA-N Sulphur dioxide Chemical compound O=S=O RAHZWNYVWXNFOC-UHFFFAOYSA-N 0.000 description 2
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 2
- 239000004205 dimethyl polysiloxane Substances 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 229910044991 metal oxide Inorganic materials 0.000 description 2
- 150000004706 metal oxides Chemical class 0.000 description 2
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 2
- 239000003595 mist Substances 0.000 description 2
- 238000005192 partition Methods 0.000 description 2
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 description 2
- 239000002861 polymer material Substances 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- 230000008929 regeneration Effects 0.000 description 2
- 238000011069 regeneration method Methods 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 239000004952 Polyamide Substances 0.000 description 1
- 239000003463 adsorbent Substances 0.000 description 1
- 239000000443 aerosol Substances 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 239000012670 alkaline solution Substances 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 229920003235 aromatic polyamide Polymers 0.000 description 1
- 229910002091 carbon monoxide Inorganic materials 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 239000013522 chelant Substances 0.000 description 1
- 239000007809 chemical reaction catalyst Substances 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 239000000498 cooling water Substances 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 238000005338 heat storage Methods 0.000 description 1
- 150000003949 imides Chemical class 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- CRVGTESFCCXCTH-UHFFFAOYSA-N methyl diethanolamine Chemical compound OCCN(C)CCO CRVGTESFCCXCTH-UHFFFAOYSA-N 0.000 description 1
- 239000002808 molecular sieve Substances 0.000 description 1
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920001955 polyphenylene ether Polymers 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000004064 recycling Methods 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 238000010992 reflux Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000004062 sedimentation Methods 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- URGAHOPLAPQHLN-UHFFFAOYSA-N sodium aluminosilicate Chemical compound [Na+].[Al+3].[O-][Si]([O-])=O.[O-][Si]([O-])=O URGAHOPLAPQHLN-UHFFFAOYSA-N 0.000 description 1
- 239000011949 solid catalyst Substances 0.000 description 1
- 239000007790 solid phase Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- XTQHKBHJIVJGKJ-UHFFFAOYSA-N sulfur monoxide Chemical class S=O XTQHKBHJIVJGKJ-UHFFFAOYSA-N 0.000 description 1
- 229910052815 sulfur oxide Inorganic materials 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 238000000108 ultra-filtration Methods 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
- 229920003169 water-soluble polymer Polymers 0.000 description 1
- 239000011787 zinc oxide Substances 0.000 description 1
Images
Landscapes
- Separation Using Semi-Permeable Membranes (AREA)
Abstract
一种采用膜分离处理克劳斯尾气的方法,克劳斯尾气经预处理后,在压力1.0~2.5MPa优选1.5~2.0MPa、温度40~80℃优选50~60℃的条件下进入膜分离器,分离出含高浓度氮气的渗余气与浓缩了SO2、H2S的渗透气,其中渗透气部分返回克劳斯装置回收硫,另一部分返回膜分离器进一步回收其中氮气。本发明与低温克劳斯法硫回收相比,本发明具有设备投资费用低、操作简单、能耗低并副产普通氮气的优点。
A method for treating Claus tail gas by membrane separation. After pretreatment, the Claus tail gas enters membrane separation at a pressure of 1.0-2.5MPa, preferably 1.5-2.0MPa, and a temperature of 40-80°C, preferably 50-60°C. The device separates the retentate gas containing high concentration of nitrogen and the permeate gas enriched with SO 2 and H 2 S. Part of the permeate gas is returned to the Claus unit to recover sulfur, and the other part is returned to the membrane separator for further recovery of nitrogen. Compared with the low-temperature Claus process sulfur recovery, the present invention has the advantages of low equipment investment cost, simple operation, low energy consumption and common nitrogen by-product.
Description
技术领域 technical field
本发明属于克劳斯(Claus)尾气的精制及利用,更具体地说,是一种在膜分离器中分离克劳斯尾气,生产无硫普通氮气,并回收利用其中含硫气体的方法。The invention belongs to the refining and utilization of Claus tail gas, more specifically, a method for separating Claus tail gas in a membrane separator, producing sulfur-free common nitrogen, and recycling the sulfur-containing gas.
背景技术 Background technique
从克劳斯装置中排放出来的尾气,除了含有少量SO2、H2S和微量O2外,大部分都是氮气,氮气质量分数90重量%,甚至95重量%以上。Claus尾气中氮气适合于制取工业用普氮,而其酸性气体SO2、H2S排入大气,不仅对环境造成严重危害,还是硫资源的一种很大浪费。Except for a small amount of SO 2 , H 2 S and a small amount of O 2 , the tail gas discharged from the Claus device is mostly nitrogen, and the mass fraction of nitrogen is 90% by weight, or even more than 95% by weight. Nitrogen in Claus tail gas is suitable for producing common nitrogen for industrial use, but its acid gases SO 2 and H 2 S are discharged into the atmosphere, which not only causes serious harm to the environment, but also is a great waste of sulfur resources.
目前,克劳斯硫回收装置尾气处理工艺按其原理大致可分为低温克劳斯法、还原吸收法和催化氧化法三大类,普遍存在装置复杂,操作困难,投资大等缺陷。目前应用最广的是低温克劳斯法,该法包括在加有特殊催化剂的有机溶剂中,在略高于硫熔点的温度下,使尾气中的H2S和SO2继续进行低温液相克劳斯反应,或在低于硫露点的温度下,在固体催化剂上发生低温固相克劳斯反应,如专利CN1031194A所述。低温克劳斯法不能降低尾气中COS和CS2的含量,硫回收率偏低,约为98.5%~99.5%。At present, the tail gas treatment process of Claus sulfur recovery unit can be roughly divided into three categories: low-temperature Claus method, reduction absorption method and catalytic oxidation method according to its principle, and there are common defects such as complex device, difficult operation and large investment. At present, the most widely used is the low-temperature Claus method, which involves making the H 2 S and SO 2 in the tail gas continue to undergo low-temperature liquid phase at a temperature slightly higher than the melting point of sulfur in an organic solvent added with a special catalyst. Claus reaction, or at a temperature lower than the sulfur dew point, a low-temperature solid-phase Claus reaction occurs on a solid catalyst, as described in patent CN1031194A. The low-temperature Claus method cannot reduce the content of COS and CS 2 in the tail gas, and the sulfur recovery rate is low, about 98.5% to 99.5%.
随着膜技术的发展,工业尾气中酸性气体SO2、H2S的脱除,近年来也致力于集分离与吸收于一体的膜法吸收处理含硫尾气,脱除其中SO2、H2S。膜法尾气脱硫,尤其是膜法烟气脱硫,具有投资少,操作简单,能耗低等优点。膜法尾气脱硫,目前主要采用中空纤维管式膜分离器,其中空纤维膜为选择性透气膜,如CN1199718C、CN1234448C、CN1235669C均公开了纤维素中空纤维气体分离膜及其制备。尾气中的SO2、CO2能选择性透过膜孔进入碱性溶液(Na2SO3或NaOH),并与其反应生成NaHSO3、NaHCO3,而烟气中的N2、O2等其他气体滞留在气相中,从而实现烟气脱硫,脱CO2。中空纤维膜烟气脱除酸性气体的工艺流程为:烟气经除尘、热交换后进入中空纤维膜分离器,脱除SO2、CO2后烟气通过烟囱排放,吸收液进入吸收液再生装置再生并回收硫或CO2。目前中空纤维膜法烟气脱硫、脱CO2被认为是一种有巨大商业应用潜力的烟气处理技术,尤其是经济效益更高的烟气脱硫技术。With the development of membrane technology, the removal of acid gas SO 2 and H 2 S in industrial tail gas has also been devoted to the membrane method that integrates separation and absorption to absorb and treat sulfur-containing tail gas in recent years to remove SO 2 and H 2 S. Membrane tail gas desulfurization, especially membrane flue gas desulfurization, has the advantages of less investment, simple operation and low energy consumption. Membrane tail gas desulfurization mainly adopts hollow fiber tubular membrane separator at present, wherein the hollow fiber membrane is a selective gas permeable membrane, such as CN1199718C, CN1234448C, CN1235669C all disclose cellulose hollow fiber gas separation membrane and its preparation. SO 2 and CO 2 in the tail gas can selectively enter the alkaline solution (Na 2 SO 3 or NaOH) through the membrane pores, and react with it to form NaHSO 3 , NaHCO 3 , while N 2 , O 2 and other substances in the flue gas The gas stays in the gas phase, so as to realize flue gas desulfurization and CO 2 removal. The process flow of hollow fiber membrane flue gas removal of acid gas is as follows: the flue gas enters the hollow fiber membrane separator after dust removal and heat exchange, the flue gas is discharged through the chimney after the removal of SO 2 and CO 2 , and the absorption liquid enters the absorption liquid regeneration device Regenerate and recover sulfur or CO2 . At present, hollow fiber membrane flue gas desulfurization and CO2 removal are considered to be a flue gas treatment technology with great potential for commercial application, especially flue gas desulfurization technology with higher economic benefits.
为提高脱硫效率,膜法脱硫常与其他气体分离方法相结合,如CN1140318C公布了分离膜单元与PSA单元组合分离/回收气体的方法,CN1047632A利用多价金属的水溶性聚合物螯合物和膜分离装置从气流中除去氧化氮和氧化硫的方法,CN1919423A二氧化硫-空气电池及其在脱硫技术中的应用,CN1297337C超声波和中空纤维含浸液膜结合脱除气体中二氧化硫的装置及方法。In order to improve desulfurization efficiency, membrane desulfurization is often combined with other gas separation methods, as CN1140318C announces the method for separating/recovering gas in the combination of separation membrane unit and PSA unit, and CN1047632A utilizes water-soluble polymer chelate and membrane of polyvalent metal A method for removing nitrogen oxides and sulfur oxides from gas streams with a separation device, CN1919423A sulfur dioxide-air battery and its application in desulfurization technology, CN1297337C a device and method for removing sulfur dioxide in gas by combining ultrasonic waves and hollow fiber impregnated liquid membranes.
现有克劳斯尾气脱硫技术与膜法吸收脱硫比,设备投资费用高,操作复杂,能耗较高;但膜法吸收脱硫吸收液易污染且再生困难,易于堵塞膜孔道脱硫率低(脱硫率约为60~90%),因此阻碍了膜法尾气脱硫的工业化应用,有待于进一步开发克劳斯尾气硫回收新技术。Compared with existing Claus tail gas desulfurization technology and membrane absorption desulfurization, equipment investment costs are high, operation is complicated, and energy consumption is high; however, membrane absorption desulfurization absorbing liquid is easily polluted and regeneration is difficult, and membrane pores are easily blocked and desulfurization rate is low (desulfurization rate of about 60 to 90%), thus hindering the industrial application of membrane tail gas desulfurization, to be further developed Claus tail gas sulfur recovery technology.
发明内容 Contents of the invention
本发明的目的是在现有技术的基础上提供一种采用膜分离处理克劳斯尾气的方法,以浓缩克劳斯尾气中的有害气体进而返回克劳斯装置继续克劳斯反应回收硫并且制取工业用普通氮气。The purpose of the present invention is to provide a kind of method that adopts membrane separation to process Claus tail gas on the basis of prior art, and then returns to Claus plant to continue Claus reaction reclaiming sulfur and then to concentrate the harmful gas in Claus tail gas Production of common nitrogen for industrial use.
本发明的目的是通过下述方案来实现的:克劳斯尾气经预处理后,在压力1.0~2.5MPa优选1.5~2.0MPa、温度40~80℃优选50~60℃的条件下进入膜分离器,分离出含高浓度氮气的渗余气与浓缩了SO2、H2S的渗透气,其中渗透气部分返回克劳斯装置回收硫,另一部分返回膜分离器进一步回收其中氮气,所述克劳斯尾气包含高于85重量%以上的氮气、低于1重量%的O2含量和SO2、H2S的总量不高于6重量%,所述预处理包括除尘、脱水和干燥,预处理后的烟气固体颗粒含量≤0.01mg/Nm3,H2O≤1ppm。The purpose of the present invention is achieved by the following scheme: after the Claus tail gas is pretreated, it enters the membrane separation under the conditions of pressure 1.0~2.5MPa, preferably 1.5~2.0MPa, temperature 40~80°C, preferably 50~60°C device to separate the retentate gas containing high concentration of nitrogen and the permeate gas enriched with SO 2 and H 2 S, wherein part of the permeate gas is returned to the Claus unit to recover sulfur, and the other part is returned to the membrane separator for further recovery of nitrogen, said The Claus tail gas contains more than 85% by weight of nitrogen, less than 1% by weight of O 2 content and the total amount of SO 2 and H 2 S is not higher than 6% by weight, and the pretreatment includes dust removal, dehydration and drying , the solid particle content of pretreated flue gas≤0.01mg/Nm 3 , H 2 O≤1ppm.
本发明所提供的方法适用于任何氮气含量高于85重量%以上而O2含量低于1重量%的克劳斯尾气,尤其适用于氮气含量高于90重量%以上而O2含量低于0.5重量%的克劳斯尾气。克劳斯尾气中其它组成包括SO2、H2S、COS、S、CO2、H2O等,其中SO2、H2S的总量优选不高于6重量%,COS与S的含量优选不高于1重量%。所有气体的组成为100%。The method provided by the present invention is applicable to any Claus tail gas with a nitrogen content higher than 85% by weight and an O2 content lower than 1% by weight, especially suitable for nitrogen content higher than 90% by weight and an O2 content lower than 0.5 % by weight of Claus exhaust. Other components in the Claus tail gas include SO 2 , H 2 S, COS, S, CO 2 , H 2 O, etc., wherein the total amount of SO 2 and H 2 S is preferably not higher than 6% by weight, and the content of COS and S Preferably not higher than 1% by weight. The composition of all gases is 100%.
克劳斯尾气的预处理包括脱水除尘、加压和换热。预处理后的克劳斯尾气也称入膜气,其微尘含量≤0.01mg/Nm3,H2O≤1ppm。The pretreatment of Claus tail gas includes dehydration and dust removal, pressurization and heat exchange. The pretreated Claus tail gas is also called membrane gas, its fine dust content is ≤0.01mg/Nm 3 , and H 2 O is ≤1ppm.
脱水除尘包括除去气体中夹带的所有直径大于0.01μm的固体颗粒和油雾、水雾以及气溶胶的所有除尘方法,如惯性除尘法、湿法除尘法、静电除尘法、过滤式除尘法、单筒旋风除尘法及多管旋风除尘法以及离心力分离、重力沉降、折流分离、丝网分离、超滤分离、填料分离等,优选离心力分离、过滤式除尘法。微尘含量≤0.01mg/Nm3,要求残余含油量小于0.01毫克/米3,并使入膜气含痕量水汽或不含水汽,要求入膜气体中H2O≤1ppm。Dehydration and dust removal include all dust removal methods that remove all solid particles with a diameter greater than 0.01 μm and oil mist, water mist and aerosols entrained in the gas, such as inertial dust removal, wet dust removal, electrostatic dust removal, filter dust removal, single Cylinder cyclone dust removal method and multi-tube cyclone dust removal method, centrifugal force separation, gravity sedimentation, baffle separation, wire mesh separation, ultrafiltration separation, packing separation, etc. Centrifugal force separation and filter type dust removal method are preferred. Dust content ≤ 0.01mg/Nm 3 , the residual oil content is required to be less than 0.01 mg/m 3 , and the gas entering the membrane must contain traces of water vapor or no water vapor, and H 2 O in the gas entering the membrane is required to be ≤ 1ppm.
可以通过增压方式包括任何适合含硫、氮气体的气动增压泵或气体增压机使入膜气增压到1.0~2.5MPa优选1.5~2.0MPa。The membrane gas can be pressurized to 1.0-2.5MPa, preferably 1.5-2.0MPa, by means of pressurization, including any suitable pneumatic booster pump or gas booster for sulfur and nitrogen-containing gases.
可以通过换热方式使入膜气温度降低至40~80℃优选50~60℃,所述烟气换热方式包括各种混合式、蓄热式或间壁式换热器,优选间壁式换热器,其中间壁式换热器可以是夹套式、管式、板式或各种异型传热面组成的特殊型式换热器。冷热流体在换热器中的流动方式包括顺流、逆流、交叉流、混合流,优选逆流。The temperature of the membrane gas can be reduced to 40-80°C, preferably 50-60°C by means of heat exchange. The flue gas heat exchange means include various hybrid, heat storage or partition heat exchangers, preferably partition heat exchange The intermediate wall heat exchanger can be a special type heat exchanger composed of jacket type, tube type, plate type or various special-shaped heat transfer surfaces. The flow modes of the hot and cold fluids in the heat exchanger include forward flow, countercurrent flow, cross flow, mixed flow, preferably countercurrent flow.
所述膜分离器包括任何适用于气体分离的平板式、卷式或中空纤维式膜组件一个或多个构成的气体膜分离器。其中膜材料包括高分子材料、无机材料、金属材料中的一种或几种材料的复合,优选高分子膜,更优选复合高分子膜。高分子膜选自聚二甲基硅氧烷(PDMS)、聚砜(PSF)、聚芳酰胺、醋酸纤维素(CA)、乙基纤维素(EA)、聚碳酸酯(PC)、聚酰亚胺、聚苯醚、硅橡胶膜中的一种或几种,优选聚砜(PSF)、聚酰亚胺膜、甲基硅橡胶膜或其改性膜及几种高分子材料制得的复合膜。膜分离器可以采用一级流程、二级流程或多级流程。The membrane separator includes any gas membrane separator composed of one or more flat-plate, roll-type or hollow-fiber membrane modules suitable for gas separation. Wherein the membrane material includes one or a composite of polymer materials, inorganic materials, and metal materials, preferably a polymer membrane, more preferably a composite polymer membrane. The polymer membrane is selected from polydimethylsiloxane (PDMS), polysulfone (PSF), polyaramid, cellulose acetate (CA), ethyl cellulose (EA), polycarbonate (PC), polyamide One or more of imide, polyphenylene ether, silicone rubber film, preferably polysulfone (PSF), polyimide film, methyl silicone rubber film or its modified film and several polymer materials Composite film. Membrane separators can be used in one-stage, two-stage or multi-stage processes.
所述渗余气要求氮气浓度高于99.5重量%,SO2及H2S浓度低于0.5重量%。其非膜法常规Claus尾气脱硫方法包括任何碱液吸收、胺液吸收、和分子筛,活性炭及金属氧化物的固体吸附脱硫等脱除微量H2S及SO2的方法,优选负载金属氧化物吸附脱硫的方法。The retentate gas requires a nitrogen concentration higher than 99.5% by weight, and a SO 2 and H 2 S concentration lower than 0.5% by weight. Its non-membrane conventional Claus tail gas desulfurization method includes any alkali liquid absorption, amine liquid absorption, and molecular sieve, activated carbon and metal oxide solid adsorption desulfurization, etc. to remove trace H 2 S and SO 2 methods, preferably loaded metal oxide adsorption desulfurization method.
所述渗透气分为两部分,其中一部分经换热后直接送入Claus工艺中的SO2与H2S反应器回收硫,克劳斯硫回收反应温度为200~370℃;另一部分经脱硫(脱硫方法与上面的氮气脱硫方法相同)或不脱硫后增压,再次进入膜分离器或二级膜分离器进一步回收其中氮气,其增压方法与原料气增压方法相同。送入克劳斯装置的渗透气与返回膜分离器的渗透气之间的重量比为0.5~8.5优选2.5~5.5。The permeate gas is divided into two parts, one part is directly sent to the SO 2 and H 2 S reactor in the Claus process to recover sulfur after heat exchange, and the Claus sulfur recovery reaction temperature is 200-370 °C; the other part is desulfurized (The desulfurization method is the same as the nitrogen desulfurization method above) or pressurize without desulfurization, and then enter the membrane separator or secondary membrane separator to further recover the nitrogen in it. The pressurization method is the same as the feed gas pressurization method. The weight ratio between the permeate gas sent to the Claus unit and the permeate gas returned to the membrane separator is 0.5-8.5, preferably 2.5-5.5.
本发明与现有技术相比具有如下特点:Compared with the prior art, the present invention has the following characteristics:
1、作为尾气硫回收工艺,与低温克劳斯法硫回收相比,本发明具有设备投资费用低、操作简单、能耗低的优点。1. As a tail gas sulfur recovery process, compared with the low-temperature Claus process sulfur recovery, the present invention has the advantages of low equipment investment cost, simple operation and low energy consumption.
2、本发明处理克劳斯尾气选择性好、分离效率高、无二次污染等优点。2. The present invention has the advantages of good selectivity for Claus tail gas treatment, high separation efficiency and no secondary pollution.
3、作为制氮工艺,与空气变压吸附制氮相比,膜系统占地面积小,使用寿命长;设备投资费用低,操作简单,操作费用低。3. As a nitrogen production process, compared with air pressure swing adsorption nitrogen production, the membrane system occupies a small area and has a long service life; the equipment investment cost is low, the operation is simple, and the operation cost is low.
4、本发明和变压吸附法相比,具有无移动部分,预处理部分较少,启动快,不需冷却水,能耗低的优点。4. Compared with the pressure swing adsorption method, the present invention has the advantages of no moving parts, less pretreatment parts, fast start-up, no need for cooling water and low energy consumption.
附图说明 Description of drawings
图1是复合中空纤维膜分离器分离烟气回收氮气示意图。Figure 1 is a schematic diagram of a composite hollow fiber membrane separator for separating flue gas and recovering nitrogen.
图2是复合中空纤维膜分离器结构示意图。Fig. 2 is a structural schematic diagram of a composite hollow fiber membrane separator.
具体实施方式 Detailed ways
下面结合附图进一步说明本发明所提供的方法,但本发明并不因此而受到任何限制。The method provided by the present invention will be further described below in conjunction with the accompanying drawings, but the present invention is not limited thereto.
图1是复合中空纤维膜分离器分离克劳斯尾气回收氮气示意图。来自克劳斯工艺的常温尾气经气体离心机1初步除去尾气中携带的固体颗粒和水后,通过气体增压机2增压到1.0~2.5MPa后进入高压储罐3;经活性炭过滤器4进一步脱水除尘,再经列管式逆流换热器5换热后使克劳斯尾气温度达40~80℃,再次经精密过滤器6除去所有直径大于0.01μm的固体颗粒后得到不含水与微尘的入膜气,在压力1.5~2.5MPa、温度40~80℃的条件下进入适于酸性气体分离的复合中空纤维膜分离器7,分离出含高浓度氮气的渗余气与浓缩了SO2、H2S的渗透气。其中渗透气从渗透气出口经管线14引出分为两部分,一部分经管线15返回克劳斯装置回收硫,另一部分依次经管线16、气体增压机17、管线18活性炭过滤器4,经换热器5换热、精密过滤器6深度过滤后再次进入膜分离器进一步回收氮气;渗余气中氮气含量高于99.5重量%,在常温~200℃经脱硫装置8进一步吸收或吸附脱除其中微量SO2,生产更高纯度氮气。Figure 1 is a schematic diagram of composite hollow fiber membrane separator for separating Claus tail gas and recovering nitrogen. The normal-temperature tail gas from the Claus process passes through the
图2是复合中空纤维膜分离器结构示意图。复合中空纤维膜分离器具有壳体10,壳体内设有膜组件11,在壳体10的一端与膜组件11并行设有克劳斯尾气入口9,在壳体10的一端与膜组件11并行设有渗余气出口12,壳体上部侧面设有渗透气出口13。克劳斯尾气在复合中空纤维膜组件内部流动,作为慢气的氮气走膜组件管程经氮气出口排出,作为快气的SO2、H2S等透出膜组件经渗透气出口排出。Fig. 2 is a structural schematic diagram of a composite hollow fiber membrane separator. The composite hollow fiber membrane separator has a
下面的实施例将对本发明提供的方法予以进一步的说明,但并不因此而使本发明受到任何限制。The following examples will further illustrate the method provided by the present invention, but the present invention is not limited thereto.
实施例中所使用的原料气的组成列于表1。所使用的中空纤维膜以及膜组件为柏美亚有限公司生产的ModeI#PA3030-P1-3A-00分离器。本发明实施例所采用中空纤维膜组件参数分别见表1。The composition of the feed gas used in the examples is listed in Table 1. The hollow fiber membranes and membrane modules used are Mode I#PA3030-P1-3A-00 separators produced by Permea Co., Ltd. The parameters of the hollow fiber membrane modules used in the embodiments of the present invention are shown in Table 1 respectively.
实施例1~4Embodiment 1-4
实施例1~4说明:采用本发明提供的方法,以不同膜分离器考察不同工艺条件下处理不同原料的结果。Examples 1 to 4 illustrate: adopt the method provided by the present invention to investigate the results of processing different raw materials under different process conditions with different membrane separators.
分别以表2所列的克劳斯尾气A~C为原料,其中SO3含量均低于10ppm,经预处理,膜分离与吸附。具体试验步骤如下:克劳斯尾气经初步离心分离、增压后进入高压储罐,再经活性炭过滤器过滤脱水除尘,并经换热、精过滤后,其微尘含量≤0.01mg/Nm3,H2O≤1ppm,进入聚砜膜、聚酰亚胺膜和甲基硅橡胶等不同膜分离器,分离出富含氮气的渗余气与含硫渗透气。渗余气经10重量%氢氧化钠水溶液、40%N-甲基二乙醇胺溶液和市售氧化锌、氧化铁脱硫剂等不同吸附剂吸附后进一步脱除其中微量硫制得高浓度氮气;渗透气按照一定比例部分作为残气经换热送入克劳斯硫回收反应器,采用山东齐鲁科力化工研究院有限公司生产的氧化铝基商业克劳斯反应催化剂LS-981,在200~370℃条件下反应回收硫;另一部分渗透气作为回流气加压后返回膜分离器继续制氮。试验条件、试验结果和氮气组成列于表3。The Claus tail gases A~C listed in Table 2 are used as raw materials respectively, and the SO 3 content is all lower than 10ppm. After pretreatment, membrane separation and adsorption. The specific test steps are as follows: the Claus tail gas enters the high-pressure storage tank after preliminary centrifugal separation and pressurization, and then is filtered through an activated carbon filter for dehydration and dust removal, and after heat exchange and fine filtration, the dust content is ≤0.01mg/Nm 3 , H 2 O ≤ 1ppm, enter different membrane separators such as polysulfone membrane, polyimide membrane and methyl silicone rubber, and separate the nitrogen-rich retentate gas and sulfur-containing permeate gas. The retentate gas is adsorbed by different adsorbents such as 10% by weight sodium hydroxide aqueous solution, 40% N-methyldiethanolamine solution, and commercially available zinc oxide, iron oxide desulfurizer, etc., and further removes trace sulfur to obtain high-concentration nitrogen; According to a certain proportion, the gas is sent to the Claus sulfur recovery reactor as the residual gas through heat exchange. The alumina-based commercial Claus reaction catalyst LS-981 produced by Shandong Qilu Keli Chemical Research Institute Co., Ltd. is used at 200-370 Under the condition of ℃, the reaction recovers sulfur; the other part of the permeate gas is pressurized as reflux gas and returns to the membrane separator to continue nitrogen production. The test conditions, test results and nitrogen composition are listed in Table 3.
从表3可以看出,不同组成的克劳斯尾气在500~1000Nm3/h不同流速下,经膜处理器处理,渗余气经脱硫技术处理后,氮气收率均在60.9重量%以上,其纯度均在99.5%以上;送入克劳斯装置渗透气,在不同温度下经克劳斯硫回收反应,其SO2回收率均在97.1%以上,H2S回收率均在95.3%以上。It can be seen from Table 3 that the Claus tail gas with different compositions is treated by membrane processor at different flow rates of 500-1000Nm 3 /h, and the retentate gas is treated by desulfurization technology, and the nitrogen yield is above 60.9% by weight. Its purity is above 99.5%; the permeate gas sent to the Claus device is subjected to Claus sulfur recovery reaction at different temperatures, and the recovery rate of SO 2 is above 97.1%, and the recovery rate of H 2 S is above 95.3%. .
表1、膜组件参数Table 1. Membrane module parameters
表2、克劳斯尾气原料组成Table 2. Composition of Claus Tail Gas Raw Materials
表3、试验条件和结果Table 3. Test conditions and results
备注(1):实验过程中适当补入H2S,使得反应过程中H2S与SO2的摩尔流率比例接近2∶1。Remarks (1): H 2 S was added appropriately during the experiment, so that the molar flow rate ratio of H 2 S and SO 2 was close to 2:1 during the reaction.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2008100557965A CN101480560B (en) | 2008-01-09 | 2008-01-09 | Method for processing Claus tail gases by membrane separation |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2008100557965A CN101480560B (en) | 2008-01-09 | 2008-01-09 | Method for processing Claus tail gases by membrane separation |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101480560A CN101480560A (en) | 2009-07-15 |
CN101480560B true CN101480560B (en) | 2011-11-30 |
Family
ID=40877940
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2008100557965A Active CN101480560B (en) | 2008-01-09 | 2008-01-09 | Method for processing Claus tail gases by membrane separation |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN101480560B (en) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7901646B2 (en) * | 2009-08-05 | 2011-03-08 | General Electric Company | System and method for sulfur recovery |
CN102198362B (en) * | 2010-03-25 | 2014-03-12 | 中国石油化工股份有限公司 | Method for recovering nitrogen in flue gas with membrane |
CN102989268B (en) * | 2011-09-15 | 2015-11-25 | 中国石油化工股份有限公司 | A kind of method adopting membrane separation Claus tail gases |
CN105457455A (en) * | 2014-09-23 | 2016-04-06 | 中国石油化工股份有限公司 | Method for removing acidic gases in shift gas |
CN104524893A (en) * | 2014-12-15 | 2015-04-22 | 成都昊特新能源技术股份有限公司 | Process for carrying out combined dust removal on tar-containing flue gas by utilizing dust remover of particle layer of flowing bed and flat-plate membrane filter |
US10106410B2 (en) * | 2017-03-10 | 2018-10-23 | Saudi Arabian Oil Company | Enhancement of Claus tail gas treatment by sulfur dioxide-selective membrane technology |
US10106411B2 (en) * | 2017-03-13 | 2018-10-23 | Saudi Arabian Oil Company | Enhancement of claus tail gas treatment by sulfur dioxide-selective membrane technology and sulfur dioxide-selective absorption technology |
US10239763B1 (en) * | 2017-12-05 | 2019-03-26 | Saudi Arabian Oil Company | System for tail gas treatment of sulfur recovery units |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5205843A (en) * | 1989-11-07 | 1993-04-27 | Membrane Technology And Research, Inc. | Process for removing condensable components from gas streams |
US5676921A (en) * | 1994-03-17 | 1997-10-14 | Linde Aktiengesellschaft | Method for the recovery of elemental sulfur from a gas mixture containing H2 S |
CN1209756A (en) * | 1996-01-19 | 1999-03-03 | 斯托克工程师和承包人公司 | Method for removing sulfur-containing contaminants, aromatics and hydrocarbons from gas |
-
2008
- 2008-01-09 CN CN2008100557965A patent/CN101480560B/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5205843A (en) * | 1989-11-07 | 1993-04-27 | Membrane Technology And Research, Inc. | Process for removing condensable components from gas streams |
US5676921A (en) * | 1994-03-17 | 1997-10-14 | Linde Aktiengesellschaft | Method for the recovery of elemental sulfur from a gas mixture containing H2 S |
CN1209756A (en) * | 1996-01-19 | 1999-03-03 | 斯托克工程师和承包人公司 | Method for removing sulfur-containing contaminants, aromatics and hydrocarbons from gas |
Also Published As
Publication number | Publication date |
---|---|
CN101480560A (en) | 2009-07-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102989268B (en) | A kind of method adopting membrane separation Claus tail gases | |
CN101480560B (en) | Method for processing Claus tail gases by membrane separation | |
CN111348623B (en) | A "methanol oxidation to formaldehyde" hydrogen recovery and purification system from exhaust gas | |
AU2009303874B2 (en) | Methods and systems for deacidizing gaseous mixtures | |
US8728201B2 (en) | Apparatus and method for removing carbon dioxide (CO2) from the flue gas of a furnace after the energy conversion | |
CN105944542A (en) | High-efficiency hydrogen sulfide gas absorption device | |
CN101584960A (en) | Separator and separation and purification method of gas-liquid phase absorbing membrane | |
CN101016175B (en) | Method of eliminating magnesium sulfate from magnesium sulfate containing waste water solution | |
WO2010081289A1 (en) | Method for removing h2s from gaseous stream at normal temperature | |
CN101850209B (en) | Vent gas treatment method and treatment device | |
EP3645672B1 (en) | Process for gas separation by solvent or absorbent | |
CN111408249B (en) | Method and device for desulfurization and decarburization of flue gas by multi-section membrane absorption | |
CN101480559B (en) | Method for recycling sulfureous in flue gas using film | |
CN106047424B (en) | Coke oven gas hydrogen sulfide gas recovery method and device | |
CN102198363A (en) | Film based recovery method of sulfur in flue gas | |
CN102198362B (en) | Method for recovering nitrogen in flue gas with membrane | |
CN101481101B (en) | Method for recycling nitrogen from flue gas by using membrane | |
CN210699395U (en) | Low-temperature methanol purge gas-discharging desulfurization zero-emission system | |
CN107854974A (en) | A method and equipment for recovery and treatment of volatile organic compounds in membrane separation | |
CN106544062A (en) | Synthesis gas integrating method for purifying | |
CN216457902U (en) | Near zero release n-hexane tail gas separation recovery system | |
CN201701861U (en) | Purge gas treatment device | |
CN213077967U (en) | A membrane method low temperature methanol washing tail gas treatment device | |
CN213761196U (en) | A kind of ionic liquid desulfurization equipment for sulfur-containing gas | |
CN106831304A (en) | A method and device for improving the efficiency of catalytic dry gas production of ethylbenzene |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant |