CN101458451A - 一种适用于飞秒激光双光子微纳加工系统的光路结构 - Google Patents

一种适用于飞秒激光双光子微纳加工系统的光路结构 Download PDF

Info

Publication number
CN101458451A
CN101458451A CNA2008102474079A CN200810247407A CN101458451A CN 101458451 A CN101458451 A CN 101458451A CN A2008102474079 A CNA2008102474079 A CN A2008102474079A CN 200810247407 A CN200810247407 A CN 200810247407A CN 101458451 A CN101458451 A CN 101458451A
Authority
CN
China
Prior art keywords
photon
laser
lens
light
mirco
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2008102474079A
Other languages
English (en)
Other versions
CN101458451B (zh
Inventor
魏鹏
冯丽爽
张春熹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beihang University
Original Assignee
Beihang University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beihang University filed Critical Beihang University
Priority to CN2008102474079A priority Critical patent/CN101458451B/zh
Publication of CN101458451A publication Critical patent/CN101458451A/zh
Application granted granted Critical
Publication of CN101458451B publication Critical patent/CN101458451B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Laser Beam Processing (AREA)

Abstract

本发明公开了一种适用于飞秒激光双光子微纳加工系统的光路结构,其由飞秒双光子激光器、光渐变衰减器、滤波凸透镜、针孔滤波器、截取光阑、准直透镜、孔径光阑、超分辨衍射器和油浸物镜组成,飞秒双光子激光器至光敏树脂之间以光轴线对中顺次布置有光渐变衰减器、滤波凸透镜、针孔滤波器、截取光阑、准直透镜、孔径光阑、超分辨衍射器、油浸物镜。超分辨衍射器安装在油浸物镜上。本发明光路结构通过超分辨衍射器件改变了飞秒激光在焦点局域空间内的功率分布,使得旁瓣的光强大于双光子聚合的功率阈值,实现双光子微纳加工中的多点加工。

Description

一种适用于飞秒激光双光子微纳加工系统的光路结构
技术领域
本发明涉及一种适用于多种光敏树脂材料三维微纳结构制备的飞秒激光双光子微纳加工系统,更特别地说,是指一种适用于飞秒激光双光子微纳加工系统的光路结构。
背景技术
双光子激光三维微加工是利用激光与加工材料之间非线性的相互作用来实现微纳加工的。其加工方式是海量光聚合单点的逐个累加,所有的结构都是通过一点点、一线线和一层层的双光子曝光形成的,这对于三维微结构的加工来说,就需要消耗大量的人力和物力。真三维是双光子激光三维微加工独有的特性,但这个特性同时也带来了一些副产品,那就是当进行三维微结构加工的时候,整个微结构都是由单个光聚合点逐个累加形成的,这样就需要海量的双光子聚合点,即使有自动化的加工装置,也需要花费大量的机器时间。
专利授权公告号CN 100392514C中公开了一种“并行飞秒激光双光子聚合微纳加工方法及其装置”。该装置由激光发生系统、外光路系统以及加工控制系统依次组成,其中激光发生系统由依次相连的泵蒲光源、飞秒激光器和再生放大器组成,外光路系统由依次相连的全反镜、衰减镜、光闸、光纤耦合器、光纤阵列和微透镜阵列组成,加工控制系统中盖玻片、三维扫描平台、光敏树脂、CCD依次相连,计算机控制系统经驱动器与三维扫描平台相连。
发明内容
为了改变双光子激光三维微加工效率较低的状况,以及光强在空间分布不均的缺陷,本发明提供一种适用于飞秒激光双光子微纳加工系统的光路结构,该光路结构将超分辨衍射理论引入到飞秒激光双光子微制造中。因为飞秒激光双光子微加工的加工方式受激光功率的强度与分布形态的影响非常大,所以在双光子激发与自由基聚合理论分析的基础上,对光敏树脂材料的聚焦面上和光轴线上的光场位置重新进行调整,使光场分布朝着有利于提高双光子激光三维微加工效率的方向进行调整。本发明光路结构通过超分辨衍射器件改变了飞秒激光在焦点局域空间内的功率分布,使得旁瓣的光强大于双光子聚合的功率阈值,实现双光子微纳加工中的多点加工。
本发明的适用于飞秒激光双光子微纳加工系统的光路结构,所述的光路结构由飞秒双光子激光器(1)、光渐变衰减器(2)、滤波凸透镜(3)、针孔滤波器(4)、截取光阑(5)、准直透镜(6)、孔径光阑(7)、超分辨衍射器(8)和油浸物镜(9)组成,飞秒双光子激光器(1)至光敏树脂(10)之间以光轴线对中顺次布置有光渐变衰减器(2)、滤波凸透镜(3)、针孔滤波器(4)、截取光阑(5)、准直透镜(6)、孔径光阑(7)、超分辨衍射器(8)、油浸物镜(9),超分辨衍射器(8)安装在油浸物镜(9)上。超分辨衍射器件(8)是在一基板(81)上采用二元光学加工方法加工出具有A凹槽(82)、B凹槽(83)的一光学器件;基板(81)的半径r4=1~5mm,A凹槽(82)的半径r1=0.2r4,A凹槽(82)与B凹槽(83)的壁厚r2=r1=0.2r4,B凹槽(83)的宽度r3=0.20~0.3r4
所述的适用于飞秒激光双光子微纳加工系统的光路结构,其特征在于:渐变衰减器(2)与飞秒双光子激光器(1)在中心轴线方向上相距d1=1~100mm;渐变衰减器(2)与滤波透镜(3)在中心轴线方向上相距d2=1~100mm;滤波透镜(3)与针孔滤波器(4)在中心轴线方向上相距d3=10~100mm;针孔滤波器(4)与截取光阑(5)在中心轴线方向上相距d4=10~100mm;截取光阑(5)与准直透镜(6)在中心轴线方向上相距d5=900~1200mm;准直透镜(6)与孔径光阑(7)在中心轴线方向上相距d6=10~100mm;孔径光阑(7)与超分辨衍射器件(8)在中心轴线方向上相距d7=10~100mm;物镜(9)与光刻胶(10)在中心轴线方向上相距d8=0.1~1mm。
本发明光路结构的优点在于:
(1)光渐变衰减器2与截取光阑5之间加入滤波凸透镜3和针孔滤波器4,目的是为了滤除杂波,使得飞秒激光器发出来的激光变得更加纯净。
(2)针孔滤波器4与准直透镜6之间加入截取光阑5能够截取激光束中最好的那一部分光强,同时也具有滤除杂波的功效。
(3)准直透镜6与超分辨衍射器件8之间加入孔径光阑7,该孔径光阑7能够将准直时候的光束滤去周围的光束质量不好的部分,保留光束质量良好的部分供飞秒激光加工使用。
(4)滤波凸透镜3、针孔滤波器4、截取光阑5和孔径光阑7的组合装配使得激光束变得更加纯净,因为即使采用的是飞秒激光器,其所发出的激光束中依然存在着杂波,尤其是光束的边缘部分,因此这样的组合可以提取出激光束中杂波最少的中心部分的光束,这对于飞秒加工的顺利进行是有益的。
(5)在油浸物镜9之前采用超分辨衍射器件8使得激光束在聚焦点位置的点扩散函数的分布情况发生变化,也使得最终的中央主瓣的光强更加锐化,与此同时,抬高旁瓣的光强使其大于双光子聚合反应的阈值,通过这样的措施,使得原本一次只能加工一个点的双光子飞秒加工系统可以一次加工多个点。
附图说明
图1是本发明光路结构的结构原理示图。
图2是本发明光路结构的光强空间分布与双光子聚合阈值关系示意图。
图3是本发明光路结构的中超分辨衍射器件的剖视图。
图4是本发明光路结构的相对位置关系示意图。
图中:1.飞秒双光子激光器     2.光渐变衰减器   3.滤波凸透镜4.针孔滤波器     5.截取光阑    6.准直透镜       7.孔径光阑8.超分辨衍射器   9.油浸物镜
具体实施方式
下面将结合附图对本发明做进一步的详细说明。
参见图1所示,本发明是一种适用于飞秒激光双光子微纳加工系统的光路结构,所述的光路结构由飞秒双光子激光器1、光渐变衰减器2、滤波凸透镜3、针孔滤波器4、截取光阑5、准直透镜6、孔径光阑7、超分辨衍射器8和油浸物镜9组成,飞秒双光子激光器1至光敏树脂10之间以光轴线对中顺次布置有光渐变衰减器2、滤波凸透镜3、针孔滤波器4、截取光阑5、准直透镜6、孔径光阑7、超分辨衍射器8、油浸物镜9。超分辨衍射器8安装在油浸物镜9上。
参见图3所示,超分辨衍射器件8是在一基板81上采用二元光学加工方法加工出具有A凹槽82、B凹槽83的一光学器件。在尺寸上,基板81的半径r4=1~5mm,A凹槽82的半径r1=0.2r4。A凹槽82与B凹槽83的壁厚r2=r1=0.2r4。B凹槽83的宽度r3=0.20~0.3r4
本发明光路结构的光传输方式为:
(A)从飞秒双光子激光器1出射的具有中心波长为740nm的激光经光渐变衰减器2后,光渐变衰减器2输出功率为50~90mW的中心波长为740nm的激光;
(B)功率为50~90mW的中心波长为740nm的激光经滤波凸透镜3后,输出具有中心波长为740nm的纯净激光;
(C)中心波长为740nm的纯净激光经针孔滤波器4的针孔出射出,经截取光阑5截取中间部分的中心波长为740nm的纯净激光照射到准直透镜6上;
(D)中心波长为740nm的纯净激光经准直透镜6后,转变为中心波长为740nm的平行光;
(E)中心波长为740nm的平行光经孔径光阑7后照射到超分辨衍射器8上;
(F)中心波长为740nm的平行光经超分辨衍射器8进行分辨衍射处理后出射出具有主瓣聚合点和旁瓣聚合点的激光输出;
(G)出射的具有主瓣聚合点和旁瓣聚合点的激光经油浸物镜9汇聚到光敏树脂10的中间部位进行三维微纳加工。
在本发明中,所述光传输(F)步骤的分辨衍射处理是通过降低中心波长为740nm的平行光在中心主瓣的光强,来提高旁瓣的光强,当旁瓣的光强大于使光敏树脂材料发生双光子聚合效应的时候,就会出现主瓣聚合点和旁瓣聚合点,从而使得飞秒激光双光子微纳加工系统能够实现多点加工。参见图2所示,图中,虚线代表在传统的双光子微纳加工系统的光路中激光焦点处的光强分布形态只有一个中央峰值区域超过了双光子光聚合反应的阈值(该阈值范围是1×103GW/cm2~3×103GW/cm2),而其余的旁瓣区域光强均被压制在光聚合阈值之下。实线表示采用本发明的光路结构中激光焦点处的旁瓣光强得到提升,超过双光子聚合阈值。
参见图4所示,渐变衰减器2与飞秒双光子激光器1在中心轴线方向上相距d1=1~100mm。渐变衰减器2与滤波透镜3在中心轴线方向上相距d2=1~100mm。滤波透镜3与针孔滤波器4在中心轴线方向上相距d3=10~100mm。针孔滤波器4与截取光阑5在中心轴线方向上相距d4=10~100mm。截取光阑5与准直透镜6在中心轴线方向上相距d5=900~1200mm。准直透镜6与孔径光阑7在中心轴线方向上相距d6=10~100mm。孔径光阑7与超分辨衍射器件8在中心轴线方向上相距d7=10~100mm。超分辨衍射器件8贴合在物镜9的表面上。物镜9与光刻胶10在中心轴线方向上相距d8=0.1~1mm。
在本发明中,渐变衰减器2采用工作波长为740nm的衰减器。滤波透镜3采用对工作波长为700nm~1000nm的激光具有光透过,对工作波长为400nm~700nm的激光具有光反射作用的透镜。针孔滤波器4的孔径为0.1mm~1mm。截取光阑5的孔径为5mm~20mm。准直透镜6的前端透镜φ16mm,后端透镜φ6mm。孔径光阑7的孔径为5mm~20mm。油浸物镜9的数值孔径NA=1.25(油浸)。
本发明飞秒激光双光子多点微纳加工装置在孔径光阑7与物镜9之间加入了超分辨衍射器件8,通过该超分辨衍射器件8来调整激光光强在焦点径向的零点分布和焦点轴向上的零点分布,从而调整激光焦点局域空间内功率的分布,并最终实现多点微纳加工。超分辨衍射器件8是由光刻胶经过湿法刻蚀得到的。因此超分辨衍射器件8加工用的材料是光刻胶。分辨衍射器件8通过降低激光在中心主瓣的光强,来提高旁瓣的光强,当旁瓣的光强大于使光聚合材料发生双光子聚合效应的时候,就会出现主瓣聚合点和旁瓣聚合点,从而使得飞秒激光双光子微纳加工的多点加工能够实现。
为了改变这种效率低下的单点加工方式,本发明拟通过在传统的双光子加工光路中增加超分辨衍射器件,并通过这个特殊设计的超分辨衍射器件来提升激光焦点处的旁瓣光强,使得旁瓣光强超过双光子聚合阈值。当这样的旁瓣个数到达两个或者三个的时候,就相当于一次曝光可以产生两个或者三个双光子聚合点。由此当待加工点总数一定的前提下,需要曝光的次数就可以大大地减少,从而提高双光子激光三维微加工系统的效率。而由超分辨衍射理论又可以知道,如果降低中央区域的光强,则旁瓣的光强就会增加,这样通过精心选择边界条件,是有可能实现多个加工点同时加工的加工方式的。
本发明的光路结构未采用光纤阵列和微透镜阵列,这种多点加工的双光子加工方式的成本更低,应用更灵活。
本发明的光路结构在飞秒双光子激光器1输出的激光经光渐变衰减器2进行功率渐变处理后输出低功率(50~90mW)的激光,低功率激光经滤波凸透镜3进行滤出杂波处理后输出具有中心波长为740nm的纯净激光,740nm的纯净激光汇聚于针孔滤波器4,740nm的纯净激光经针孔滤波器4的针孔出射后,在截取光阑5中被截取出中心部分激光经准直透镜6将激光变成平行光,平行光经孔径光阑7进行滤波处理后出射至超分辨衍射器件8中,超分辨衍射器件8对激光进行超分辨衍射经油浸物镜9将激光进行汇聚到光敏树脂10的中间进行加工。

Claims (10)

1、一种适用于飞秒激光双光子微纳加工系统的光路结构,其特征在于:所述的光路结构由飞秒双光子激光器(1)、光渐变衰减器(2)、滤波凸透镜(3)、针孔滤波器(4)、截取光阑(5)、准直透镜(6)、孔径光阑(7)、超分辨衍射器(8)和油浸物镜(9)组成,飞秒双光子激光器(1)至光敏树脂(10)之间以光轴线对中顺次布置有光渐变衰减器(2)、滤波凸透镜(3)、针孔滤波器(4)、截取光阑(5)、准直透镜(6)、孔径光阑(7)、超分辨衍射器(8)、油浸物镜(9),超分辨衍射器(8)安装在油浸物镜(9)上。
2、根据权利要求1所述的适用于飞秒激光双光子微纳加工系统的光路结构,其特征在于:超分辨衍射器件(8)是在一基板(81)上采用二元光学加工方法加工出具有A凹槽(82)、B凹槽(83)的一光学器件;基板(81)的半径r4=1~5mm,A凹槽(82)的半径r1=0.2r4,A凹槽(82)与B凹槽(83)的壁厚r2=r1=0.2r4,B凹槽(83)的宽度r3=0.20~0.3r4
3、根据权利要求1所述的适用于飞秒激光双光子微纳加工系统的光路结构,其特征在于:渐变衰减器(2)与飞秒双光子激光器(1)在中心轴线方向上相距d1=1~100mm;渐变衰减器(2)与滤波透镜(3)在中心轴线方向上相距d2=1~100mm;滤波透镜(3)与针孔滤波器(4)在中心轴线方向上相距d3=10~100mm;针孔滤波器(4)与截取光阑(5)在中心轴线方向上相距d4=10~100mm;截取光阑(5)与准直透镜(6)在中心轴线方向上相距d5=900~1200mm;准直透镜(6)与孔径光阑(7)在中心轴线方向上相距d6=10~100mm;孔径光阑(7)与超分辨衍射器件(8)在中心轴线方向上相距d7=10~100mm;物镜(9)与光刻胶(10)在中心轴线方向上相距d8=0.1~1mm。
4、根据权利要求1所述的适用于飞秒激光双光子微纳加工系统的光路结构,其特征在于:渐变衰减器(2)采用工作波长为740nm的衰减器。
5、根据权利要求1所述的适用于飞秒激光双光子微纳加工系统的光路结构,其特征在于:滤波透镜(3)采用对工作波长为700nm~1000nm的激光具有光透过,对工作波长为400nm~700nm的激光具有光反射作用的透镜。
6、根据权利要求1所述的适用于飞秒激光双光子微纳加工系统的光路结构,其特征在于:针孔滤波器(4)的孔径为0.1mm~1mm。
7、根据权利要求1所述的适用于飞秒激光双光子微纳加工系统的光路结构,其特征在于:截取光阑(5)的孔径为5mm~20mm。
8、根据权利要求1所述的适用于飞秒激光双光子微纳加工系统的光路结构,其特征在于:准直透镜(6)的前端透镜
Figure A200810247407C0003123422QIETU
16mm,后端透镜
Figure A200810247407C0003123422QIETU
6mm。
9、根据权利要求1所述的适用于飞秒激光双光子微纳加工系统的光路结构,其特征在于:孔径光阑(7)的孔径为5mm~20mm。
10、根据权利要求1所述的适用于飞秒激光双光子微纳加工系统的光路结构,其特征在于:油浸物镜(9)的数值孔径NA=1.25。
CN2008102474079A 2008-12-31 2008-12-31 一种适用于飞秒激光双光子微纳加工系统的光路结构 Expired - Fee Related CN101458451B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2008102474079A CN101458451B (zh) 2008-12-31 2008-12-31 一种适用于飞秒激光双光子微纳加工系统的光路结构

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2008102474079A CN101458451B (zh) 2008-12-31 2008-12-31 一种适用于飞秒激光双光子微纳加工系统的光路结构

Publications (2)

Publication Number Publication Date
CN101458451A true CN101458451A (zh) 2009-06-17
CN101458451B CN101458451B (zh) 2012-01-11

Family

ID=40769396

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2008102474079A Expired - Fee Related CN101458451B (zh) 2008-12-31 2008-12-31 一种适用于飞秒激光双光子微纳加工系统的光路结构

Country Status (1)

Country Link
CN (1) CN101458451B (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102000912A (zh) * 2010-09-21 2011-04-06 中国科学院理化技术研究所 一种激光微纳加工系统及方法
CN102320553A (zh) * 2011-07-04 2012-01-18 中国科学院理化技术研究所 利用激光双光子直写技术制作微纳结构器件的方法
WO2012037780A1 (zh) * 2010-09-21 2012-03-29 中国科学院理化技术研究所 激光微纳加工系统及方法
CN102637439A (zh) * 2012-05-07 2012-08-15 清华大学深圳研究生院 一种适用于三维双光子荧光存储的光路系统
CN104969128A (zh) * 2012-09-25 2015-10-07 萨基姆防务安全公司 使衍射能够受控的光刻照射设备
CN109283749A (zh) * 2018-11-22 2019-01-29 张家港康得新光电材料有限公司 一种配向膜制备方法
CN111624689A (zh) * 2020-06-15 2020-09-04 中国科学院福建物质结构研究所 一种光阑及其制备方法
CN112562882A (zh) * 2020-12-07 2021-03-26 中国原子能科学研究院 重离子微束辐照装置、系统及控制方法
CN113064329A (zh) * 2021-03-25 2021-07-02 上海大学 一种基于光纤端超透镜的笔光刻系统和制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2751785A1 (fr) * 1996-07-29 1998-01-30 Commissariat Energie Atomique Procede et dispositif de formation de motifs dans une couche de resine photosensible par insolation laser continue, application a la fabrication de sources d'electrons a cathodes emissives a micropointes et d'ecrans plats
CN100392514C (zh) * 2006-06-12 2008-06-04 江苏大学 并行飞秒激光双光子光聚合微纳加工方法及其装置

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102000912A (zh) * 2010-09-21 2011-04-06 中国科学院理化技术研究所 一种激光微纳加工系统及方法
US9636777B2 (en) 2010-09-21 2017-05-02 Technical Institute of Physics and Chemistry of the Chinese Academy of Sciences Laser micro/nano processing system and method
WO2012037780A1 (zh) * 2010-09-21 2012-03-29 中国科学院理化技术研究所 激光微纳加工系统及方法
US9187318B2 (en) 2010-09-21 2015-11-17 Technical Institute of Physics and Chemistry of the Chinese Academy of Sciences Laser micro/nano processing system and method
CN102000912B (zh) * 2010-09-21 2014-06-18 中国科学院理化技术研究所 一种激光微纳加工系统及方法
CN102320553B (zh) * 2011-07-04 2014-11-26 中国科学院理化技术研究所 利用激光双光子直写技术制作微纳结构器件的方法
CN102320553A (zh) * 2011-07-04 2012-01-18 中国科学院理化技术研究所 利用激光双光子直写技术制作微纳结构器件的方法
CN102637439B (zh) * 2012-05-07 2014-10-29 清华大学深圳研究生院 一种适用于三维双光子荧光存储的光路系统
CN102637439A (zh) * 2012-05-07 2012-08-15 清华大学深圳研究生院 一种适用于三维双光子荧光存储的光路系统
CN104969128A (zh) * 2012-09-25 2015-10-07 萨基姆防务安全公司 使衍射能够受控的光刻照射设备
CN109283749A (zh) * 2018-11-22 2019-01-29 张家港康得新光电材料有限公司 一种配向膜制备方法
CN111624689A (zh) * 2020-06-15 2020-09-04 中国科学院福建物质结构研究所 一种光阑及其制备方法
CN112562882A (zh) * 2020-12-07 2021-03-26 中国原子能科学研究院 重离子微束辐照装置、系统及控制方法
CN113064329A (zh) * 2021-03-25 2021-07-02 上海大学 一种基于光纤端超透镜的笔光刻系统和制备方法
CN113064329B (zh) * 2021-03-25 2022-04-26 上海大学 一种基于光纤端超透镜的笔光刻系统和制备方法

Also Published As

Publication number Publication date
CN101458451B (zh) 2012-01-11

Similar Documents

Publication Publication Date Title
CN101458451B (zh) 一种适用于飞秒激光双光子微纳加工系统的光路结构
CN101419337B (zh) 用于光斑三维压缩的超衍射相位调制片及其加工方法
TWI421537B (zh) Laser optics
CN111007587B (zh) 一种全介质、宽带偏振与相位调控超表面及远场超分辨聚焦器件
CN102759800B (zh) 飞秒激光增强化学刻蚀制备微透镜阵列光束整形器的方法
CN105750729A (zh) 具有柱面分布微柱面透镜线阵光学镜头的激光加工装置
CN103399406A (zh) 将高斯光束整形为平顶光束的衍射光学元件及制备方法
CN108680548B (zh) 一种全光纤型超分辨成像方法与装置
CA3033331A1 (en) Method and device for lithographically producing a target structure on a non-planar initial structure
CN110989085A (zh) 一种基于光纤的二元衍射透镜
CN100547440C (zh) 一种用于双光子微细加工的三维超分辨衍射光学器件及其设计方法
CN101788716B (zh) 一种激光扩束系统
CN101762879B (zh) 一种激光扩束系统
CN111025466A (zh) 一种基于光纤的多焦点衍射透镜
WO2022240720A1 (en) Methods and systems for metasurface-based nanofabrication
CN107643596A (zh) 一种二元波带片形式的衍射轴锥镜系统及其长焦深成像方法
CN104953465A (zh) 基于空间频谱分割处理的激光二极管阵列光束的匀化装置
CN101916045B (zh) 一种用于双偶极均匀照明的自由曲面透镜
CN101916044B (zh) 一种用于双四极均匀照明的自由曲面透镜
JP2022523598A (ja) 明るい縁または暗い縁を伴う均質強度分布を形成するための装置
CN102221727B (zh) 实现一次曝光的切趾装置及方法
CN1186674C (zh) 位相型长焦深超分辨光阑
CN200986618Y (zh) 一种无衍射光大景深成像光学系统
CN209945555U (zh) 基于柱面光栅的分光波导模块和集成光谱仪
CN107991781B (zh) 一种利用光谱合束消除光纤输出激光光斑不均匀性的方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20120111

Termination date: 20151231

EXPY Termination of patent right or utility model