New! View global litigation for patent families

CN101478918B - Parallel stereovision geometry in image-guided radiosurgery - Google Patents

Parallel stereovision geometry in image-guided radiosurgery Download PDF

Info

Publication number
CN101478918B
CN101478918B CN 200780023456 CN200780023456A CN101478918B CN 101478918 B CN101478918 B CN 101478918B CN 200780023456 CN200780023456 CN 200780023456 CN 200780023456 A CN200780023456 A CN 200780023456A CN 101478918 B CN101478918 B CN 101478918B
Authority
CN
Grant status
Grant
Patent type
Prior art keywords
treatment
patient
image
position
guided
Prior art date
Application number
CN 200780023456
Other languages
Chinese (zh)
Other versions
CN101478918A (en )
Inventor
M·博杜鲁瑞
Original Assignee
艾可瑞公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Grant date

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ELECTROGRAPHY; HOLOGRAPHY
    • G03CPHOTOSENSITIVE MATERIALS FOR PHOTOGRAPHIC PURPOSES; PHOTOGRAPHIC PROCESSES, e.g. CINE, X-RAY, COLOUR, STEREO-PHOTOGRAPHIC PROCESSES; AUXILIARY PROCESSES IN PHOTOGRAPHY
    • G03C9/00Stereo-photographic or similar processes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/02Devices for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/02Devices for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
    • A61B6/022Stereoscopic imaging
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/40Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment with arrangements for generating radiation specially adapted for radiation diagnosis
    • A61B6/4007Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment with arrangements for generating radiation specially adapted for radiation diagnosis characterised by using a plurality of source units
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1048Monitoring, verifying, controlling systems and methods
    • A61N5/1049Monitoring, verifying, controlling systems and methods for verifying the position of the patient with respect to the radiation beam
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/20Analysis of motion
    • G06T7/246Analysis of motion using feature-based methods, e.g. the tracking of corners or segments
    • G06T7/248Analysis of motion using feature-based methods, e.g. the tracking of corners or segments involving reference images or patches
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1048Monitoring, verifying, controlling systems and methods
    • A61N5/1049Monitoring, verifying, controlling systems and methods for verifying the position of the patient with respect to the radiation beam
    • A61N2005/1061Monitoring, verifying, controlling systems and methods for verifying the position of the patient with respect to the radiation beam using an x-ray imaging system having a separate imaging source
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1048Monitoring, verifying, controlling systems and methods
    • A61N5/1049Monitoring, verifying, controlling systems and methods for verifying the position of the patient with respect to the radiation beam
    • A61N2005/1061Monitoring, verifying, controlling systems and methods for verifying the position of the patient with respect to the radiation beam using an x-ray imaging system having a separate imaging source
    • A61N2005/1062Monitoring, verifying, controlling systems and methods for verifying the position of the patient with respect to the radiation beam using an x-ray imaging system having a separate imaging source using virtual X-ray images, e.g. digitally reconstructed radiographs [DRR]
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10016Video; Image sequence
    • G06T2207/10021Stereoscopic video; Stereoscopic image sequence
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10072Tomographic images
    • G06T2207/10081Computed x-ray tomography [CT]
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10116X-ray image

Abstract

A method and apparatus in an image-guided radiation treatment system for determining an in-treatment 3-D position of a patient and for registering the 3-D in-treatment position of the patient with a pre-treatment 3-D scan of the patient.

Description

图像引导放射手术中的平行立体视觉几何结构 Parallel geometry stereoscopic image guided radiotherapy surgery

技术领域 FIELD

[0001] 本发明的实施方式涉及医学成像领域,特别是涉及图像引导放射治疗系统中的平行立体视觉。 [0001] The embodiment of the invention relates to the field of medical imaging, particularly to parallel stereoscopic image guided radiation therapy systems.

背景技术 Background technique

[0002] 放射手术和放射性疗法系统是通过在使对周围组织和关键解剖结构(例如脊椎骨)的放射性照射最小化的同时将规定剂量的放射线(例如X射线或Y射线)照射到病变组织而使用外部放射束来治疗病变组织(例如肿瘤、损伤、血管畸形、神经错乱等等)的放射治疗系统。 [0002] radiosurgery and radiation therapy system is used by radioactive irradiation to surrounding tissue and critical anatomical structures (e.g., vertebrae) is minimized while the predetermined dose of radiation (e.g. X-ray or Y ray) irradiated to the diseased tissue external radiation beam radiation therapy system for treating diseased tissue (e.g., tumors, trauma, vascular malformations, mental disorders, etc.). 放射手术和放射性疗法均被设计为在不伤害健康组织和关键结构的同时使病变组织坏死。 Radiosurgery and radiation therapy are designed at the same time not harm healthy tissue and critical structures so that the diseased tissue necrosis. 放射性疗法的特征在于低放射剂量每次治疗和多次治疗(例如30至45天的治疗)。 Characterized in that the radiation therapy is low radiation dose per treatment and multiple treatments (e.g., 30 to 45 days of treatment). 放射手术的特征在于在一次或至多几次治疗中的相对较高的放射剂量。 Characterized in that a radiation surgery or up to several treatments in relatively high doses of radiation.

[0003] 在放射性疗法和放射手术两者中,放射剂量均被从多个角度实施到病变组织处。 [0003] In both radiotherapy and radiosurgery, the radiation dose from multiple angles are embodiments of the diseased tissue. 由于每个放射束的角度不同,所以每个射束可以交叉于由病变组织所占据的目标区域,同时每个射束在其往返于该目标区域的途中穿过健康组织的不同区域。 Due to the different angle of each radiation beam, so that each beam may cross the target area occupied by the diseased tissue, while each beam on its way to and from the target area through different regions of healthy tissue. 结果,目标区域中的累积放射剂量高,而到达健康组织和关键结构的平均放射剂量低。 As a result, the high cumulative radiation dose in the target area, to reach the low average radiation dose to healthy tissue and critical structures. 放射性疗法和放射手术治疗系统可以分为基于框架的和图像引导的。 Radiotherapy and radiosurgery treatment systems can be classified based on the guide frame and the image.

[0004] 在基于框架的放射手术和放射性疗法中,刚性的伸入式框架被固定于患者以便在整个诊断成像和治疗计划阶段和后续治疗实施阶段中使患者固定不动。 [0004] In the frame-based radiosurgery and radiation therapy, extending into the rigid frame is secured to the patient so that the patient is immobilized in the entire diagnostic imaging and treatment planning phase manipulation and subsequent treatment stage embodiment. 所述框架在整个过程期间被固定在患者身上。 The frame is fixed to the patient during the entire procedure. 图像引导放射手术和放射性疗法(IGR)通过在治疗期间对患者移动进行跟踪和修正而消除了对伸入式框架固定的需要。 An image-guided radiosurgery and radiotherapy (the IGR) by moving the patient tracking and correction during treatment and eliminates the need for extending into the fixed frame.

[0005] 图像引导放射性疗法和放射手术系统可以分为基于台架的(gantry-based)或基于机器人的(robotic-based)。 [0005] The image-guided radiotherapy and radiosurgery systems can be classified based on the gantry (gantry-based) or on a robot (robotic-based). 在基于台架的系统中,放射源附着于在单个平面上围绕旋转中心(等中心)移动的台架。 In the system based on the gantry, about a radiation source attached to the center of rotation in a single plane (isocenter) of the mobile stage. 每次在治疗期间实施放射束时,射束的轴穿过所述等中心。 Each time during a treatment radiation beam embodiment, the beam axis passing through the center of the like. 在被称为调强放射治疗(IMRT)系统的一些基于台架的系统中,射束的横截面被定形为使射束符合治疗中的病变组织。 In some gantry based system, the beam cross section is shaped to be referred to as intensity modulated radiation therapy (of IMRT) system to conform the beam in the treatment of diseased tissue. 在基于机器人的系统中,放射源不被限制于单个旋转平面。 Robot-based systems, the radiation source is not limited to a single plane of rotation.

[0006] 在一些图像引导系统中,治疗期间的患者跟踪可以通过将患者的2D治疗中X射线图像(指示患者在哪里)与患者的一个或多个预治疗3D区域研究(study)的2D参考投影(指示患者应在哪里以配合治疗计划)进行配准来实现,并改变患者或放射源的位置以修正两组图像之间的差。 [0006] In some image guidance system, patient tracking during treatment by the 2D X-ray images of patients (patients where indicated) with one or more pre-patient treatment study 3D region (Study) of the reference 2D projection (indicating that the patient should cooperate with the treatment plan and where) registering to implement, and change the position of the patient or radioactive sources of difference between the two sets of image correction. 所述预治疗3D区域研究可以是计算机断层(CT)扫描、核磁共振成像(MRI)扫描、电子发射断层扫描(PET)扫描等等。 The pre-study treatment region may be a 3D computed tomography (CT) scan, magnetic resonance imaging (MRI) scans, positron emission tomography (PET) scans and the like.

[0007] 被称为数字重构射线照片(DRR)的参照投影(参考图像)通过使用射线跟踪算法而被生成,所述射线跟踪算法复制治疗中X射线成像系统的已知几何结构以产生与治疗中X射线图像具有相同尺度和方位的图像。 [0007] Referring projected is referred to (reference picture) digital reconstructed radiographs (DRR) is generated using a ray tracing algorithm, the ray tracing algorithm of known geometry replication treatment X-ray imaging system to produce treatment of X-ray images having the same dimensions and image orientation. 通常,治疗中X射线系统使用两个X射线源和患者处的两个成大角度(例如90度)的X射线照相机来形成患者的图像。 Typically, the treatment X-ray system for forming an image of a patient using two two large angle X-ray source and the patient (e.g., 90 degrees) of an X-ray camera. 这种方法使各个治疗中X射线图像对患者移动的敏感度最大化,但是它可以如图1所示产生两个迥异的X射线图像。 This approach allows the X-ray image of the patient moves each treatment to maximize sensitivity, but it can be generated as two very different X-ray image shown in FIG. 在图1中,病变特征(例如骨)用两个X射线源和两个分离90度的X射线照相机来成像。 In, lesion characteristics (e.g., bone) in FIG. 1 with the two X-ray sources and X-ray camera 90 to two separate imaging. 在一个照相机中,形成骨的长度和宽度的图像,而在另一照相机中,形成骨的横截面的图像。 In a camera, an image forming length and width of the bone, and in another camera, an image of the cross section of the bone. 所述两个X射线图像是迥异的,需要在确定患者的位置并使之与预治疗计划相匹配的之前,使单独的DRR与每个X射线图像相配准。 The two X-ray images are very different, it is necessary to determine the position of the patient and prior to the pre-treatment plan match the DRR each individual X-ray images in registration.

附图说明 BRIEF DESCRIPTION

[0008] 在附图的图示中通过示例性而非限制性的方式来说明本发明,其中: [0008] In the figures of the drawing to illustrate the present invention, which by way of example and not limitation:

[0009] 图1示出了宽角度的X射线成像; [0009] FIG. 1 shows a wide-angle X-ray imaging;

[0010] 图2A示出了非等中心图像引导放射治疗系统的一个实施方式; [0010] FIG 2A shows an embodiment of a non-center of the image guided radiation treatment systems and the like;

[0011] 图2B示出了图像引导非等中心放射治疗的一个实施方式; [0011] FIG. 2B illustrates an embodiment of an image guided non-isocentric radiotherapy;

[0012] 图3示出了平行立体视觉成像的一个实施方式; [0012] FIG. 3 illustrates a parallel stereoscopic imaging in one embodiment;

[0013] 图4示出了图像引导放射治疗的一个实施方式; [0013] FIG 4 illustrates an embodiment of an image guided radiation therapy;

[0014] 图5示出了平行立体视觉几何结构的一个实施方式的平面图; [0014] FIG. 5 shows a plan view of one embodiment of the parallel geometry of the stereoscopic vision;

[0015] 图6示出了平行立体视觉几何结构的一个实施方式的另一平面图; [0015] FIG. 6 shows a plan view of another embodiment of a parallel geometry of the stereo vision;

[0016] 图7是示出了放射治疗系统中的平行立体视觉的方法的一个实施方式的流程图; 以及 [0016] FIG. 7 is a flowchart illustrating an embodiment of a method of radiotherapy parallel stereo vision system; and

[0017] 图8示出了其中可以实现本发明的实施方式的系统。 [0017] FIG 8 illustrates an embodiment in which the system may implement embodiments of the present invention. 具体实施方式 detailed description

[0018] 在以下说明中,阐述了许多特定细节,诸如特定部件、设备、方法等等的示例,以便提供本发明的实施方式的彻底了解。 [0018] In the following description, numerous specific details are set forth, as examples of specific components, devices, methods, etc., such as, in order to provide a thorough understanding of the embodiments of the present invention. 然而,对于本领域的技术人员来说显而易见的是不需要采用这些特定细节来实践本发明的实施方式。 However, those skilled in the art it will be apparent that these specific details need not be employed to practice the embodiments of the present invention. 在其它情况下,尚未详细地描述众所周知的材料或方法以避免不必要地晦涩本发明的实施方式。 In other instances, well-known not been described in detail, materials or methods to avoid unnecessarily obscure embodiments of the present invention. 如本文所使用的术语“耦合”可以意指直接耦合或通过一个或多个中间部件或系统而间接耦合。 As used herein the term "coupled" may mean directly coupled or indirectly coupled through one or more intervening components or systems. 这里所使用的术语“X射线图像”可以意指可视X射线图像(例如显示在视频屏上)或X射线图像的数字表示(例如对应于X射线检测器的像素输出的文件)。 As used herein the term "X-ray image" may mean a visible X-ray image (e.g., displayed on the video screen) or a digital X-ray image representation (e.g., a file corresponding to the pixel output of an X-ray detector). 这里所使用的术语“治疗中图像(in-treatment image)”可以指在放射手术或放射性疗法程序的治疗实施阶段期间在任何时间点所采集的图像,所述任何时间点可以包括放射源开或闭的时刻。 As used herein the term "in the image of the treatment (in-treatment image)" may refer to images during surgery or radiation treatment delivery phase of radiation therapy program at any time point collected, the radioactive source may include any point in time on or closing moments. 这里所使用的术语IGR可以指图像弓I导放射性疗法、图像引导放射手术或这两者。 The term IGR as used herein refers to an image I bow may guide radiation therapy, image-guided radiosurgery or both.

[0019] 除非如根据以下讨论中明确指明,否则将认识到诸如“处理”、“生成”、“确定”、“计算”、“定位”、“跟踪”等等术语可以指计算机系统、或类似电子计算设备的动作和处理,所述计算机系统、或类似电子计算设备的动作和处理操纵被表示为计算机系统的寄存器和存储器内的物理(或电子)量的数据并将该数据转换成被同样地表示为计算机系统存储器或寄存器或其它此类信息存储、传送和显示设备内的物理量的其他数据。 [0019] Unless explicitly stated as the following discussions, it is appreciated that the terms such as "processing", "generating", "determining", "calculating", "positioning", "track" and the like terms may refer to a computer system, or similar operation and processing electronic computing device, the computer system, or similar electronic computing device, processing and manipulating the operation of the registers and is expressed in the physical memory of a computer system (or electronic) quantities and converts the data to be the same It represents the computer system memories or registers or other such information storage, transmission, and other physical quantities within the data display device. 在此所述的方法的实施方式可以使用计算机软件来实现。 In an embodiment of the method described herein may be implemented using computer software. 如果以符合认可标准的编程语言来编写,则被设计为实现所述方法的指令序列可以被编译以用于各种硬件平台上的执行和用于与各种操作系统的对接。 If the programming language to be written in accordance with recognized standards, it was designed to achieve a sequence of instructions of the method can be compiled to execute on a variety of hardware platforms and for interfacing with a variety of operating systems. 另外,并没有参照任何特定编程语言来描述本发明的实施方式。 Further, the described embodiments of the present invention and without reference to any particular programming language. 应认识到可以用各种编程语言来实现本发明的实施方式。 It should be appreciated that the embodiments may be implemented in various programming languages ​​according to the present invention.

[0020] 描述多种方法和装置,该方法和装置用于通过使用平行立体视觉几何结构来将患者的治疗中位置与预治疗3D区域研究相配准,从而在图像引导放射线治疗和/或放射治疗期间跟踪患者移动。 [0020] Various methods and apparatus described, the method and apparatus for treating a patient to the position of the pre-treatment of a 3D region by using a parallel study in registration stereoscopic geometry, thereby treating and / or image-guided radiation therapy radiation tracking patient movement during. 在本发明的实施方式的以下说明中,可以将X射线成像用作用于2D治疗中成像的示例性成像模式。 In the following description of embodiments of the present invention, X-ray imaging may be used as an exemplary therapeutic 2D imaging mode in imaging. 同样地,可以将CT扫描用作用于3D预治疗诊断和治疗计划研究的示例性成像模式。 Similarly, CT scan may be used as a pre exemplary 3D imaging mode diagnosis and treatment planning treatment. 本领域的技术人员可以理解,其它3D成像模式(例如MRI、PET、 3D超声波)及其它2D成像模式(例如荧光检查)也可以在其它实施方式中起到相同的作用。 Those skilled in the art will appreciate that other 3D imaging modalities (e.g., MRI, PET, 3D ultrasound) and other 2D imaging modes (e.g., fluoroscopic) may play the same role in other embodiments.

[0021] 图2A示出了图像引导、基于机器人的放射治疗系统200的结构(例如由加利福尼亚州艾可瑞(Accuray)公司制造的射波刀® (CyberKnife ®)放射治疗系统),在该结构中, 可以实践本发明的实施方式。 [0021] FIG 2A shows an image guide, based on the structure of the radiation therapy system of the robot 200 (e.g., manufactured by California Viagra Switzerland (Accuray) companies CyberKnife ® (CyberKnife ®) radiation treatment system), the structure , the embodiments may be practiced embodiment of the present invention. 在图2A中,所述放射治疗源是线性加速器(LINAC)211,该线性加速器(LINAC) 211被安装在具有多个(例如5个或以上)自由度的机器臂213 (图4中所示)的末端上,以定位LINAC 211,从而在患者209周围的手术区域中利用在多个平面中多个角度实施的X射线治疗射束(例如射束212A、212B、212C)来照射患者209中的病变组织(目标区或区域)。 In Figure 2A, the radiotherapy source is a linear accelerator (LINAC) 211, the linear accelerator (LINAC) 211 is mounted on a plurality (e.g., 5 or more) degrees of freedom in a robot arm 213 (Figure 4 ) on the end, to locate LINAC 211, so that the X-ray therapy beam in multiple planes embodiments of the surgical field 209 in a plurality of angles around the patient (e.g. beam 212A, the 212B, 212C) 209 irradiated patients the diseased tissue (target zone or region). 治疗可以涉及具有单个等中心、多个等中心、或具有非等中心通路的射束路径。 Treatment may involve beam paths with a single isocenter, multiple other centers, or the like having a non-central passage. 图2B示出了一个实施方式中的非等中心放射治疗。 FIG 2B shows a non-isocentric radiotherapy for one embodiment. 在图2B中,例如通过放射治疗射束216、217、218和219来治疗在脊椎骨215周围生长的病变组织(例如肿瘤),所述放射治疗射束216、217、218和219的每一个均在不汇聚于目标内的单个点或等中心的情况下贯穿病变目标区域214。 In FIG. 2B, for example, to treat diseased tissue grow around the spine 215 (e.g., a tumor) 216,217,218 and 219 by the beam radiation therapy, the radiation therapy beam 216,217,218 and 219 are each lesion 214 through the target area without converging to a single point, or the like in the center of a target.

[0022] 回到图2A,成像系统200可以包括X射线源20IA和20IB以及X射线成像器(检测器)206A和206B。 [0022] Back to Figure 2A, the imaging system 200 may include 20IA and 20IB X-ray source and an X-ray imaging device (detector) 206A and 206B. 所述两个X射线源201A和201B可以安装在手术室的天花板207上的固定位置并且可以被调整成从两个不同的位置投射成像X射线束202A和202B,使得射束202A的成像轴203A基本上与射束202B的成像轴20¾平行,且射束202A的射线204A 与射束202B的射线204B交叉于成像中心(机器等中心)M处,所述成像中心(机器等中心)M提供用于在治疗期间定位LINAC 211和治疗床210上的患者209的参考点。 Fixed positions of the two X-ray sources 201A and 201B may be mounted on the ceiling of the operating room 207 and may be adjusted into two different positions projected from the imaging X-ray beam 202A and 202B, such that beam 202A, 203A imaging axis 202B beam imaging axis substantially parallel to the 20¾, beams 202A and 204A-ray beam 202B and 204B intersecting rays to the imaging center (the center of the machine, etc.) M at the imaging center (the center of the machine, etc.) M provided with positioning the patient in the reference point 209 on the LINAC 211 and the treatment couch 210 during treatment. 穿过患者209之后,成像X射线束202A和202B可以照亮X射线成像器206A和206B的各个成像表面,所述X射线成像器206A和206B可以安装在手术室的地板208处或附近并且基本上相互平行(例如在5度的范围内)。 After passing through the patient 209, an imaging X-ray beam 202A and 202B can be illuminated by the respective imaging surfaces of the X-ray imager 206A and 206B of the X-ray imaging devices 206A and 206B may be mounted at or near the floor of the operating room 208 and substantially parallel to each other (e.g., in the range of 5 degrees). X射线成像器206A和206B可以基本上共面,使得X射线成像器206A和206B的成像表面形成单个成像平面。 X-ray imaging devices 206A and 206B may be substantially coplanar, so that the imaging surface of the X-ray imager 206A and 206B form a single imaging plane. 在一个实施方式中,X射线成像器206A和206B可以替换为单个X射线成像器206 (图4中所示),其具有大到足以采集由X射线束202A和202B两者产生的图像的单个成像平面。 In one embodiment, X-ray imaging devices 206A and 206B may be replaced with a single X-ray imaging device 206 (shown in FIG. 4), which has large enough to capture both the image generated by the X-ray beam 202A and 202B single imaging plane. 如下文更详细地描述的,可以配置放射治疗系统200,使得射线204A以基本小于90度的角度(例如45度或以下)与射线204B 相交。 As described in greater detail, the radiation treatment system 200 may be configured such that the rays 204A at an angle substantially less than 90 degrees (e.g. 45 degrees or less) intersects the ray 204B. 在一个实施方式中,可以校准X射线束202A和202B和/或确定其形状,以便只放射能够照亮X射线成像器的那部分射束,诸如X射线束205A和205B。 In one embodiment, the X-ray beam may be calibrated 202A and 202B and / or to determine its shape, so that only the X-ray radiation capable of illuminating the imager that part of the beam, such as an X-ray beam 205A and 205B.

[0023] 在其它实施方式中,放射治疗系统200可以包括多于或少于两个的X射线源以及及多于或少于两个的检测器,且所述检测器和/或所述源中的任何一个都是可移动的而非固定的。 [0023] In other embodiments, the radiation treatment system 200 may include more or less than two X-ray sources and more or less than two and a detector, and the detector and / or the source any one is movable rather than fixed. 在另外的其它实施方式中,X射线源和检测器的位置可以互换或旋转(例如壁式安装,使得射束202A和202B基本水平)。 In still other embodiments, the position of the X-ray source and detector may be interchanged or rotated (e.g., wall mounting, such that beam 202A and 202B substantially horizontal).

[0024] X射线成像器206A和206B可以由将X射线转换成可见光的闪烁材料(例如非晶硅)和将所述光转换成数字图像的CMOS(互补金属氧化硅)或CCD(电荷耦合器件)成像单元(像素)阵列制成,所述数字图像可以由如下文中更详细地描述的数字处理系统来处理。 [0024] X-ray imaging devices 206A and 206B may be formed to convert X-rays into visible light, the scintillator material (e.g., amorphous silicon) and converting the light into a digital image CMOS (complementary metal oxide silicon) or CCD (Charge Coupled Device ) imaging unit (pixel) array is made, a digital processing system of the digital image can be described by the following described in more detail below to process. [0025] 在一个实施方式中,用于图像引导放射治疗系统中的平行立体视觉的方法包括利用具有基本平行的成像轴的两个或更多个成像X射线源来对成像区域中的三维(3D)特征进行成像,确定3D特征在成像区域内的位置,以及通过将所述3D特征与成像区域的3D预治疗区域研究相配准来跟踪成像区域内的3D特征。 [0025] In one embodiment, the method for parallel stereoscopic image guided radiation treatment system includes using an imaging axis substantially parallel with the two or more X-ray sources to a three-dimensional imaging on the imaging area ( 3D) image features, characterized in determining the position of 3D imaging region, and characterized by the 3D imaging and the pre-study treatment region in registration area 3D 3D feature to track within the imaging area. 对3D特征进行成像可以包括生成成像区域的基本平行的X射线图像,所述基本平行的X射线图像至少包括第一X射线图像和第二X射线图像。 3D imaging of features may comprise an X-ray imaging region image generating substantially parallel, substantially parallel to the X-ray images comprises at least a first X-ray image and a second X-ray image. 第一X射线图像可以包括对应于成像区域内的3D特征的图像特征。 It may include a first X-ray image corresponding to the image feature in the 3D imaging region features. 第二X射线图像也可以包括对应于成像区域内的3D特征的图像特征,且第二X射线图像中的图像特征可以基本上类似于第一X射线图像中的图像特征。 Second X-ray image may include an image feature corresponding to the 3D feature within the imaging region, the image feature and a second X-ray image may be substantially similar to the image feature in the first X-ray image. 确定3D特征在成像区域内的位置可以包括使第一图像特征与第二图像特征相匹配以获得一对匹配的图像特征,并根据所述一对匹配图像特征在成像平面中的平面坐标来确定3D特征在成像区域内的位置。 Determining feature locations within the 3D imaging area may include the first image and the second image feature characteristic matched to obtain a pair of images of the feature matching, and determine a pair of matching based on the image feature in the imaging plane coordinate plane 3D feature position in the imaging area.

[0026] 图3示出了在例如放射治疗系统200中的平行立体视觉成像。 [0026] FIG. 3 illustrates a parallel in, for example, stereoscopic imaging radiation treatment system 200. 在图3中,通过在成像中心M处成θ角的两个X射线成像器206Α和206Β以及两个X射线源20IA和20IB来形成位于成像中心M附近的3D解剖特征301(例如类似于图1的骨的骨)的图像,所述θ角基本上小于90度(例如小于45度)。 In Figure 3, the X-ray imaging device into two angle θ M of the imaging center and 206Β 206Α and two X-ray sources 20IA and 20IB to form a 3D image of the anatomical feature is located near the center M 301 (e.g., similar to FIG. bONE 1) of the image, the angle θ is substantially less than 90 degrees (e.g., less than 45 degrees). 解剖特征301的图像被投影在X射线成像器206Α和206Β中。 The image of the anatomical feature 301 is projected, and the X-ray imager 206Α in 206Β. 然而,与图1所示的投影不同,这两个投影非常相似。 However, different from the projection shown in Figure 1, two projectors are very similar. X射线成像器206Α中的图像302被拉长,而X射线成像器206Β中的图像303被缩短。 302 X-ray image in the imager 206Α is elongated, and the image 303 X-ray imager in 206Β is shortened. 然而,两个图像均包含特征,该特征将图像标识为具有相同解剖对象、特征的那些图像,所述解剖对象、特征可以被医学成像领域中已知的特征识别算法(参见例如Murphy等人的美国专利No. 5,901,199)来识别、 提取和匹配。 However, the two images contains a feature, the image will be identified as having the same anatomical object, characterized in that the image of the anatomical object, wherein the algorithm may be identified (see, e.g., Murphy et al in the field of medical imaging features known U.S. Patent No. 5,901,199) to identify, extraction and matching. 随着角度θ被减小,在X射线成像器206Α和X射线成像器206Β中产生类似投影的3D特征方位的范围将增大,增加了可以被识别、提取和匹配的图像特征的数目。 The number of the image feature is reduced as the angle θ, in X-ray imaging is generated, and the X-ray imager 206Α 206Β similar features in 3D projection range of orientation increases, the increase may be identified, extracted and matched. 图像特征可以是解剖边缘、形状、图像梯度、轮廓、对象表面、对象片段或类似的解剖特征。 The image may be an anatomical feature edge, shape, gradient image, contour, surface of the object, the object fragments or similar anatomical features. 图像特征也可以通过由诸如例如在患者身体中放置和/或植入基准标记的人工手段来产生。 Image features such as may be generated by, for example, placed in the body of a patient and / or implanted artificial means by the reference mark.

[0027] 图4示出了在例如图像引导放射治疗系统400中的平行立体视觉几何结构。 [0027] FIG 4 illustrates example IGRT parallel stereo vision system 400 geometry. 在图4中,LINAC 211被安装在机器臂213上,并被定位为向治疗区域中的点P施加放射束220。 In FIG. 4, LINAC 211 is mounted on a robot arm 213, and is positioned to apply the radiation beam 220 into the treatment area of ​​the point P. 为了保证点P与病变组织内的期望点重合,可以将患者的治疗中位置与用于治疗计划的患者预治疗3D扫描(例如CT扫描)相配准。 In order to ensure a desired point in the point P coincides with the diseased tissue, the patient may be in the position of the treatment plan for treating a patient with pre-treatment 3D scan (e.g., a CT scan) in registration. 如下所述,平行立体视觉几何结构使得能够在不使用DRR的情况下将2D治疗中X射线图像直接转换成3D治疗中位置数据。 As described below, the stereoscopic parallel geometry makes it possible without the use of the 2D DRR treatment X-ray image is directly converted into position data in the 3D treatment.

[0028] 在图4中,X射线源40IA从具有射束轴AC的点A投射X射线束和射线402Α,该射线402Α穿过成像中心Μ,并与成像平面406相交于成像平面406的右半面中的右图像中心0Κ。 [0028] In FIG 4, X-ray source having a beam axis from the AC 40IA point A and the projected X-ray beam radiation 402Α, the central ray through the imaging 402Α Μ, and the imaging plane 406 intersects the plane 406 of the right imaging 0Κ half right image plane center. 同样地,X射线源401Β从具有射束轴BD的点B投射X射线束和射线402Β,该射线402Β 以与所述射线402Α成角θ穿过成像中心Μ,并与成像平面406相交于成像平面406的左半面中的左图像中心(\。从点M到成像平面的垂直投影(垂直于成像平面406)可以限定成像平面中的原点0和成像轴0Μ。X射线源401Α还投射射线403Α,该射线403Α穿过点P,并与成像器406的成像平面相交于点Ρκ,所述点Pk可以由其在χ坐标方向上偏离成像轴OM的位移ξ ^以及其在y坐标方向上偏离成像轴OM的位移…来限定。同样地,X射线源401B 投射射线40;3B,该射线40¾穿过点P,并与成像器406的成像平面相交于点&,所述点Pl可以由其在χ坐标方向上偏离成像轴Om的位移ξ L以及其在y坐标方向上偏离成像轴OM的位移来限定。点P的位置可以由关于原点0的坐标ξ、Ψ和ζ来限定,其中ζ限定成像平面406之上的高度,且ξ Similarly, X-ray source 401Β 402Β, the radiation to the radiation 402Α 402Β an angle θ through the imaging center Μ, and intersect at the point B from the image projection rays and the X-ray beam having a beam axis of the imaging plane 406 BD left center of the image plane 406 of the left half of (\ from the point M to the vertical projection imaging plane (perpendicular to the imaging plane 406) may define the origin O 0Μ.X ray source and the imaging plane of the imaging axis 401Α also cast ray 403Α the 403Α ray passing through the point P, and the imaging plane of the imaging at point 406 Ρκ, the point Pk displacement ξ may deviate therefrom in the imaging axis OM ^ χ coordinate direction and which is offset in the y-coordinate direction ... OM imaging axis of displacement is defined in the same manner, X-ray radiation source 401B projection 40;. 3B, the radiation 40¾ passing through the point P, and the imaging plane of the imaging device 406 at point &, the point Pl can be by in the χ coordinate direction departing from the imaging axis Om displacement ξ L and the displacement thereof offset from imaging axis OM in the y coordinate direction is defined. the position of the point P may be defined by a coordinate [xi] about the origin 0, Ψ and ζ, where [zeta] defined height above the imaging plane 406, and ξ Ψ限定点P在成像平面406中的垂直投影E的位置。X射线束所对的成像区域中的每个点以这样的方式被投影,使得成像区域的一个X射线图像被投影到左半面上(左图像),且基本类似的另一图像被投影到右半面上(右图像)。特别地,成像区域内的3D解剖特征可以在左图像和右图像中被投影为基本类似的图像特征(例如拐角、端点、曲边)。放射治疗系统400还可以由X射线源401A与401B之间的间隔b和由成像平面406以上的X射线源401A和401B的各自高度α ,和α κ来限定,其中射束轴AC 和BD垂直于通过成像平面406的原点0的线段⑶。 Ψ point P is defined at each point in the imaging area of ​​the vertical projection of the position .X-ray beam in the imaging plane E 406 pairs are projected in such a manner that a region of the X-ray image is projected onto the imaging surface of the left (left image), and substantially similar to the other image plane is projected onto a right half (right image). in particular, 3D anatomical feature within the imaging area may be projected in the left and right images of substantially similar image features ( e.g. corners, end, curved edges). the radiation therapy system 400 may be further defined by the spacing b between the X-ray sources 401A and 401B and respective heights above 406 [alpha] by the imaging plane and the X-ray sources 401A and 401B, and α κ wherein ⑶ origin 0 of the line segment AC and BD beam axis perpendicular to the plane 406 by the imaging.

[0029] 图5在XZ平面中示出了放射治疗系统400中的成像系统的几何结构。 [0029] FIG. 5 shows the XZ plane geometry of the imaging system 400. The radiation therapy system. 在图5中, 三角形ACPk与三角形PEPk相似,且三角形BDP^与三角形PEP^相似。 In Figure 5, similar to the triangle ACPk PEPk triangle, triangle and triangles BDP ^ PEP ^ similar. 相似三角形具有相似 Similar triangles have similar

的比,因此: [0030] Ratio, thus: [0030]

Figure CN101478918BD00081

(1)[0031] 且, [0032] (1) [0031] and, [0032]

Figure CN101478918BD00082

(2)[0033] 其中上划线表示线段。 (2) [0033] wherein the dashed line represents a line segment. 因此, [0034] Thus, [0034]

Figure CN101478918BD00083

(3)[0035] 且 [0036] (3) [0035] and [0036]

Figure CN101478918BD00084

(4)[0037] 对于 aL = aE = a的情况(对于A Φ %,可以如本领域中已知的那样计算校准因数),可以将等式⑴和⑵相加, [0038] (4) [0037] For the case where aL = aE a = (for A Φ%, as known in the art may be calculated as a calibration factor), and may ⑴ ⑵ sum equation, [0038]

Figure CN101478918BD00085

(5) [0039] 相减, [0040] (5) [0039] subtraction, [0040]

Figure CN101478918BD00086

(6)[0041] 使Σ = —XE+XL' -S Δ = xk1l,可以得到 [0042] [0043] [0044] [0045] 图6在XY平面中示出了放射治疗系统400中的成像系统的几何结构。 (6) [0041] so that Σ = -XE + XL '-S Δ = xk1l, can be obtained [0042] [0043] [0044] [0045] FIG. 6 is shown in an XY plane 400 of the imaging radiation treatment system geometry of the system. 在图6中, 占F是占 &在ξ轴上的投影,且点G是点P ^在ξ轴上的投影。 In FIG. 6, representing the projection of F & accounted ξ axis, and the point G is a point P ^ ξ axis projection. 三角形AGPk与三角形AEP相似,且: Ξ角形BFP^与三 角形PEP相似。 AEP similar triangles AGPk triangle, and: Ξ BFP ^ and angled triangle similar to PEP. 因此: [0046] Thus: [0046]

Figure CN101478918BD00087

(9)[0047] 且,[0048] (9) [0047] and, [0048]

Figure CN101478918BD00091

[0049] 因此,对于y,存在两个无关解 [0049] Thus, for y, the presence of two independent solutions

[0050] [0050]

Figure CN101478918BD00092

[0051] 和 [0051] and

[0052] [0052]

Figure CN101478918BD00093

[0053] 可以对等式(11)和(12)求平均值, [0053] may Equation (11) summing (12) the average value,

[0054] [0054]

Figure CN101478918BD00094

[0055] 并对Ψ求解, [0055] and Ψ solving,

[0056] [0056]

Figure CN101478918BD00095

[0057] 因此,可以根据点P^和Pk的平面坐标来计算点P的3D坐标。 [0057] Thus, it is possible to calculate the 3D coordinates of the point P in the planar coordinates of the point P, and Pk ^. 点P^和Pk可以称为对应于3D特征点的共轭点对。 And the point P ^ Pk may be referred to a 3D feature point corresponding to the conjugate point pairs. 成像区域中的任何3D特征可以根据许多3D特征点来限定, 所述许多特征点可在例如成像平面406中被投影成相同数目的共轭点对。 Any 3D imaging area can be defined according to a number of features 3D feature points, said plurality of feature points may be the same number of, for example, the conjugate point in the imaging plane 406 is projected to.

[0058] 在一个实施方式中,可以将特征提取和识别算法应用于左图像和右图像以便从每个图像提取基本相似的图像特征。 [0058] In one embodiment, the feature extraction and recognition can be applied to the algorithm so that left and right images extracted from each image of the image substantially similar characteristics. 特征识别算法是本领域中已知的(参见例如JBA Maintz, MA Viergever, “ A Survey of Medical ImageRegistration" Medical Image Analysis(1998), Copyright Oxford University Press, Vol. 2, No. 1,pp.1-37),因此将不再详细描述。 Feature recognition algorithms are known in the art (see, e.g. JBA Maintz, MA Viergever, "A Survey of Medical ImageRegistration" Medical Image Analysis (1998), Copyright Oxford University Press, Vol. 2, No. 1, pp.1- 37), and therefore will not be described in detail. 特征提取之后,可以将相似性度量应用于从每个图像提取的特征,并匹配成为图像特征对。 After feature extraction, the similarity metric may be applied to feature extraction from each image, and the image features become matching pair. 用于将2D X射线图像与DRR相配准的相似性度量和匹配算法可以用来匹配所提取的特征。 And means for matching similarity measure algorithms 2D X-ray image in registration with the DRR can be used to match the extracted features. 相似性度量和匹配算法在本领域中是已知的(参见例如GP Permey, J. ffeese, “ A comparison of similarity measures for use in 2D-3D medical imageregistration, " IEEE Trans. Med. Imag. ,vol. 17,pp. 586-595,Aug. ,1998), Similarity measure and matching algorithms are known (see e.g. GP Permey, J. ffeese in the art, "A comparison of similarity measures for use in 2D-3D medical imageregistration," IEEE Trans. Med. Imag., Vol. 17, pp. 586-595, Aug., 1998),

不再详细描述。 Not described in detail.

[0059] 如上所述,图像特征可能不是全等的,但通常会基本上相似,因此可以使诸如解剖特征的拐角、端点和曲边等特征匹配。 [0059] As described above, the image features may not be congruent, substantially similar but usually, can be characterized in that the anatomical features such as corners, edges and other end and curved to match. 一旦已匹配出图像特征对,可以将所匹配的特征分解成共轭图像点对(例如,诸如点1\和Pk)。 Once the characteristics of the image matched, the matched features may be decomposed into a conjugate image points (e.g., such as a 1 point \ and Pk). 当已经确定了一个或多个匹配图像特征的共轭图像点对时,可以使用以上导出的等式(7)、(8)和(14)将共轭图像点对的平面坐标映射到成像区域中的3D特征点(诸如点P),以确定3D特征在成像区域中的位置。 When it has been determined one or more equations (7) to match the image characteristics of a conjugated image point, can be derived using the above, (8) and (14) the coordinates of the image point conjugate plane of the imaging area to the mapped the 3D feature points (such as point P), to determine the 3D position of the feature in the imaging region. 在一个实施方式中,可以使用本领域中已知的3D变换算法直接将3D特征的位置与3D预治疗扫描数据(例如,诸如数字化CT扫描数据)相配准。 In one embodiment, known in the art may be used in the 3D conversion algorithm directly with the 3D position of the 3D feature pre-treatment scan data (e.g., CT scan data, such as digitized) in registration. 然后可以用3D到3D的配准结果来确定诊断成像和/或治疗计划期间的患者的治疗中位置和患者的预治疗位置之间的差,并通过重新定位患者和/或修改放射治疗源(例如LINAC 211)的位置来修正所述差。 The results can then be used with 3D to 3D registration to determine the difference between the diagnostic imaging and / or treatment of pre-treatment position and a position of the patient during the patient's treatment plan, and by re-positioning of the patient and / or modify the radiation treatment source ( for example, the correction LINAC 211) of said position difference.

[0060] 因此,在如图7所示的一个实施方式中,用于在图像引导放射治疗系统中使用平行立体视觉几何结构的方法700包括:使用具有基本平行的成像轴的两个或更多个成像X射线源来对成像区域内的3D特征进行成像(步骤701);确定3D特征在成像区域内的位置(步骤70¾ ;以及通过将3D特征与成像区域的3D预治疗区域研究相配准来跟踪成像区域内的3D特征(步骤703)。 [0060] Thus, in one embodiment shown in Figure 7, a method for using a parallel geometry stereoscopic image guided radiation treatment system 700 comprises: using an imaging axis substantially parallel to the two or more an imaging X-ray source to a 3D features within the imaging region (step 701); determining 3D feature location (step 70¾ in the imaging region; and by the 3D features with the pre-area study treatment imaged area 3D in registry to 3D feature (step 703) in the tracking area imaging.

[0061] 图8示出了可以用于执行放射治疗的系统的一个实施方式,在该实施方式中可以实现本发明的特征。 [0061] FIG 8 illustrates an embodiment of the system may be used to perform radiation therapy, and in this embodiment the features of the present invention may be implemented. 如下所述和图8所示,系统800可以包括诊断成像系统1000、治疗计划系统2000和治疗实施系统3000。 As described below and shown in Figure 8, system 800 may include a diagnostic imaging system 1000, treatment planning system 2000 and a treatment delivery system 3000.

[0062] 诊断成像系统1000可以是能够根据患者身体中的感兴趣区域(VOI)的3D区域研究来生成医学诊断图像的任何系统,其可以用于随后的医学诊断、治疗计划和/或治疗实施。 [0062] Diagnostic imaging system 1000 may be any system capable of generating a medical diagnostic image of the 3D region of the study area of ​​interest the patient's body (the VOI), which can be used for subsequent medical diagnosis, treatment planning and / or treatment of embodiments . 例如,诊断成像系统1000可以是计算机断层(CT)系统、核磁共振成像(MRI)系统、电子发射断层扫描(PET)系统、超声系统等等。 For example, diagnostic imaging system 1000 may be a computed tomography (CT) system, magnetic resonance imaging (MRI) system, positron emission tomography (PET) systems, ultrasound systems. 为了便于讨论,诊断成像系统1000可以偶尔在下文中根据CT成像模式来讨论。 For ease of discussion, diagnostic imaging system 1000 may occasionally be discussed below according to the CT imaging mode. 但是,也可以使用诸如上述那些的其它成像模式。 However, such as those described above may also be used with other imaging modalities.

[0063] 诊断成像系统1000包括生成成像射束(例如X射线、超声波、射频波等等)的成像源1010和检测并接收由成像源1010生成的射束或由来自成像源的射束激发的二次射束或发射(例如在MRI或PET扫描中)的成像检测器1020。 [0063] Diagnostic imaging system 1000 includes generating an imaging beam (e.g., X-ray, ultrasound, radio frequency waves, etc.) and an imaging source 1010 and receives the detection beam generated by imaging source 1010, or by the beam from the imaging source excitation a secondary beam or emission (e.g., in an MRI or PET scan) of the imaging detector 1020. 在一个实施方式中,诊断成像系统1000可以包括一个或多个诊断X射线源和一个或多个相应的成像检测器(例如锥形射束CT扫描仪),该成像检测器能够以小的角增量生成2D射线图像,该2D射线图像可以用来构造3D图像。 In one embodiment, the diagnostic imaging system 1000 may include one or more diagnostic X-ray sources and one or more corresponding imaging detectors (e.g., cone beam CT scanner), the imaging detector can be at a small angle 2D incremental build-ray image, the 2D-ray image can be used to construct a 3D image. 例如,可以在将被成像的患者周围设置两个X射线源,相互之间以有一定间角(例如90度、45度等等)固定并穿过患者身体而指向可能直接与X射线源相对的成像检测器。 For example, two X-ray sources may be disposed around a patient to be imaged, among each other to a certain angle (e.g. 90 degrees, 45 degrees, etc.) and through the patient's body and the fixed point X-ray source may be directly opposite the imaging detector. 还可以使用将被每个X射线成像源照射的单个大型成像检测器、或多个成像检测器。 You may also be used for each X-ray imaging illumination in a single large imaging detector, or multiple imaging detectors. 可选择地,可以使用其它数目和结构的诊断成像源和成像检测器。 Alternatively, the source may be used for diagnostic imaging and the imaging detectors, and other numbers of structures.

[0064] 成像源1010和成像检测器1020可以耦合到数字处理系统1030,该数字处理系统1030用于控制成像操作和处理图像数据。 [0064] The imaging source 1010 and the imaging detector 1020 may be coupled to a digital processing system 1030, the digital processing system 1030 to control the imaging operation and process image data. 诊断成像系统1000包括用于在数字处理系统1030、成像源1010和成像检测器1020之间传输数据和命令的总线和其它装置1035。 It includes a diagnostic imaging system 1000 for 1030, 1020 transmitted between the imaging source 1010 and the imaging detector data and command buses and a digital processing system 1035 to other devices. 数字处理系统1030可以包括一个或多个通用处理器(例如微处理器)、诸如数字信号处理器(DSP)的专用处理器、或诸如控制器或现场可编程门阵列(FPGA)的其它类型设备。 Digital processing system 1030 may include one or more general purpose processors (e.g. a microprocessor), such as a digital signal processor (DSP) dedicated processor, or as a controller or field programmable gate array (FPGA) devices of other types . 数字处理系统1030还可以包括诸如存储器、存储设备、网络适配器等其它部件(未示出)。 Digital processing system 1030 may also include other components such as memory, storage devices, network adapters, etc. (not shown). 数字处理系统1030可以被配置为以诸如DIC0M(医学数字成像和通信标准)格式的标准格式来生成数字诊断图像。 Digital processing system 1030 may be configured in a standard format such as DIC0M (Digital Imaging and Communications in Medicine standard) format to generate digital diagnostic images. 在其它实施方式中,数字处理系统1030可以生成其它标准或非标准的数字图像格式。 In other embodiments, digital processing system 1030 may generate other standard or non-standard digital image formats. 数字处理系统1030可以通过数据链路1500将诊断图像文件(例如上述DICOM格式文件)发送到治疗计划系统2000,所述数据链路1500可以是例如直连链路、局域网(LAN)链路或广域网(WAN)链路,诸如因特网。 Digital processing system 1030 may be the link 1500 diagnostic image files (e.g., files in DICOM format described above) to treatment planning system 2000 through the data, the data link 1500 may be, for example, a direct link, a local area network (LAN) or wide area network link (WAN) link such as the Internet. 另外,在诸如远程诊断或治疗计划结构中,可以通过连接系统的通信介质来拉或推在系统之间传输的信息。 Further, in the diagnosis or treatment planning configuration such as a remote may be pulled through the communications medium or push system information transmission between the systems. 在远程诊断或治疗计划中,尽管系统用户与患者之间存在物理间隔,但用户可以利用本发明的实施方式来进行诊断或治疗计划。 In remote diagnosis or treatment planning, despite the physical separation between the system user and the patient, but the user may diagnose or treatment plan using the embodiment of the present invention.

[0065] 治疗计划系统2000包括接收并处理图像数据的处理设备2010。 [0065] Treatment planning system 2000 includes a processing device 2010 to receive and process image data. 处理设备2010可以表示一个或多个通用处理器(例如微处理器)、诸如数字信号处理器(DSP)的专用处理器、或诸如控制器、专用集成电路(ASIC)或现场可编程门阵列(FPGA)的其它类型设备。 Processing device 2010 may represent one or more general purpose processors (e.g. a microprocessor), such as a digital signal processor (DSP) dedicated processor, such as a controller or application specific integrated circuit (ASIC) or field programmable gate array ( FPGA) other types of devices. 处理设备2010可以被配置为执行用于执行本文所讨论的治疗计划操作的指令。 Processing device 2010 may be configured to execute instructions for performing treatment planning operations discussed herein.

[0066] 治疗计划系统2000还可以包括系统存储器2020(可以包括随机存取存储器(RAM))或其它动态存储设备,所述系统存储器2020通过总线2055而耦合到处理设备2010,用于存储将由处理设备2010来执行的信息和指令。 [0066] Treatment planning system 2000 may also include a system memory 2020 (which may include random access memory (the RAM)) or other dynamic storage device, the system memory 2020 is coupled to the processing device 2010, by the processing for storing the bus 2055 2010 equipment to perform the information and instructions. 系统存储器2020还可以用来存储处理设备2010执行指令期间的临时变量或其它中间信息。 The system memory 2020 may also be used for temporary variable storage during instruction execution processing device 2010, or other intermediate information. 系统存储器2020还可以包括耦合到总线2055的只读存储器(ROM)和/或其它静态存储设备,所述只读存储器(ROM)和/或其它静态存储设备用于存储用于处理设备2010的静态信息和指令。 The system memory 2020 may further include a bus coupled to a read only memory (ROM) 2055 and / or other static storage device, a read only memory (ROM) and / or other static storage device for storing static processing device 2010 information and instructions.

[0067] 治疗计划系统2000还可以包括用于存储信息和指令的耦合到总线2055的存储设备2030,表示一个或多个存储设备(例如磁盘驱动器或光盘驱动器)。 [0067] Treatment planning system 2000 may also include a coupling for storing information and instructions to the storage device 2055 bus 2030 represents one or more storage devices (e.g., disk drive or optical disk drive). 存储设备2030可以用来存储用于执行本文所述治疗计划步骤的指令。 Storage device 2030 may be used to store instructions for performing the treatment planning steps discussed herein.

[0068] 处理设备2010还可以被耦合到用于向用户显示信息(例如VOI的2D或3D表示) 的显示设备2040,诸如阴极射线管(CRT)或液晶显示器(IXD)。 [0068] The processing device 2010 may also be coupled to a display device 2040 for displaying information to a user (e.g., a 2D or 3D representation of the VOI), such as a cathode ray tube (CRT) or liquid crystal display (IXD). 诸如键盘的输入设备2050 可以被耦合到处理设备2010以用于向处理设备2010传输信息和/或命令选择。 Such as a keyboard input device 2050 may be coupled to the processing device 2010 for transmitting information processing device 2010 and / or command selections to. 还可以使用一个或多个其它用户输入设备(例如鼠标、轨迹球或光标方向键)来传输方向信息、选择用于处理设备2010的命令并控制显示器2040上的光标移动。 You may also be used with one or more other user input devices (e.g., a mouse, a trackball, or cursor direction keys) to transmit direction information processing device 2010 for selecting commands and to control cursor movement on display 2040.

[0069] 将认识到,治疗计划系统2000仅表示治疗计划系统的一个示例,所述治疗计划系统可以具有许多不同的配置和结构,可以包括比治疗计划系统2000更多的部件或更少的部件且可以与本发明一起使用。 [0069] It will be appreciated that treatment planning system 2000 represents only one example of treatment planning system, a treatment planning system may have many different configurations and structures may include more than treatment planning system 2000 components or fewer components and it may be used with the present invention. 例如,一些系统常常具有多个总线,诸如外围总线、专用高速缓存总线等等。 For example, some systems often have multiple buses, such as a peripheral bus, a dedicated cache bus, etc. 治疗计划系统2000还可以包括MIRIT (医学图像检查和导入工具)以支持DICOM导入(因此可以融合图像,并且目标可以被绘制在不同的系统上,随后被导入治疗计划系统以用于计划和剂量计算)、扩展成像融合能力,该扩展成像融合能力允许用户在各种成像模式(例如MRI、CT、PET等等)中的任何一个上进行治疗计划和查看剂量分布。 Treatment planning system 2000 may also include MIRIT (medical examination and image import tool) to support DICOM import (and therefore can be fused image, and the target can be plotted on a different system, is then introduced into the treatment planning system for planning and dose calculation ), extended integration of imaging capabilities, the expansion of imaging fusion capability allows the user to treatment plan and view dose distributions in various imaging modalities (eg MRI, CT, PET, etc.) in on any one. 治疗计划系统在本领域中是已知的,因此,没有提供更多详细讨论。 Treatment planning system is known in the art and, therefore, did not provide a more detailed discussion.

[0070] 治疗计划系统2000可以与诸如治疗实施系统3000的治疗实施系统共享其数据库(例如存储在存储设备2030中的数据),因此可以不需要在治疗实施之前从治疗计划系统导出。 [0070] Treatment planning system 2000 may share its database (e.g., data stored in storage device 2030) and the treatment delivery system, such as treatment delivery system 3000, and therefore does not need to be derived from the treatment planning system prior to treatment delivery. 治疗计划系统2000可以经由数据链路2500而链接到治疗实施系统3000,所述数据链路2500可以是如上文关于数据链路1500所讨论的直连链路、LAN链路或WAN链路。 Treatment planning system 2000 via data link 2500 can be linked to treatment delivery system 3000, a data link 2500 may be a direct link as described above on the data link 1500 discussed, LAN link or a WAN link. 应注意的是,当数据链路1500和2500被实现为LAN或WAN连接时,诊断成像系统1000、治疗计划系统2000和/或治疗实施系统3000中的任何一者可以位于分散的位置,使得系统可以在物理上相互远离。 It should be noted that when data links 1500 and 2500 are implemented as LAN or WAN connections, 2000 and / or treatment delivery system 3000 may be located at any one of discrete locations diagnostic imaging system 1000, treatment planning system, such that the system It may be physically remote from each other. 可选择地,诊断成像系统1000、治疗计划系统2000和/或治疗照射系统3000中的任何一者可以在一个或多个系统中相互集成。 Alternatively, diagnostic imaging system 1000, treatment planning system 2000 and / or treatment of any of the illumination system 3000 may be integrated with each other in one or a plurality of systems.

[0071] 治疗实施系统3000包括治疗和/或外科放射源3010,用于依照治疗计划来施加规定放射剂量到目标区域。 [0071] Treatment delivery system 3000 includes a target region of the treatment and / or surgical radiation source 3010, to be applied in accordance with a predetermined radiation dose planning therapy. 治疗实施系统3000还可以包括成像系统3020,用于采集患者区域(包括目标区域)的治疗中图像,用来与上述诊断图像相配准或与之关联,以相对于放射源定位患者。 Treatment delivery system 3000 may further include an imaging system 3020, the image capture region of a patient for the treatment (including the target region), for mating with the diagnostic image or quasi-associated, position the patient with respect to the radiation source. 成像系统3020可以包括上述成像系统中的任何一者。 The imaging system 3020 may include any one of the above-described imaging system. 治疗实施系统3000 还可以包括数字处理系统3030 (用于控制放射源3010)、成像系统3020和患者支撑设备,诸如治疗床3040。 Treatment delivery system 3000 may also include a digital processing system 3030 (for controlling a radiation source 3010), the imaging system 3020 and a patient support apparatus, such as a treatment couch 3040. 数字处理系统3030可以被配置为根据来自成像系统3020的2D射线图像、 根据两个或更多立体投影来识别和/或提取解剖特征,并确定VOI内的解剖特征的3D坐标以与由治疗计划系统2000中的处理设备2010生成的3D扫描数据相配准。 Digital processing system 3030 may be configured as a 2D-ray image from the imaging system 3020, according to identify two or more stereoscopic projections and / or extracted anatomical feature, and determines the anatomical feature within the VOI in the 3D coordinate by the treatment planning processing apparatus 2010 in system 2000 generates a 3D scan data in registration. 数字处理系统3030可以包括一个或多个通用处理器(例如微处理器)、诸如数字信号处理器(DSP)的专用处理器、或诸如控制器、专用集成电路(ASIC)或现场可编程门阵列(FPGA)的其它类型设备。 Digital processing system 3030 may include one or more general purpose processors (e.g. a microprocessor), such as a digital signal processor (DSP) dedicated processor, such as a controller or application specific integrated circuit (ASIC) or field programmable gate array (FPGA) other types of devices. 数字处理系统3030还可以包括诸如存储器、存储设备、网络适配器等等其它部件(未示出)。 Digital processing system 3030 may also include other components such as memory, storage devices, network adapters, etc. (not shown). 数字处理系统3030可以通过总线3045或其它类型的控制和通信接口而耦合到放射源3010、成像系统3020和治疗床3040。 Digital processing system 3030 may be coupled by a bus 3045 or other type of control and communication interface to radiation source 3010, imaging system 3020 and treatment couch 3040.

[0072] 数字处理系统3030可以实施方法(例如,诸如上述方法700)来将从成像系统3020获得的图像与手术前治疗计划图像进行配准,以使治疗实施系统3000内的治疗床3040上的患者对准,并精确地确定放射源关于目标区域的位置。 [0072] Digital processing system 3030 may implement a method (e.g., method 700 as described above) before treatment with surgery planning image to an image obtained from the imaging system 3020 be registered, so that the treatment couch treatment delivery system 3040 in 3000 aligning the patient, the radiation source and to accurately determine the location of the target area.

[0073] 治疗床3040可以耦合到具有多个(例如5个或以上)自由度的另一机器臂(未示出)。 [0073] The treatment couch 3040 may be coupled to have a plurality of (e.g., 5 or more) degrees of freedom another robot arm (not shown). 床臂可以具有五个转动自由度和一个基本垂直的线性自由度。 Bed linear degree of freedom arm may have five rotational degrees of freedom and one substantially vertical. 可选择地,所述床臂可以具有六个转动自由度和一个基本垂直的线性自由度或至少四个转动自由度。 Alternatively, the bed may have a linear degree of freedom arm rotates six degrees of freedom and one substantially vertical, or at least four rotational degrees of freedom. 床臂可以垂直地安装到栏杆或墙壁、或者水平地安装到底座、地板、或天花板。 Bed arm may be vertically mounted to a wall or railing, or horizontally mounted in the end seats, floor, or ceiling. 可选择地,治疗床3040 可以是另一机械机构的部件,诸如由加利福尼亚州的艾可瑞(Accuray)公司开发的阿克苏姆® (Axum ®)治疗床,或者可以是本领域的技术人员已知的另一种类型的常规治疗台。 Alternatively, the treatment couch 3040 may be a component of another mechanical mechanism, such as developed by the Swiss California Viagra (Accuray) companies Axum ® (Axum ®) couch, or may be known to those skilled in the art another conventional treatment table type.

[0074] 应注意的是本文所述的方法和装置不限于用于医学诊断成像和治疗。 [0074] It is noted that the methods and apparatus described herein are not limited to imaging for medical diagnosis and treatment. 在可选实施方式中,本文的方法和装置可以用于医学技术领域之外的应用,诸如材料的工业成像和无损试验(例如汽车工业中的电动机机座、航空工业中的飞机机架、建筑工业中的焊接和石油工业中的钻井岩心)及地震勘测。 In an alternative embodiment, the methods and apparatus described herein can be used in applications outside of the medical technology field, such as industrial imaging and non-destructive testing of materials (e.g., a motor frame in the automotive industry, airframes in the aviation industry, the building core drilling in the welding industry and the petroleum industry) and seismic surveying. 在此类应用中,例如,“治疗”可以泛指放射束的应用。 In such applications, for example, "treating" can mean application of the radiation beam.

[0075] 通过前述说明将显而易见的是本发明的方法可以至少部分地在软件中体现。 [0075] The method of the present invention may be at least partially embodied in software will be apparent from the foregoing description Yes. 也就是说,可以在计算机系统或其它数据处理系统中响应于其处理器来执行所述技术,所述处理器例如为处理设备2010或数字处理系统3030,执行包含在诸如系统存储器2020的存储器中的指令序列。 That is, to its processor to perform the techniques may be responsive to a computer system or other data processing system, for example, the processor processing apparatus 2010 or 3030 digital processing system, comprising performing in a memory such as system memory 2020. sequence of instructions. 在各种实施方式中,可以与软件指令结合着使用硬件电路以实现本发明。 In various embodiments, hardware circuitry may be used in combination with software instructions to implement the present invention. 因此,所述技术不限于硬件电路和软件的任何特定组合或数据处理系统所执行的指令的任何特定源。 Thus, any particular source for any specific combination of instructions or data processing system is not limited to the techniques of hardware circuitry and software executed. 另外,在本说明书中,各种功能和操作均被描述为由软件代码来执行或引起以简化说明。 Further, in the present specification, various functions and operations are described as being performed by or caused by software code to simplify description. 然而,本领域的技术人员将认识到此类表达的意思是所述功能是由诸如处理设备2010或数字处理系统3030的处理器或控制器执行代码而引起的。 However, those skilled in the art will recognize that such an expression meaning that the function is executed by a processor or controller code processing apparatus 2010 or 3030 digital processing system, such as caused.

[0076] 可以用机器可读介质来存储软件和数据,所述软件和数据在被数据处理系统执行时促使系统执行本发明的各种方法。 [0076] The machine-readable medium may be used to store software and data, cause the system software and data to perform various methods of the present invention when executed by a data processing system. 这种可执行软件和数据可以存储在不同位置,包括例如系统存储器2020和存储设备2030或能够存储软件程序和/或数据的任何其它设备。 This executable software and data may be stored in different locations, for example, any other device comprising a system memory 2030 or storage device 2020 and is capable of storing software programs and / or data.

[0077] 因此,机器可读介质包括以机器(例如计算机、网络设备、个人数字助理、制造工具、具有一组一个或多个处理器的任何设备等等)可访问的形式提供(即存储和/或发送) 信息的任何机构。 [0077] Thus, a machine-readable medium includes a machine (e.g., a computer, network device, personal digital assistant, manufacturing tool, any device with a set of one or more processors, etc.) in a form accessible by a machine (i.e., storage and / or transmission) means any information. 例如,机器可读介质包括可记录/非可记录介质(例如只读存储器(ROM)、 随机存取存储器(RAM)、磁盘存储媒介、光存储媒介、闪速存储设备等等)以及电学、光学、 声学或其它形式的传播信号(例如载波、红外信号、数字信号等等)等等。 For example, a machine-readable medium includes recordable / non-recordable media (e.g., read only memory (ROM), a random access memory (RAM), magnetic disk storage media, optical storage media, flash memory devices, etc.) as well as electrical, optical , acoustical or other form of propagated signals (eg, carrier waves, infrared signals, digital signals, etc.) and the like.

[0078] 应认识到,本说明书自始至终对“一个实施方式”或“实施方式”的参考意指结合所述实施方式而描述的特定特征、结构或特性包括在本发明的至少一个实施方式中。 Specific features [0078] should be appreciated that, throughout this specification to "one embodiment" or reference to "an embodiment" means that a described in the above embodiment, structure, or characteristic included in at least one embodiment of the present invention is described. 因此, 强调了并应认识到,在本说明书的不同部分中对“实施方式”或“一个实施方式”或“可选实施方式”的两次或更多次参考不一定全部指示相同的实施方式。 Thus, the emphasized and should be appreciated that, in various portions of this specification are not necessarily all refer to or more times to twice indicating "an embodiment" or "an embodiment" or "an alternative embodiment" in the same manner as Embodiment . 此外,可以以在本发明的一个或多个实施方式中适当地组合所述特定特征、结构或特性。 Further, it is possible to appropriately combined in one or more embodiments of the present invention, in the particular embodiment feature, structure, or characteristic. 另外,虽然以根据多个实施方式描述了本发明,但本领域技术人员将认识到本发明不限于所述实施方式。 In addition, while the invention is described according to various embodiments, those skilled in the art will recognize that the invention is not limited to the above embodiment. 在不脱离随附权利要求的范围的情况下,可以在有修改和变更的情况下实践本发明。 Without departing from the scope of the appended claims, the present invention may be practiced in the case where there are modifications and variations. 因此,说明书和附图应被视为说明性的,而不是对本发明的限制。 Accordingly, the specification and drawings are to be regarded in an illustrative, rather than limiting the present invention.

Claims (15)

  1. 1. 一种图像引导放射治疗系统中的方法,该方法包括:利用具有基本平行的成像轴的两个或更多个治疗中成像X射线源来对成像区域中的3D特征进行成像,其中对所述3D特征进行成像包括:生成所述成像区域的第一X射线图像,该第一X射线图像包括对应于所述成像区域内的所述3D特征的第一图像特征;以及生成基本平行于所述第一X射线图像的第二X射线图像,该第二X射线图像包括对应于所述成像区域内的所述3D特征的第二图像特征,其中所述第二图像特征基本上类似于所述第一图像特征;以及确定所述3D特征在所述成像区域内的位置。 CLAIMS 1. A method for image-guided radiation treatment system, the method comprising: a radiation source of the imaging area using two imaging features 3D imaging having substantially parallel axes or more therapeutic imaging X, in which wherein the 3D imaging comprising: generating a first X-ray image of the imaging region, the first X-ray image comprises a first feature of the 3D image corresponding to the feature of the imaging region; and generating substantially parallel to the second X-ray image of the first X-ray image, the second X-ray image includes the imaging region corresponding to the second feature of the 3D feature image, wherein said image characteristic substantially similar to the second wherein the first image; and determining the 3D position of the feature in the imaging region.
  2. 2.根据权利要求1所述的方法,该方法还包括通过将所述3D特征与所述成像区域的3D预治疗区域扫描相配准来跟踪所述成像区域内的所述3D特征。 2. The method according to claim 1, the method further comprising and characterized by the 3D 3D scan of said pre-treatment area in registration area imaging to track the 3D imaging features within the region.
  3. 3.根据权利要求1所述的方法,其中确定所述3D特征的位置包括:使所述第一图像特征与所述第二图像特征相匹配以获得一对匹配的图像特征;以及由所述一对匹配的图像特征的平面坐标来确定所述3D特征在所述成像区域内的位置。 And by the; wherein the first image and the second image feature matches a pair of images to obtain matching characteristics: 3. The method according to claim 1, wherein determining the location comprises 3D feature plane coordinate matching features a pair of images to determine the position of the feature in the 3D imaging region.
  4. 4.根据权利要求1所述的方法,其中所述3D特征包括多个特征点,并且其中生成所述第一X射线图像和所述第二X射线图像包括对于每个特征点:通过从第一X射线源投射第一X射线穿过所述成像区域中的所述特征点而在成像平面中生成第一图像点,所述第一图像点在所述成像平面中具有第一组平面坐标,该第一组平面坐标由在第一方向上偏离成像轴的第一位移和在第二方向上偏离所述成像轴的第二位移所限定;以及通过从第二X射线源投射第二X射线穿过所述成像区域中的所述特征点而在所述成像平面中生成第二图像点,所述第二图像点在所述成像平面中具有第二组平面坐标,该第二组平面坐标由在所述第一方向上偏离所述成像轴的第三位移和在所述第二方向上偏离所述成像轴的第四位移所限定,所述第一图像点和所述第二图像点构成了对应于所述特征点 4. The method according to claim 1, wherein said plurality of feature points comprises a 3D feature, and wherein generating the first X-ray image and the second X-ray image for each feature point comprises: first through the a first X-ray source projecting X-rays passing through the feature point of the imaging region to generate a first image point in the imaging plane, the first image having a first set of points on the imaging plane coordinate plane the second displacement, offset from the first set of the imaging plane coordinate axis in the second direction by the imaging axis is offset from the first displacement in a first direction and defined; and by the second X-ray source projects a second X ray passing through the characteristic points of the imaging region to generate a second image point in the imaging plane, the second image having a second set of points on the imaging plane coordinate plane, the second set of planes departing from the coordinate offset from the imaging axis in the first direction and displaced in the third direction of the second imaging axis of displacement defined by the fourth, the first image and the second image point It constitutes a point corresponding to the feature point 共轭图像点对。 Conjugate image point pairs.
  5. 5.根据权利要求1所述的方法,其中所述第一 X射线图像中的所述第一图像特征包括第一组多个图像点,而所述第二X射线图像中的基本类似于所述第一图像特征的所述第二图像特征包括第二组多个图像点,并且其中匹配所述第一图像特征和所述第二图像特征包括计算所述第一图像特征与所述第二图像特征之间的相似性度量以及将所述第一组多个图像点与所述第二组多个图像点匹配于多个共轭图像点对中。 5. The method according to claim 1, wherein said first X-ray image of the first image features includes a first set of a plurality of image points, and the second X-ray image is substantially similar to that the second feature image of said first image features includes a second set of a plurality of image points, and wherein the matching of the first image and the second image feature comprises calculating the first feature and the second feature image similarity measure between the image features and the plurality of image points of the first group and a second group of the plurality of image points to match a plurality of points in a conjugate image.
  6. 6.根据权利要求5所述的方法,其中确定所述3D特征在所述成像区域中的位置包括将所述多个共轭图像点对映射到所述成像区域内的所述3D特征的多个特征点。 6. The method according to claim 5, wherein in determining the 3D position wherein said imaging region comprises a conjugate image of the plurality of points are mapped to the 3D features within the imaging region feature points.
  7. 7.根据权利要求1所述的方法,其中所述成像区域内的3D特征包括基准标记、曲边、拐角和端点中的一者。 7. The method according to claim 1, wherein the 3D imaging features within the region comprises a reference mark, curved edges, and corners of one end.
  8. 8. 一种用于图像引导放射治疗的系统,该系统包括:立体成像系统,该立体成像系统包括用于对成像区域内的3D特征进行成像的具有第一成像轴的第一成像设备和具有第二成像轴的第二成像设备,所述第二成像轴基本平行于所述第一成像轴;以及与所述立体成像系统相耦合的处理设备,其中所述处理设备被配置为确定所述3D特征在所述成像区域内的位置,其中为了对所述3D特征进行成像,所述立体成像系统被配置为生成所述成像区域的基本平行的X射线图像,所述基本平行的X射线图像包括第一X射线图像和第二X射线图像,所述第一X射线图像包括对应于所述成像区域内的3D特征的第一图像特征,所述第二X射线图像包括对应于所述成像区域内的所述3D特征的第二图像特征,其中所述第二图像特征基本类似于所述第一图像特征。 8. A system for image-guided radiation therapy, the system comprising: a stereoscopic imaging system, the imaging system comprises a first stereoscopic image forming apparatus having a first axis for 3D imaging features within the imaged area imaging and having a second imaging device of a second imaging axis, the second imaging axis substantially parallel to the first imaging axis; and a processing device coupled to the stereoscopic imaging system, wherein the processing device is configured to determine the in position within the imaging region 3D features, wherein for imaging the 3D feature, the stereoscopic imaging system is configured to generate substantially parallel to the X-ray image of the imaging region, substantially parallel to the X-ray image comprises a first X-ray image and the second X-ray image, the first X-ray image includes a feature corresponding to a first 3D image features within the imaging region, the second X-ray image corresponding to the image forming comprising wherein said second 3D image features within the region, wherein the second image characteristic substantially similar to the first image feature.
  9. 9.根据权利要求8所述的系统,其中所述处理设备还被配置为通过将所述3D特征与所述成像区域的3D预治疗区域扫描相配准来跟踪所述成像区域内的所述3D特征。 9. The system of claim 8, wherein the processing device is further configured by the 3D and 3D feature of the pre-treatment area scan imaging to track in registration area within the imaging region of the 3D feature.
  10. 10.根据权利要求8所述的系统,其中为了确定所述3D特征的位置,所述处理设备被配置为使所述第一图像特征与所述第二图像特征相匹配以获得一对匹配的图像特征,并由所述一对匹配的图像特征的平面坐标来确定所述3D特征在所述成像区域内的位置。 10. The system according to claim 8, wherein to determine the 3D position of the feature, the processing device is configured to cause the first image and the second image feature matches the feature to get a matched pair of wherein the image by the pair of image feature matching to determine the location coordinates of the plane of the 3D feature within the imaging region.
  11. 11.根据权利要求8所述的系统,其中所述第一X射线图像中的所述第一图像特征包括第一组多个图像点,而所述第二X射线图像中的基本类似于所述第一图像特征的所述第二图像特征包括第二组多个图像点,并且其中为了确定所述3D特征的位置,所述处理设备被配置为计算所述第一图像特征与所述第二图像特征之间的相似性度量,并将所述第一组多个图像点与所述第二组多个图像点匹配于多个共轭图像点对中。 11. The system of claim 8, wherein said first X-ray image of the first image features includes a first set of a plurality of image points, and the second X-ray image is substantially similar to that the second feature image of said first image features includes a second set of a plurality of image points, and wherein to determine the 3D position of a feature, the processing device is configured to calculate the first and the second image feature similarity measure between two feature images, and said first plurality of images of said plurality of image points with a second set of matching points in the plurality of the conjugate image point.
  12. 12.根据权利要求11所述的系统,其中为了确定所述3D特征在所述成像区域内的位置,所述处理设备被配置为将所述多个共轭图像点对映射到所述成像区域内的所述3D特征的多个特征点。 12. The system according to claim 11, wherein to determine the 3D position of the feature in the imaging region, the processing device is configured to convert the plurality of image points conjugated to the imaging area mapped wherein said plurality of feature points in the 3D.
  13. 13.根据权利要求10所述的系统,其中所述成像区域中的3D特征包括基准标记、曲边、 拐角和端点中的一者。 13. The system according to claim 10, wherein the imaging region includes a reference mark 3D features, curved edges, and corners of one end.
  14. 14. 一种用于图像引导放射治疗的系统,该系统包括:立体成像系统,该立体成像系统包括用于对成像区域内的3D特征进行成像的具有第一成像轴的第一成像设备和具有第二成像轴的第二成像设备,所述第二成像轴基本平行于所述第一成像轴;以及与所述立体成像系统相耦合的处理设备,其中所述处理设备被配置为确定所述3D特征在所述成像区域内的位置,其中所述3D特征包括多个特征点,并且其中为了生成基本平行的X射线图像,所述处理设备还被配置为对于每个特征点:通过从第一X射线源投射第一X射线穿过所述成像区域中的所述特征点而在成像平面中生成第一图像点,所述第一图像点在所述成像平面中具有第一对平面坐标,该第一对平面坐标由在第一方向上偏离成像轴的第一位移和在第二方向上偏离所述成像轴的第二位移所限定;以及通过从第二 14. A system for image-guided radiation therapy, the system comprising: a stereoscopic imaging system, which comprises a stereoscopic imaging system for imaging a first image forming apparatus having a first axis within the imaging characteristics of the 3D imaging region and having a second imaging device of a second imaging axis, the second imaging axis substantially parallel to the first imaging axis; and a processing device coupled to the stereoscopic imaging system, wherein the processing device is configured to determine the in position within the imaging region 3D features, wherein said features comprise a plurality of 3D feature points, and wherein the X-ray image to generate a substantially parallel, the processing device is further configured to, for each feature point: from by a first X-ray source projecting X-rays passing through the feature point of the imaging region to generate a first image point in the imaging plane, the first image having a first point on the imaging plane coordinate plane the first pair of coordinates defined by the plane offset from the first imaging axis is displaced in a first direction and in a second direction is offset from the second imaging axis displacement; and by the second X射线源投射第二X射线穿过所述成像区域中的所述特征点而在所述成像平面中生成第二图像点,所述第二图像点在所述成像平面中具有第二对平面坐标,该第二对平面坐标由在所述第一方向上偏离所述成像轴的第三位移和在所述第二方向上偏离所述成像轴的第四位移所限定,所述第一图像点和所述第二图像点构成了对应于所述特征点的共轭图像点对。 X-ray source projecting X-rays passing through the second feature points of the imaging region to generate a second image point in the imaging plane, the second plane having a second image point in the imaging plane coordinates of the second coordinate plane is offset from said third displacement departing from the imaging axis in the first direction and fourth in the second direction displacement of the imaging axis defined by the first image image point and the second point constitutes the conjugate image point corresponding to the feature point.
  15. 15.根据权利要求14所述的系统,其中所述第一 X射线和所述第二X射线在所述特征点处成小于四十五度的角。 15. The system according to claim 14, wherein said first X-ray and the X-ray at said second characteristic point to an angle of less than forty-five degrees.
CN 200780023456 2006-06-28 2007-05-30 Parallel stereovision geometry in image-guided radiosurgery CN101478918B (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US11478047 US7620144B2 (en) 2006-06-28 2006-06-28 Parallel stereovision geometry in image-guided radiosurgery
US11/478,047 2006-06-28
PCT/US2007/012824 WO2008002374A3 (en) 2006-06-28 2007-05-30 Parallel stereovision geometry in image-guided radiosurgery

Publications (2)

Publication Number Publication Date
CN101478918A true CN101478918A (en) 2009-07-08
CN101478918B true CN101478918B (en) 2011-07-27

Family

ID=38846155

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 200780023456 CN101478918B (en) 2006-06-28 2007-05-30 Parallel stereovision geometry in image-guided radiosurgery

Country Status (5)

Country Link
US (1) US7620144B2 (en)
EP (1) EP2032039B1 (en)
JP (1) JP5606065B2 (en)
CN (1) CN101478918B (en)
WO (1) WO2008002374A3 (en)

Families Citing this family (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4686128B2 (en) 2002-03-06 2011-05-18 トモセラピー インコーポレイテッドTomotherapy,Inc. System for delivering a control method and radiation therapy radiation delivery device
US7302033B2 (en) * 2005-06-29 2007-11-27 Accuray Incorporated Imaging geometry for image-guided radiosurgery
WO2007014106A3 (en) 2005-07-22 2008-01-03 John H Hughes System and method of delivering radiation therapy to a moving region of interest
KR20080039919A (en) * 2005-07-22 2008-05-07 토모테라피 인코포레이티드 System and method of detecting a breathing phase of a patient receiving radiation therapy
US8442287B2 (en) 2005-07-22 2013-05-14 Tomotherapy Incorporated Method and system for evaluating quality assurance criteria in delivery of a treatment plan
WO2007014090A3 (en) 2005-07-23 2007-11-01 Tomotherapy Inc Radiation therapy imaging and delivery utilizing coordinated motion of gantry and couch
US7962192B2 (en) * 2005-09-30 2011-06-14 Restoration Robotics, Inc. Systems and methods for aligning a tool with a desired location or object
US20070106307A1 (en) * 2005-09-30 2007-05-10 Restoration Robotics, Inc. Methods for implanting follicular units using an automated system
US20070078466A1 (en) * 2005-09-30 2007-04-05 Restoration Robotics, Inc. Methods for harvesting follicular units using an automated system
US7477782B2 (en) * 2006-08-25 2009-01-13 Restoration Robotics, Inc. System and method for classifying follicular units
US20080049993A1 (en) * 2006-08-25 2008-02-28 Restoration Robotics, Inc. System and method for counting follicular units
US7496174B2 (en) 2006-10-16 2009-02-24 Oraya Therapeutics, Inc. Portable orthovoltage radiotherapy
US7620147B2 (en) 2006-12-13 2009-11-17 Oraya Therapeutics, Inc. Orthovoltage radiotherapy
US7792249B2 (en) 2007-12-23 2010-09-07 Oraya Therapeutics, Inc. Methods and devices for detecting, controlling, and predicting radiation delivery
US7801271B2 (en) 2007-12-23 2010-09-21 Oraya Therapeutics, Inc. Methods and devices for orthovoltage ocular radiotherapy and treatment planning
US8363783B2 (en) 2007-06-04 2013-01-29 Oraya Therapeutics, Inc. Method and device for ocular alignment and coupling of ocular structures
EP2211749A4 (en) * 2007-04-16 2015-09-02 Neuroarm Surgical Ltd Methods, devices, and systems useful in registration
US20090088625A1 (en) * 2007-10-01 2009-04-02 Kenneth Oosting Photonic Based Non-Invasive Surgery System That Includes Automated Cell Control and Eradication Via Pre-Calculated Feed-Forward Control Plus Image Feedback Control For Targeted Energy Delivery
US8467497B2 (en) * 2007-10-25 2013-06-18 Tomotherapy Incorporated System and method for motion adaptive optimization for radiation therapy delivery
EP2214582A2 (en) 2007-10-25 2010-08-11 Tomotherapy Incorporated Method for adapting fractionation of a radiation therapy dose
WO2009055801A3 (en) * 2007-10-25 2009-08-20 Tomo Therapy Inc System and method for motion adaptive optimization for radiation therapy delivery
US8512236B2 (en) 2008-01-11 2013-08-20 Oraya Therapeutics, Inc. System and method for positioning and stabilizing an eye
WO2009111580A3 (en) * 2008-03-04 2009-12-03 Tomotherapy Incorporated Method and system for improved image segmentation
US8545517B2 (en) * 2008-06-06 2013-10-01 Restoration Robotics, Inc. Systems and methods for improving follicular unit harvesting
US8803910B2 (en) * 2008-08-28 2014-08-12 Tomotherapy Incorporated System and method of contouring a target area
CN102138155A (en) 2008-08-28 2011-07-27 断层放疗公司 System and method of calculating dose uncertainty
US8848974B2 (en) * 2008-09-29 2014-09-30 Restoration Robotics, Inc. Object-tracking systems and methods
US8147139B2 (en) * 2008-10-13 2012-04-03 George Papaioannou Dynamic biplane roentgen stereophotogrammetric analysis
WO2010102068A3 (en) * 2009-03-03 2011-01-13 Tomotherapy Incorporated System and method of optimizing a heterogeneous radiation dose to be delivered to a patient
JP4418888B1 (en) * 2009-03-25 2010-02-24 株式会社アキュセラ X-ray therapy devices
US20110019889A1 (en) * 2009-06-17 2011-01-27 David Thomas Gering System and method of applying anatomically-constrained deformation
DE102009040389A1 (en) * 2009-09-07 2011-03-17 Siemens Aktiengesellschaft Radiotherapy apparatus and method for monitoring an irradiation
WO2011053802A3 (en) 2009-10-30 2011-09-29 Tomotherapy Incorporated Non-voxel-based broad-beam (nvbb) algorithm for intensity modulated radiation therapy dose calculation and plan optimization
WO2012017427A1 (en) * 2010-08-04 2012-02-09 P-Cure Ltd. Teletherapy control system and method
US9498289B2 (en) 2010-12-21 2016-11-22 Restoration Robotics, Inc. Methods and systems for directing movement of a tool in hair transplantation procedures
US8911453B2 (en) 2010-12-21 2014-12-16 Restoration Robotics, Inc. Methods and systems for directing movement of a tool in hair transplantation procedures
US9266241B2 (en) * 2011-03-14 2016-02-23 Matthew E. Trompeter Robotic work object cell calibration system
DE102011006991B4 (en) * 2011-04-07 2018-04-05 Siemens Healthcare Gmbh X-ray methods and apparatus for assembling of X-rays and determining three-dimensional volume data
JP2012249960A (en) * 2011-06-06 2012-12-20 Toshiba Corp Medical image processor
US9188973B2 (en) 2011-07-08 2015-11-17 Restoration Robotics, Inc. Calibration and transformation of a camera system's coordinate system
US9314160B2 (en) * 2011-12-01 2016-04-19 Varian Medical Systems, Inc. Systems and methods for real-time target validation for image-guided radiation therapy
JP5916859B2 (en) * 2012-07-13 2016-05-11 三菱電機株式会社 X-ray locating device and the x-ray positioning method
WO2014166415A1 (en) * 2013-04-12 2014-10-16 重庆伟渡医疗设备股份有限公司 Image guidance method employing two-dimensional imaging
US9443633B2 (en) 2013-02-26 2016-09-13 Accuray Incorporated Electromagnetically actuated multi-leaf collimator
US9392965B2 (en) 2013-03-14 2016-07-19 Restoration Robotics, Inc. Method and apparatus for determining a change in tension of a body surface
US9408691B2 (en) 2013-03-14 2016-08-09 Restoration Robotics, Inc. Locator device for medical procedures on the body surface and method of its use
KR20150027881A (en) * 2013-08-29 2015-03-13 삼성전자주식회사 X-ray imaging apparatus and control method thereof
US9427286B2 (en) * 2013-09-24 2016-08-30 The Johns Hopkins University Method of image registration in a multi-source/single detector radiographic imaging system, and image acquisition apparatus
WO2015044058A1 (en) * 2013-09-26 2015-04-02 Koninklijke Philips N.V. Retrieving patient orientation from previous images
KR101485291B1 (en) * 2014-04-07 2015-01-21 재단법인대구경북과학기술원 Robot
KR101485292B1 (en) * 2014-04-07 2015-01-28 재단법인대구경북과학기술원 Robot

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5333107A (en) 1990-11-29 1994-07-26 Commissariat A L'energie Atomique Process and apparatus for the reconstruction of three-dimensional images of an object using two paths having a common axis
US5901199A (en) 1996-07-11 1999-05-04 The Board Of Trustees Of The Leland Stanford Junior University High-speed inter-modality image registration via iterative feature matching
CN1778275A (en) 2004-11-19 2006-05-31 吴大可 Self-control dynamic three-dimensional directional radiotherapy eutical system

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1240505A (en) * 1957-02-20 1960-09-09 stéréoradioscopie apparatus for a three-dimensional view of the body traversed by a ray emission
US4807163A (en) 1985-07-30 1989-02-21 Gibbons Robert D Method and apparatus for digital analysis of multiple component visible fields
US5078140A (en) 1986-05-08 1992-01-07 Kwoh Yik S Imaging device - aided robotic stereotaxis system
US4980971A (en) 1989-12-14 1991-01-01 At&T Bell Laboratories Method and apparatus for chip placement
US5230623A (en) 1991-12-10 1993-07-27 Radionics, Inc. Operating pointer with interactive computergraphics
US5427097A (en) * 1992-12-10 1995-06-27 Accuray, Inc. Apparatus for and method of carrying out stereotaxic radiosurgery and radiotherapy
JP4101951B2 (en) 1998-11-10 2008-06-18 オリンパス株式会社 Surgical microscope
JP3053389B1 (en) 1998-12-03 2000-06-19 三菱電機株式会社 Moving body tracking irradiation device
US6720988B1 (en) 1998-12-08 2004-04-13 Intuitive Surgical, Inc. Stereo imaging system and method for use in telerobotic systems
US6862364B1 (en) * 1999-10-27 2005-03-01 Canon Kabushiki Kaisha Stereo image processing for radiography
US6490475B1 (en) 2000-04-28 2002-12-03 Ge Medical Systems Global Technology Company, Llc Fluoroscopic tracking and visualization system
US20030016781A1 (en) * 2001-05-18 2003-01-23 Huang Wen C. Method and apparatus for quantitative stereo radiographic image analysis
JP3748531B2 (en) * 2001-10-11 2006-02-22 三菱電機株式会社 Radiation therapy device
US7085343B2 (en) * 2001-10-18 2006-08-01 Kabushiki Kaisha Toshiba X-ray computed tomography apparatus
US6917702B2 (en) 2002-04-24 2005-07-12 Mitsubishi Electric Research Labs, Inc. Calibration of multiple cameras for a turntable-based 3D scanner
US7204640B2 (en) * 2003-08-29 2007-04-17 Accuray, Inc. Apparatus and method for registering 2D radiographic images with images reconstructed from 3D scan data
JP2005168601A (en) * 2003-12-08 2005-06-30 Canon Inc Photographing apparatus and method
US7853308B2 (en) * 2004-02-17 2010-12-14 Siemens Medical Solutions Usa, Inc. System and method for patient positioning for radiotherapy in the presence of respiratory motion
US7158607B2 (en) * 2005-02-10 2007-01-02 Brookhaven Science Associates, Llc Methods for assisting recovery of damaged brain and spinal cord using arrays of X-ray microplanar beams
JP2006021046A (en) * 2005-07-05 2006-01-26 Mitsubishi Heavy Ind Ltd Radiotherapy apparatus
US20070078466A1 (en) 2005-09-30 2007-04-05 Restoration Robotics, Inc. Methods for harvesting follicular units using an automated system
US20070106307A1 (en) 2005-09-30 2007-05-10 Restoration Robotics, Inc. Methods for implanting follicular units using an automated system
US7962192B2 (en) 2005-09-30 2011-06-14 Restoration Robotics, Inc. Systems and methods for aligning a tool with a desired location or object
US7453984B2 (en) * 2006-01-19 2008-11-18 Carestream Health, Inc. Real-time target confirmation for radiation therapy
US9718190B2 (en) 2006-06-29 2017-08-01 Intuitive Surgical Operations, Inc. Tool position and identification indicator displayed in a boundary area of a computer display screen

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5333107A (en) 1990-11-29 1994-07-26 Commissariat A L'energie Atomique Process and apparatus for the reconstruction of three-dimensional images of an object using two paths having a common axis
US5901199A (en) 1996-07-11 1999-05-04 The Board Of Trustees Of The Leland Stanford Junior University High-speed inter-modality image registration via iterative feature matching
CN1778275A (en) 2004-11-19 2006-05-31 吴大可 Self-control dynamic three-dimensional directional radiotherapy eutical system

Also Published As

Publication number Publication date Type
EP2032039B1 (en) 2017-10-25 grant
JP2009542321A (en) 2009-12-03 application
US20080002809A1 (en) 2008-01-03 application
EP2032039A4 (en) 2012-11-28 application
JP5606065B2 (en) 2014-10-15 grant
CN101478918A (en) 2009-07-08 application
WO2008002374A2 (en) 2008-01-03 application
EP2032039A2 (en) 2009-03-11 application
US7620144B2 (en) 2009-11-17 grant
WO2008002374A3 (en) 2008-10-23 application

Similar Documents

Publication Publication Date Title
Shirato et al. Feasibility of insertion/implantation of 2.0-mm-diameter gold internal fiducial markers for precise setup and real-time tumor tracking in radiotherapy
Létourneau et al. Assessment of residual error for online cone-beam CT-guided treatment of prostate cancer patients
Jin et al. Use of the BrainLAB ExacTrac X-Ray 6D system in image-guided radiotherapy
Yan et al. A phantom study on the positioning accuracy of the Novalis Body system
US20060291710A1 (en) DRR generation and enhancement using a dedicated graphics device
Verellen et al. Quality assurance of a system for improved target localization and patient set-up that combines real-time infrared tracking and stereoscopic X-ray imaging
Wiersma et al. Combined kV and MV imaging for real‐time tracking of implanted fiducial markers
US20030225325A1 (en) Method and device for placing a patient repeatedly into the same relative position
US20060293583A1 (en) Method for automatic anatomy-specific treatment planning protocols based on historical integration of previously accepted plans
US7453984B2 (en) Real-time target confirmation for radiation therapy
US20070211857A1 (en) Radiotherapy device control apparatus and radiation irradiation method
US20050053267A1 (en) Systems and methods for tracking moving targets and monitoring object positions
US7693257B2 (en) Treatment delivery optimization
US20090304153A1 (en) Patient positioning imaging device and method
US20050053196A1 (en) Systems and methods for processing x-ray images
Bert et al. Clinical experience with a 3D surface patient setup system for alignment of partial-breast irradiation patients
US20020136439A1 (en) System and method for fusion-aligned reprojection of incomplete data
US7453983B2 (en) Radiation therapy method with target detection
US20070140413A1 (en) Respiration phantom for quality assurance
US20070230765A1 (en) Delineation on three-dimensional medical image
US6865253B2 (en) Method and device for accurately positioning a patient in radiotherapy and/or radiosurgery
Litzenberg et al. Daily prostate targeting using implanted radiopaque markers
US7453976B1 (en) Computerized tomography image reconstruction
US7623623B2 (en) Non-collocated imaging and treatment in image-guided radiation treatment systems
US8130907B2 (en) Controlling X-ray imaging based on target motion

Legal Events

Date Code Title Description
C06 Publication
C10 Entry into substantive examination
C14 Grant of patent or utility model