CN101419242A - 离心泵临界转速的试验方法及其试验装置 - Google Patents

离心泵临界转速的试验方法及其试验装置 Download PDF

Info

Publication number
CN101419242A
CN101419242A CNA2008101073432A CN200810107343A CN101419242A CN 101419242 A CN101419242 A CN 101419242A CN A2008101073432 A CNA2008101073432 A CN A2008101073432A CN 200810107343 A CN200810107343 A CN 200810107343A CN 101419242 A CN101419242 A CN 101419242A
Authority
CN
China
Prior art keywords
centrifugal pump
test
pump
speed
vibration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2008101073432A
Other languages
English (en)
Other versions
CN101419242B (zh
Inventor
孙森森
沈水钦
夏益洪
池武
戴小锋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ZHEJIANG KE'ER PUMP SHARE CO Ltd
Original Assignee
ZHEJIANG KE'ER PUMP SHARE CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ZHEJIANG KE'ER PUMP SHARE CO Ltd filed Critical ZHEJIANG KE'ER PUMP SHARE CO Ltd
Priority to CN2008101073432A priority Critical patent/CN101419242B/zh
Publication of CN101419242A publication Critical patent/CN101419242A/zh
Application granted granted Critical
Publication of CN101419242B publication Critical patent/CN101419242B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

一种离心泵临界转速的试验方法,其选用一试验离心泵机组、供压泵机组、试验水池,在离心泵的壳体密封环处于某压力降、某结构形式或某间隙值的情况下,通过变频器对电机转速进行无级调节中,测得离心泵的振动速度值;当离心泵的转轴在某运行速度时,其振幅达到高峰值,则确定该实测转轴速度就是离心泵的干或湿临界转速。一种离心泵临界转速试验装置,其试验离心泵与试验泵电机、变频器相联,在离心泵的轴承体上装有振动传感器及振动检测仪,该离心泵的叶轮为实心圆盘;其供压泵的入口端与试验水池相联、供压泵的出口端与离心泵相联,离心泵与试验水池相联。本发明可直接通过观测离心泵的转速来测定其干、湿临界转速,既方便又准确,以确保泵运行的安全可靠性。

Description

离心泵临界转速的试验方法及其试验装置
技术领域
本发明涉及一种离心泵的临界转速的试验方法及其试验装置。
背景技术
任何轴系都具有其固有的振动频率。当转轴的运行转速等于转轴本身的固有频率时,轴系的运行会变得不稳定而产生强烈的振动(通常称这种振动为共振现象),从而导致设备零件的损坏,甚至致使设备产生故障而停机。当转轴的转速偏离转轴本身的固有频率时(一般为产生共振时的转速的±20%以外),轴系的运行则又会变为平稳。此产生共振时的转速称为轴的临界转速。计算轴的临界转速的目的就是为了验算已选定的泵轴的工作转速是否能避开转轴本身的固有频率,并在合理的转速范围内,以保证泵能安全可靠地运行。
目前,国内泵类产品的临界转速的计算方法,基本上采用传统方法(能量法:见下列公式1),即下文所谓的“干临界转速”(或称“空气临界转速”)计算法。这种方法对于输送介质是空气或气体的机械(例如压缩机和风机等)而言,其预测精度普遍可达95%以上。
采用能量法计算干临界转速nc,计算公式如下:
nc=299(1/y)0.5  (r/min) ......(1)
式(1)中,Y为转子最大静挠度(cm)。当试验泵的转子静挠度Y=0.056mm(实测值)时,则计算的干临界转速:nc=3996(r/min)。
然而,对于输送介质是液体的泵类产品而言,泵产品转轴的临界转速(即“湿临界转速”)的机理比输送气体的机械要复杂的多。显然,“干临界转速”的计算方法,应用在泵类产品上,则与实际情况不符合,只能起到估算的作用,只能仅供参考用,而对设计的实际意义并不大。
泵行业有关临界转速设计规范的不完善性是有目共睹的,但由于国内目前还没有研发出适合泵类产品临界转速的计算方法,更不能使其规范化,故只能采用技术本身成熟但并非适用的所谓的“干临界转速”理论,这是无奈之举。
在国外的一些泵业公司和研究单位(例如英国Wer泵业公司、美国B.J公司等)在20多年前已投入大量的人力和财力,研究出比较实用的所谓的“湿临界转速”的计算软件。但这个软件是不对外公开的技术秘密。
根据世界石化行业用泵的通用设计制造规范----美国石油学会标准API610《石油、重化学和天然气工业用离心泵》的规定,泵的成套范围应包括湿临界转速计算报告。为了适应石化工业的迅速发展,为了使国产的泵类产品的技术水平和设计规范与国际接轨,为了提升国内泵类产品技术档次,为了在设计上确保泵运行的安全可靠性,国内尽快研发湿临界转速分析计算方法显得非常必要。但是目前国内在这方面的计算工作仅仅开始起步。在以前,到底有哪些主要因素影响“湿临界转速”,影响程度如何,没有感性认识,缺乏试验依据。
发明内容
本发明的目的在于克服上述的不足,而提供一种通过试验的方式能得到离心泵的干临界转速值、湿临界转速值以及该两值的定量关系的离心泵临界转速的试验方法及其试验装置。
本发明的目的通过如下技术方案来实现:一种离心泵临界转速的试验方法是,首先选用一试验离心泵机组,由试验泵电机驱动试验离心泵运转,由变频器对试验泵电机进行无级调速,且该试验离心泵的叶轮为实心圆盘;再选用一供压泵机组,向试验离心泵的壳体密封环入口提供压力源,并选用振动传感器及配套的振动检测仪,对试验离心泵的振动值进行测量,再选用一试验水池通过供压泵而对试验离心泵进行不注水或者注水试验;然后,在试验离心泵的壳体密封环处于某一压力降、某一结构形式或某一间隙值的情况下,通过变频器对电机的转速进行无级调节的过程中,同时测得试验离心泵的振动速度值;当试验离心泵的转轴在某一运行速度时,试验离心泵的振幅达到高峰值,则确定该实测转轴速度就是试验离心泵的干临界转速或者湿临界转速。
一种为实施上述的离心泵临界转速的试验方法而采用的离心泵临界转速试验装置,包括试验离心泵、供压泵、试验水池,所述的试验离心泵与试验泵电机相联,试验泵电机又与变频器相联,在试验离心泵的轴承体上装有配套使用的振动传感器及振动检测仪,且该试验离心泵的叶轮为实心圆盘;所述的供压泵与供压泵电机相联,供压泵的入口端通过吸水管与试验水池相联、供压泵的出口端依次通过压力管一、调压阀、压力管二与所述的试验离心泵的进口端相联,试验离心泵的出口端通过排水管与试验水池相联;所述的试验离心泵的入口端处、出口端处分别装有入口压力表、出口压力表。
采用本发明后,可以直接通过观测试验离心泵的转速来测定试验离心泵的干、湿临界转速,既方便又准确,以确保泵运行的安全可靠性。从试验结果得知,试验离心泵的壳体密封环的磨损对湿临界转速的影响很大。当离心泵经过长时间运行后,壳体密封环的密封间隙扩大了,则泵的湿临界转速降低了;当湿临界转速降低到一定程度时,泵在运行中产生剧烈振动,并导致运行故障停机或损坏零件。为了确保泵产品的安全运行,提醒设计者和使用者应引起足够关注和重视。
附图说明
下面结合附图与实施方式对本发明作进一步的详细描述。
图1为本发明采用的试验离心泵的结构示意图。
图2为图1的侧视图。
图3为本发明采用的供压泵的结构示意图。
图4为本发明采用的离心泵临界转速试验装置的结构示意图。
图5为图4中的试验离心泵机组的K向视图。
图6为本发明采用的振动传感器、振动检测仪在试验离心泵的轴承体上安装的结构示意图。
图7为图1中选用的单间隙式壳体密封环的结构示意图。
图8为图1中选用的三间隙式壳体密封环的结构示意图。
图9为本发明的离心泵采用单间隙式壳体密封环时的压力降与干、湿临界转速的关系图表。
图10为本发明的离心泵采用单间隙式、三间隙式壳体密封环时的压力降与湿临界转速的关系图表。
图11为本发明的离心泵采用单间隙式、三间隙式壳体密封环时的不同密封间隙值与湿临界转速的关系图表。
具体实施方式
参照附图,本发明离心泵临界转速的试验方法是:首先选用一试验离心泵机组,由试验泵电机驱动试验离心泵运转,由变频器对试验泵电机进行无级调速,且该试验离心泵的叶轮为实心圆盘;再选用一供压泵机组,向试验离心泵的壳体密封环入口提供压力源,并选用振动传感器及配套的振动检测仪,对试验离心泵的振动值进行测量,再选用一试验水池,通过供压泵而对试验离心泵进行不注水或者注水试验;然后,在试验离心泵的壳体密封环处于某一压力降、某一结构形式或某一间隙值的情况下,通过变频器对电机的转速进行无级调节的过程中,同时测得试验离心泵的振动速度值;当试验离心泵的转轴在某一运行速度时,试验离心泵的振幅达到高峰值,则确定该实测转轴速度就是试验离心泵的干临界转速或者湿临界转速。
如图4、图5所示,一种为实施上述的离心泵临界转速的试验方法而采用的离心泵临界转速试验装置,包括试验离心泵40、供压泵54、试验水池49,所述的试验离心泵40通过联轴器47与试验泵电机41相联,试验泵电机41又与变频器46相联,在试验离心泵40的轴承体55(包括左、右轴承体)上装有配套使用的振动传感器42及振动检测仪45,且该试验离心泵40的叶轮6为实心圆盘;所述的供压泵54通过联轴器53与供压泵电机51相联,供压泵54的入口端通过吸水管32与试验水池49相联、供压泵54的出口端依次通过压力管—33、调压阀34、压力管二38与所述的试验离心泵40的进口端相联,试验离心泵40的出口端通过排水管35(排水管中可装有流量计37)与试验水池49相联;所述的试验离心泵40的入口端处、出口端处分别装有入口压力表43、出口压力表44。为了防止水倒流,在所述的调压阀34与压力管二38之间装有止回阀36。
其中,试验离心泵的设计选型:首先选用一台250DH176标准型泵作为试验离心泵基本结构,它是一台卧式单级双吸离心泵,其配套的试验泵电机的功率为315kW。然后对250DH176标准型泵改型为GX-250DH176试验离心泵,即将250DH176标准型泵的叶轮更换为大约相同质量的实心圆盘6(可称为模拟叶轮),而其它零件基本不变。但两泵的进出口流动方向相反,原250DH176泵的出口是GX-250DH176试验离心泵的入口端(进水口)17;原250DH176泵的进水口是GX-250DH176试验离心泵的出口端(出水口)16,此设计是为了能获得压力降的产生。
如图1、图2所示,改型后的试验离心泵的型号为GX-250DH176,其主要由转轴1、左滚动轴承部件2(包括左轴承体和左轴承等)、左机械密封部件3、左密封函体4、左壳体密封环5、模拟叶轮6、右壳体密封环7、泵壳体8、右密封函体9、右机械密封部件10和右滚动轴承部件11(包括右轴承体和右轴承等)等组成。如图2所示,试验离心泵是顶部进水口17(小口径)注入和顶部出水口16(大口径)流出。试验离心泵由试验泵电机直接驱动,试验泵电机则通过变频器进行变频调速,使本试验装置的调速能力在0~7000r/min之间。试验离心泵的工作转速为2980r/min。
供压泵的选型:为了改变经过试验离心泵的左、右壳体密封环的压力差(与运行速度无关),选用一台单独供压泵。此供压泵是一台PAF50-450B型卧式单级单吸标准型离心泵,出口最大工作压力为3MPa,配套的供压泵电机功率为90kW。如图3所示,供压泵主要由泵壳21、叶轮密封环22、壳体密封环23、叶轮24、机械密封25和轴承部件26零件组成。该泵为轴向端27(入口端)吸入,纵向端28(出口端)垂直向上排出。
试验水池是利用现有的水泵试验室的水池,试验水池容量为350立方米,深度为3米。供压泵的输出流量由其纵向端排出,通过管路注入试验离心泵的进水口17。这样,液体流动将在正常的方向通过左、右壳体密封环5、7泄漏出去,然后流出试验离心泵的出水口16,并经过管路回到试验水池。供压泵运行时,通过吸水管32从试验水池里吸入水,试验离心泵通过排水管35将壳体密封环排出的水回到水池中。为使上述两泵的吸、排水互不干扰,在试验水池49中、吸水管32与排水管35之间设一隔离栅50。
所述的试验离心泵40、联轴器47、试验泵电机41、变频器46、振动传感器42、振动检测仪45等构成为试验离心泵机组而安装在试验泵底座48上,所述的供压泵54、联轴器53、供压泵电机51等构成为供压泵机组而安装在供压泵底座52上。
试验离心泵的振动测量方法是:试验离心泵的振动值由安装在其左、右轴承体上的振动传感器(在线振动探头)测得。如图6所示,振动传感器与振动检测仪配套使用,泵的振动值可在振动检测仪的盘面上读得。振动传感器选用ST系列,在所述的试验离心泵41的左、右两轴承体55上各安装互成90°的两只振动传感器42。
泵上最普遍的振动问题,大多数都发生在泵轴上,而且轴振动大部分被传到轴承体上,在这种情况下,测量轴承体的振动,对于泵的综合工况,可以提供有意义的信息(注:振动数据应换算为在每一运转速度的频谱。所讨论的所有试验数据,都是瞬时转动频率下得到的。这里所指的临界转速均指常见的第一阶临界转速)。
试验离心泵的壳体密封环间隙的压力降(即压力差)的建立方法是:图1中的壳体密封环间隙的进口压力12和13由图4中的供压泵54提供(该压力P1由入口压力表43测得),并通过调节阀34进行调节压力;图1中的壳体密封环间隙的出口压力14和15由安装在排水管上的出口压力表44测得为P2。由此可计算出经过壳体密封环的压力降(压力差)ΔP=P1-P2。供压泵的出口压力为0.5~3.0MPa。
如图7、图8所示,试验选用三个密封间隙值、两种密封结构形式(单间隙式、三间隙式)的壳体密封环,分别在相同的压力降或者不同的压力降下进行试验。
测试试验离心泵的干临界转速的试验方法是:在试验离心泵中不注入水,并且去除其左、右壳体密封环5、7时,做上述方法的试验,测量振动曲线,确定试验离心泵的振动峰值和干临界转速。去除壳体密封环的原因是:由于此时壳体密封环间隙中是空气,没有水的润滑作用而壳体密封环容易磨损。另外,此去除方法对于测试试验离心泵干临界转速与壳体密封环间隙的因素无关(从动力学原理角度看)。
在试验离心泵中没有注入水的试验而得到的干临界转速数值为3950r/min,这与技术成熟理论计算出的干临界转速数值(3996r/min)很接近(见图9)。这证明了本试验装置实测值是符合实际情况的,或可以这样认为,此干临界转速理论计算方法是值得信赖的。
测试试验离心泵的湿临界转速的试验方法:在试验离心泵中注入水,在相同压力降或者不同压力降的情况下,采用单间隙式、三间隙式等两种不同形式的壳体密封环结构,再分别测量振动曲线,确定试验泵的振动峰值和湿临界转速。如图7和图8所示,在试验离心泵中注入水时,通过改变单间隙式壳体密封环的径向间隙L1(半径方向),通过改变三间隙式壳体密封环的径向间隙L2、L3、L4(半径方向),使得产生不同的压力降,再分别测量振动曲线,确定试验泵的振动峰值和湿临界转速。本试验选用0.4mm、0.6mm、0.8mm等三种密封间隙值(直径方向),其中0.4mm为设计间隙,0.6mm和0.8mm可视为长期运行磨损后的间隙。
如图9所示,纵坐标09-1为第一临界转速(r/min),横坐标09-2为压力降(MPa)。水平虚直线“————”为单间隙式壳体密封环结构在空气中的干临界转速的计算值;带圆圈的曲线“——○——”为单间隙式壳体密封环结构在水介质中的湿临界转速实测值。
如图10所示,纵坐标10-1为第一临界转速(r/min),横坐标10-2为压力降(MPa)。带正方的曲线“——□——”为单间隙式壳体密封环结构在水介质中的湿临界转速实测值;带星形的曲线“——☆——”为三间隙式壳体密封环结构在水介质中的湿临界转速实测值。
如图11所示,纵坐标11-1为第一临界转速(r/min),横坐标11-2为密封环直径方向间隙(mm)。带菱形的曲线“——◇——”为单间隙式壳体密封环结构在水介质中的湿临界转速实测值;带叉形的曲线“——×——”为三间隙式壳体密封环结构在水介质中的湿临界转速实测值。
在试验离心泵中注有水的试验得到的临界转速数值与以前传统的技术成熟的计算干临界转速公式(能量法)计算出来的数值相差很大。此动力特性主要与壳体密封环的径向间隙的几何形状和大小密切相关(见图10和图11),与压力降密切相关(见图9和图10)。
在本试验装置上比较了三种试验间隙(0.4mm、0.6mm和0.8mm)的结果表明,在任何压力差ΔP下,对于单间隙式壳体密封环而言,湿临界转速是最高的。另外,间隙值越大,湿临界转速越低(见图11)。
该试验泵的壳体密封环规定的设计名义间隙(直径方向)为0.4mm,在额定工况时的压力降为1.75MPa,试验结果得出了湿临界转速为干临界转速的1.6倍的定量关系。这个结果对一般的单级和两级水泵转子的动力学设计是很有直接应用价值的,因为干临界转速可以计算出来,则该类泵的湿临界转速就可以近似的计算出来了。
但是,多级泵转轴的湿动力特性更加复杂,针对不同的级数、不同的结构和尺寸,不同的用途和不同的设计规范,针对平衡鼓/套和导叶套等处起强烈地、占支配作用间隙动力特性,其湿临界转速均有很大的不同。但从定性角度看,本试验方法及装置的设计和配置,对今后进一步开展测试多级泵湿临界转速工作打下了理论和实践依据,具有举一反三的指导作用。

Claims (6)

1、一种离心泵临界转速的试验方法,其特征在于:首先选用一试验离心泵机组,由试验泵电机驱动试验离心泵运转,由变频器对试验泵电机进行无级调速,且该试验离心泵的叶轮为实心圆盘;再选用一供压泵机组,向试验离心泵的壳体密封环入口提供压力源,并选用振动传感器及配套的振动检测仪,对试验离心泵的振动值进行测量,再选用一试验水池通过供压泵而对试验离心泵进行不注水或者注水试验;然后,在试验离心泵的壳体密封环处于某一压力降、某一结构形式或某一间隙值的情况下,通过变频器对电机的转速进行无级调节的过程中,同时测得试验离心泵的振动速度值;当试验离心泵的转轴在某一运行速度时,试验离心泵的振幅达到高峰值,则确定该实测转轴速度就是试验离心泵的干临界转速或者湿临界转速。
2、如权利要求1所述的离心泵临界转速的试验方法,其特征在于:在试验离心泵中不注入水,并且去除其左、右壳体密封环时,做上述方法的试验,测量振动曲线,确定试验离心泵的振动峰值和干临界转速。
3、如权利要求1所述的离心泵临界转速的试验方法,其特征在于:在试验离心泵中注入水,在相同压力降或者不同压力降的情况下,采用单间隙式、三间隙式等两种不同形式的壳体密封环结构,再分别测量振动曲线,确定试验泵的振动峰值和湿临界转速。
4、如权利要求1或3所述的离心泵临界转速的试验方法,其特征在于:在试验离心泵中注入水时,通过改变单间隙式壳体密封环的径向间隙(L1);通过改变三间隙式壳体密封环的径向间隙(L2、L3、L4),使得产生不同的压力降,再分别测量振动曲线,确定试验泵的振动峰值和湿临界转速。
5、一种为实施权利要求1所述的离心泵临界转速的试验方法而采用的离心泵临界转速试验装置,包括试验离心泵(40)、供压泵(54)、试验水池(49),其特征在于:所述的试验离心泵(40)与试验泵电机(41)相联,试验泵电机(41)又与变频器(46)相联,在试验离心泵(40)的轴承体(55)上装有配套使用的振动传感器(42)及振动检测仪(45),且该试验离心泵(40)的叶轮(6)为实心圆盘;所述的供压泵(54)与供压泵电机(51)相联,供压泵(54)的入口端通过吸水管(32)与试验水池(49)相联、供压泵(54)的出口端依次通过压力管一(33)、调压阀(34)、压力管二(38)与所述的试验离心泵(40)的进口端相联,试验离心泵(40)的出口端通过排水管(35)与试验水池(49)相联;所述的试验离心泵(40)的入口端处、出口端处分别装有入口压力表(43)、出口压力表(44)。
6、如权利要求5所述的离心泵临界转速试验装置,其特征在于:在所述的调压阀(34)与压力管二(38)之间装有止回阀(36)。
CN2008101073432A 2008-11-05 2008-11-05 离心泵临界转速的试验方法及其试验装置 Active CN101419242B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2008101073432A CN101419242B (zh) 2008-11-05 2008-11-05 离心泵临界转速的试验方法及其试验装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2008101073432A CN101419242B (zh) 2008-11-05 2008-11-05 离心泵临界转速的试验方法及其试验装置

Publications (2)

Publication Number Publication Date
CN101419242A true CN101419242A (zh) 2009-04-29
CN101419242B CN101419242B (zh) 2010-08-11

Family

ID=40630131

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2008101073432A Active CN101419242B (zh) 2008-11-05 2008-11-05 离心泵临界转速的试验方法及其试验装置

Country Status (1)

Country Link
CN (1) CN101419242B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101846086A (zh) * 2010-06-03 2010-09-29 浙江大学 一种用于离心泵的流体测试实验装置
CN101649830B (zh) * 2009-08-25 2011-04-27 浙江大学 离心泵极端工况瞬态性能试验系统
CN102901650A (zh) * 2012-10-16 2013-01-30 武汉船用机械有限责任公司 一种货油系统的测试装置和方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101649830B (zh) * 2009-08-25 2011-04-27 浙江大学 离心泵极端工况瞬态性能试验系统
CN101846086A (zh) * 2010-06-03 2010-09-29 浙江大学 一种用于离心泵的流体测试实验装置
CN102901650A (zh) * 2012-10-16 2013-01-30 武汉船用机械有限责任公司 一种货油系统的测试装置和方法
CN102901650B (zh) * 2012-10-16 2015-12-09 武汉船用机械有限责任公司 一种货油系统的测试装置和方法

Also Published As

Publication number Publication date
CN101419242B (zh) 2010-08-11

Similar Documents

Publication Publication Date Title
Albraik et al. Diagnosis of centrifugal pump faults using vibration methods
Sun et al. Cyclic spectral analysis of vibration signals for centrifugal pump fault characterization
CN103511396B (zh) 基于功率回收技术的液压泵及液压马达可靠性试验装置
Zhang et al. Vibration characteristics induced by cavitation in a centrifugal pump with slope volute
Birajdar et al. Vibration and noise in centrifugal pumps-Sources and diagnosis methods
Ransom et al. Mechanical Performance of a Two Stage Centrifugal Compressor Under Wet Gas Conditions
CN102937104A (zh) 一种透平压缩机测试系统
CN101419242B (zh) 离心泵临界转速的试验方法及其试验装置
Hodkiewicz et al. The effect of change in flow rate on the vibration of double-suction centrifugal pumps
CN102749195B (zh) 一种带气体密封的高速水轴承性能试验装置
CN201311426Y (zh) 离心泵临界转速试验装置
CN202381406U (zh) 屏蔽泵轴向力平衡装置
Rhakasywi et al. Safety factor of pump vibrations on ships based on the natural frequency of pump vibrations according to ISO 10816-3
Ganeriwala et al. Using vibration signatures analysis to detect cavitation in centrifugal pumps
CN103541890A (zh) 自吸泵
CN107831330A (zh) 离心泵临界转速试验装置
Budris et al. Effects of entrained air, NPSH margin, and suction piping on cavitation in centrifugal pumps
CN206593827U (zh) 扇叶耐受流体压力强度之测试系统
CN112696362A (zh) 清水设计工况下基于压力脉动疏浚泥泵汽蚀性能测量系统
CN111059065A (zh) 一种海水淡化泵能量回收一体机动态性能测试装置
Eaton et al. Monitoring the best operating point of centrifugal pumps using blade passing vibration signals
Dhanasekaran et al. Study of stage-wise pressure pulsation in an electric submersible pump under variable frequency operation at shut-off condition
CN219865727U (zh) 一种用于离心泵性能测试的液压系统
Daraz et al. Impeller wear diagnosis in centrifugal pumps under different flow rate based on acoustic signal analysis
Daraz et al. Modulation signal bispectrum analysis of acoustic signals for the impeller wear detection of centrifugal pumps

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
PE01 Entry into force of the registration of the contract for pledge of patent right
PE01 Entry into force of the registration of the contract for pledge of patent right

Denomination of invention: Test Method and Apparatus for Critical Speed of Centrifugal Pumps

Effective date of registration: 20220927

Granted publication date: 20100811

Pledgee: Industrial Bank Co.,Ltd. Wenzhou Ruian sub branch

Pledgor: ZHEJIANG KEER PUMP STOCK Co.,Ltd.

Registration number: Y2022330002392