CN101389148A - 射频光纤传输系统的上、下行链路结构及为上行链路提供光载波方法 - Google Patents

射频光纤传输系统的上、下行链路结构及为上行链路提供光载波方法 Download PDF

Info

Publication number
CN101389148A
CN101389148A CNA2008102019079A CN200810201907A CN101389148A CN 101389148 A CN101389148 A CN 101389148A CN A2008102019079 A CNA2008102019079 A CN A2008102019079A CN 200810201907 A CN200810201907 A CN 200810201907A CN 101389148 A CN101389148 A CN 101389148A
Authority
CN
China
Prior art keywords
optical
light
radio frequency
frequency
carrier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2008102019079A
Other languages
English (en)
Other versions
CN101389148B (zh
Inventor
陈昊硕
林如俭
叶家俊
朱渝林
张冬
张旭园
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Shanghai for Science and Technology
Original Assignee
University of Shanghai for Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Shanghai for Science and Technology filed Critical University of Shanghai for Science and Technology
Priority to CN2008102019079A priority Critical patent/CN101389148B/zh
Publication of CN101389148A publication Critical patent/CN101389148A/zh
Application granted granted Critical
Publication of CN101389148B publication Critical patent/CN101389148B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Optical Communication System (AREA)

Abstract

本发明涉及一种射频光纤传输系统的上、下行链路结构,及其为上行链路提供光载波方法。在此提出一种射频光纤传输系统的上、下行链路结构,在下行链路结构中设有一个光载波滤波器。在中心站中通过马赫-贞德尔调制器产生带有光载波的双边带信号,利用光载波滤波器对其光载波进行抑制,从而提高信号的调制度。同时利用SBS产生的低于输入光载波频率11GHz的光信号为上行链路提供光载波。本发明的结构简单,易于实现,性能稳定,成本低廉,适于应用和推广。

Description

射频光纤传输系统的上、下行链路结构及为上行链路提供光载波方法
技术领域
本发明涉及射频光纤传输系统的上、下行链路结构、一种中心波长和载波波长自动匹配的光载波滤波器和利用受激布里渊散射(SBS)为上行链路提供光载波的方法。在此提出一种新的射频光纤传输系统的上、下行链路结构,在中心站中通过马赫-贞德尔调制器产生带有光载波的双边带信号,利用权利要求3所述的光载波滤波器对其光载波进行抑制,从而提高信号的调制度。同时利用SBS产生的低于输入光载波频率11GHz的光信号为上行链路提供光载波。
背景技术
RoF(Radio over Fiber)是当今世界的研究热点之一。RoF是光纤射频通信或射频光纤链路的简称,它涉及了固定无线通信(无线接入网和无线局域网)和移动无线通信。在学术上RoF属于副载波复用光纤通信技术,是把携带信息的射频调制到光波上进行传输,因此是典型的射频与光波结合的技术,它涉及用光波方法产生射频,用射频调制光波,通过光纤传输已调光波,把射频从光波上解调下来等一系列变换。其中,在下行链路中如何产生携带有调制信息的射频是一个研究重点,同时也是研究的难点,到目前为止,国际上已经有了多种方案,主要有以下几种:
1)光自外差技术
一般使用锁模激光二极管产生几个相干的波长,经波导阵列光栅,取出其中两个频差为所需射频频率的光波。一个光波被数据调制,与另一个一起经光纤传输到达基站,在光探测器上差拍出已调射频信号。
2)外调制技术
外调制技术方案是在中心站中生成已调射频并把它再调制到光波上。其主要问题是光纤色散问题。由于已调光波的上下边带相距较远,受到的光纤延迟不同,两个边带电场沿着光纤会发生局部的相消干涉从而出现光波强度的衰落现象,导致光探测器转化出的射频幅度减小。
3)光学上/下变频技术
考虑到中频信号(1~3GHz)在光纤中传输时,光纤色散的影响可以忽略,有人提出在中心站中只产生和接收频率较低的中频信号(1~3GHz)。这样,在RoF系统的光纤中光波只携带中频信号,但在基站中就必须进行中频到射频的变换和逆变换。电域的上/下变频需要射频振荡器和射频混频器,这些都会增加基站的成本。
各种技术都有自己的应用场合和优点,但大多系统复杂,成本高,难以推广。
发明内容
本发明的目的在于解决现有射频光纤传输系统下行链路结构复杂,成本高的问题,提出一种射频光纤传输系统上、下行链路结构及为上行链路提供光载波方法。该方案结构简单,易于实现,性能稳定,成本低廉,适于应用和推广。
为达到上述目的,本发明采用下述技术方案:
1.一种射频光纤传输系统的下行链路结构
下行结构中,一个激光器1-1和一个偏振控制器1-2通过尾纤相连,所述的偏振控制器1-2通过光纤与一个马赫-贞德尔调制器1-3的输入端相连。射频本振1-13和数字基带信号1-16分别输入到调制器1-5,调制器1-5输出到马赫-贞德尔调制器1-3的射频输入端,直流电压1-4从马赫-贞德尔调制器1-3的电输入端输入,马赫-贞德尔调制器1-3的输出端同一个光载波滤波器进口相连,所述光载波滤波器的两路输出到光合波器(1-17)的两个输入口。光合波器(1-17)通过光纤(3)连接到基站(2)中光环形器(2-1)的1号口。在所述的基站2中,光环形器2-1的2号口连接光栅2-2,3号口连接到F-P激光器2-11。光栅2-2连接光探测器2-3。光探测器2-3的电输出端与一个带通滤波器2-4的输入端相连,带通滤波器2-4的输出与一个射频放大器2-5的输入端连接,射频放大器2-5的输出端与一个射频发射天线2-6相连。如图1所示。
2.一种射频光纤传输系统的上行链路结构
与上述下行链路结构相连应用,上行结构为,在基站2中,射频接收天线2-7同带通滤波器2-8相连,带通滤波器2-8输出到驱动器2-10,通过驱动器2-10驱动F-P激光器2-11。下行链路中的光环形器2-1的3号口输出低于输入光载波频率11GHz的光信号,注入到F-P激光器2-11并锁定,使F-P激光器2-11输出单模光信号。F-P激光器2-11的输出口通过光纤4连接到中心站1的光探测器1-10。在所述的中心站1中,光探测器1-10连接射频放大器1-11,射频放大器1-11通过乘法器1-12同射频本振1-13连接。乘法器1-12的输出口输出信号到解调器1-14,解调器输出解调的数字基带信号1-15。如图1所示。
3.一种中心波长和载波波长自动匹配的光载波滤波器
上述的光载波滤波器包括光环型器1-6、光子晶体光纤1-7、可变光滤波器1-8和3dB光耦合器1-9。环形器1-6的2号端口连接光子晶体光纤1-7,3号端口连接可变光衰减器1-8,光子晶体光纤1-7和可变光衰减器1-8通过一个3dB光耦合器1-9相连。如图1所示。
图1中,马赫-贞德尔调制器1-3的输出光波电场表示为:
E ( t ) = E c cos [ d · π 2 + m · π 2 cos ( ω m t + φ ) ] · cos ω c t - - - ( 1 )
其中,Ec为输入光波电场振幅, d = V b V π , Vb为直流偏置电压, m = V m V π , Vm为调制电压振幅,ωc为光波角频率,ωm为调制信号角频率,φ为由数字基带信号1-16驱动调制器1-5产生的相位变化,φ为0代表数字信号0,φ为π代表数字信号1。
将上式展开成贝塞尔函数为:
E ( t ) = E c J 0 ( m π 2 ) cos ( d π 2 ) cos ( ω c t )
- E c J 1 ( m π 2 ) sin ( d π 2 ) { cos [ ( ω c - ω m ) t - φ ] + cos [ ( ω c + ω m ) t + φ ] } - - - ( 2 )
- E c J 2 ( m π 2 ) sin ( d π 2 ) { cos [ ( ω c - 2 ω m ) t - 2 φ ] + cos [ ( ω c + 2 ω m ) t + 2 φ ] } + . . .
d = V b V π = 1 2 且m较小时,可忽略高次项,(2)式变为:
E ( t ) = E c 2 J 0 ( m π 2 ) cos ω c t - E c 2 J 1 ( m π 2 ) { cos [ ( ω c - ω m ) t - φ ] + cos [ ( ω c + ω m ) t + φ ] } - - - ( 3 )
这时调制的效果是产生了不抑制载波的双边带信号,每个边带为携带有数字基带信息的DPSK信号。不抑制载波的双边带信号的调制度为:
M a = J 1 ( m π 2 ) J 0 ( m π 2 ) - - - ( 4 )
通过(4)式计算可知,一般情况下,调制度Ma只有15%~30%,调制度较小。因此,调制后的微波光子信号的光载波功率相对较大,这就造成了直流分量很大,而其携带信息的边带功率很小。在接收端,光电探测器输出的RF信号就过小,而如果进行光放大,直流分量也得到放大,这会使光电探测器进行饱和区,带来非线性等现象,过大的光功率甚至有可能烧坏探测器。
在SBS过程中,当频率为vp的泵浦光源射入长度为L的光纤后,会产生声波光栅,声波光栅产生同输入的泵浦光反向的,比泵浦光频率小一个声波频率vb的斯托克斯波。如果一个频率为的vp-vb窄带种子光从同泵浦反向的光纤另一端输入,种子光和泵浦光的相互作用会很大地增加声波光栅,使更多的泵浦光的能量转移到种子光,从而提高种子光的能量,相应的,泵浦光的能量减少了。由于反向光波能量的增加可以很大程度上减小产生SBS所需要的泵浦光功率,所以布里渊的门限值可以得到降低。
本光载波滤波器中光纤环把斯托克斯波作为种子光,反方向注入到光纤中,同正向输入泵浦光发生相互作用,从而降低布里渊的门限值。由于受激布里渊散射本身的特性,光载波滤波器的中心波长可以和需要抑制的光载波自动匹配。
本光载波滤波器使用了PCF光纤作为产生SBS的非线性媒介。
长度为L的光纤产生SBS的门限值光功率为:
P th = 21 1 g B A eff L eff Δ v B + Δ v p Δ v B - - - ( 1 )
其中,ΔvB为布里渊线宽,Δvp为泵浦光谱宽。Leff为光纤有效长度,Leff=[1-exp(-αL)]/α,α为光纤衰减系数。
一般情况下,ΔvB>>Δvp,且忽略偏振的随机性,则SBS的门限值光功率可表示为:
P th = 21 1 g B A eff L ef - - - ( 2 )
若使用常规光纤,光纤各参数分别为α=14.5dB/km,L=5000m,gB=2.25x10-11,则Pth-noloop=18mW。在使用光纤环的情况下,SBS的门限值Pth-loop=1.3mW。可见,在没有形成和形成环路的两种情况下,门限值相差很大。在没有形成环路的情况下,门限值较大,若要产生SBS,就要求光载波的功率大于18mW,需对光信号进行放大。在形成环路的情况下,门限值较小,两个边带的光信号很容易达到门限值,从而产生SBS。在本发明使用了光子晶体光纤(PCF),其参数分别为α=14.5dB/km,L=400m,gB=2.25x10-11,在形成环路的情况下,Pth-loop=8mW,很容易满足光载波功率大于SBS门限值,而两边带功率小于SBS门限值的要求。并且光纤的长度可以大为缩短。
4.一种为上行链路提供光载波的方法
用于上述的射频光纤传输系统的上行链路为其提供光载波。利用上述的光载波滤波器,由于SBS产生的低于输入光载波频率11GHz的光信号。通过基站2中的光环形器2-1和光栅2-2的反射,提取该光信号注入锁定F-P激光器2-11,为上行链路提供光载波。
F-P激光器一般为多模输出。但对F-P激光器输入窄带信号时,可以使其单模输出。这时,离输入窄带信号波峰最近的模式会被输入信号锁定,其余的模式则受到压缩。F-P激光器的模式间隔一般为0.6nm,当F-P激光器的模式间隔大于光栅3dB带宽所对应的波长间隔时,F-P激光器可以显现出很好的注入锁定特性。
在下行链路为上行链路提供光载波的过程中,输入到F-P激光器的光功率至关重要,以下对由于SBS产生、注入到F-P激光器的光信号功率进行估算。设中心站中偏振控制器、马赫-贞德尔调制器、环形器、3dB光耦合器、光合波器、连接中心站和基站的10km单模光纤、基站中环形器和光栅的损耗分别为0.5dB、5dB、0.5dB、3dB、3dB、2dB、0.5dB和0.5dB。假设激光器1-1输出的光功率为16dBm,经过马赫-贞德尔调制器,从环形器2号口输出的光载波功率为10dBm,注入光纤晶体光纤,产生SBS,假设低于光载波11GHz处的光噪声功率为-38dBm,根据SBS的特性,放大的增益可达到35dB。放大后,低于光载波11GHz处的光功率为-3dBm,经过3dB光耦合器、光合波器、10km单模光纤、基站中环形器和光栅传输后,输出功率为-11dBm。注入锁定F-P激光器所需最小的光功率为-16dBm,可见,本系统仍有5dB的功率储备。
附图说明
图1是射频光纤传输系统的上、下行链路结构示意图。
图2是3dB耦合器输出的光谱图。
图3是通过光栅的光信号。
图4是光栅反射的用于锁定FP激光器2-11的光信号。
图5是FP激光器没有输入锁定光信号时的多模输出。
图6是FP激光器注入锁定后输出的单模光信号。
图7是光探测处得到的10GHzBPSK信号。
具体实施方式
本发明的优先实施例结合附图说明如下:
考虑到工作在10GHz频段的系统日渐增多,包括WiMAX和UWB,但现在对10GHz射频光线传输系统研究,所以本发明的一个优先实施范例是10GHz射频光线传输系统。系统双向结构参见图1。本10GHz射频光线传输的下行链路结构:在中心站1中,一个激光器1-1和一个偏振控制器1-2通过尾纤相连,所述的偏振控制器1-2通过光纤与一个马赫-贞德尔调制器1-3的输入端相连。射频本振1-13和数字基带信号1-16分别输入到调制器1-5,调制器1-5输出到马赫-贞德尔调制器1-3的射频输入端,直流电压1-4从马赫-贞德尔调制器1-3的电输入端输入,马赫-贞德尔调制器1-3的输出端同环形器1-6的1号端口相连。环形器1-6的2号端口连接光子晶体光纤1-7,3号端口连接可变光衰减器1-8。光子晶体光纤1-7和可变光衰减器1-8通过一个3dB光耦合器1-9相连。3dB光耦合器(1-9)的两路输出两个光合波器(1-17)的两个输入口,构成一个光载波滤波器。光合波器(1-17)通过光纤(3)连接到基站(2)中光环形器(2-1)的1号口。在所述的基站2中,光环形器2-1的2号口连接光栅2-2,3号口连接到F-P激光器2-11。光栅2-2连接光探测器2-3。光探测器2-3的电输出端与一个带通滤波器2-4的输入端相连,带通滤波器2-4的输出与一个射频放大器2-5的输入端连接,射频放大器2-5的输出端与一个射频发射天线2-6相连。
上行链路结构:在基站2中,射频接收天线2-7同带通滤波器2-8相连,带通滤波器2-8输出到驱动器2-10,通过驱动器2-10驱动F-P激光器2-11。下行链路中的光环形器2-1的3号口输出低于输入光载波频率11GHz的光信号,注入到F-P激光器2-11并锁定,使F-P激光器2-11输出单模光信号。F-P激光器2-11的输出口通过光纤4连接到中心站1的光探测器1-10。在所述的中心站1中,光探测器1-10连接射频放大器1-11,射频放大器1-11通过乘法器1-12同射频本振1-13连接。乘法器1-12的输出口输出信号到解调器1-14,解调器输出解调的数字基带信号1-15。如图1所示。
在中心站1中,激光源1-1产生1550.12nm(193.5334THz)波长的信号光波,线宽为1MHz,功率为16dBm。马赫-贞德尔光调制器1-3的半波电压Vπ设为4.5V,射频本振1-13的频率为10GHz,数字基带信号1-16的频率为625MHz,经过马赫-贞德尔光调制器1-3调制后产生不抑制载波的双边带信号。此时,马赫-贞德尔光调制器1-3输出的信号,由于调制器调制方式的原因,信号的调制度较小,通过光载波滤波器后,调制度得到了提高。由于在光载波滤波器中发生了SBS,产生了低于光载波频率11GHz的光信号,频率为193.5224THz。3dB耦合器1-9输出的光谱如图2所示。
在基站2中,使用中心频率为193.5224THz,3dB带宽为0.12nm的光栅2-2,其3dB带宽内的反射率大于90%,通过光栅2-2的光信号如图3所示;被光栅2-2反射的信号通过环行器2-1注入F-P激光器2-11锁定激光器,使其单模输出。光栅2-2反射的用于锁定F-P激光器2-11的光信号如图4所示,F-P激光器2-11没有输入锁定光信号时的多模输出如图5所示,F-P激光器2-11注入锁定后输出单模光信号如图6所示。不抑制载波的双边带信号通过在光探测器2-3处产生差频,得到10GHz信号,频谱如图7所示,经过天线2-7向空间发射。

Claims (4)

1.一种射频光纤传输系统的下行链路结构,包括中心站(1)、基站(2)和光纤(3)。中心站(1)和基站(2)通过光纤(3)连接,其特征在于:在所述的中心站(1)中,一个激光器(1-1)和一个偏振控制器(1-2)通过尾纤相连,所述的偏振控制器(1-2)通过光纤与一个马赫-贞德尔调制器(1-3)的输入端相连。射频本振(1-13)和数字基带信号(1-16)分别输入到一个调制器(1-5),所述调制器(1-5)输出到马赫-贞德尔调制器(1-3)的射频输入端,直流电压(1-4)从马赫-贞德尔调制器(1-3)的电输入端输入,马赫-贞德尔调制器(1-3)的输出端同一个光载波滤波器进口相连,所述光载波滤波器的两路输出口连接一个光合波器(1-17)的两个输入口;所述光合波器(1-17)通过所述光纤(3)连接到所述基站(2)中一个光环形器(2-1)的1号口;在所述的基站(2)中,所述光环形器(2-1)的2号口连接一个光栅(2-2),3号口连接到下行链路中的一个F-P激光器(2-11);所述光栅(2-2)连接一个光探测器(2-3);所述光探测器(2-3)的电输出端与一个带通滤波器(2-4)的输入端相连,带通滤波器(2-4)的输出与一个射频放大器(2-5)的输入端连接,射频放大器(2-5)的输出端与一个射频发射天线(2-6)相连。
2.一种射频光纤传输系统的上行链路结构,与权利要求书1所述射频光纤传输系统的下行链路结构相连接应用,包括中心站(1)、基站(2)和光纤(4)。基站(2)和中心站(1)通过光纤(4)连接,其特征在于:在基站2中,一个射频接收天线(2-7)经一个射频放大器(2-8)同一个带通滤波器(2-9)相连,带通滤波器(2-9)输出到一个驱动器(2-10),通过驱动器(2-10)驱动所述F-P激光器(2-11)。下行链路中的光环形器(2-1)的3号口输出低于输入光载波频率11GHz的光信号,注入到所述F-P激光器(2-11)并锁定,使F-P激光器(2-11)输出单模光信号;所述F-P激光器(2-11)的输出口通过所述光纤(4)连接到中心站(1)的一个光探测器(1-10);在所述的中心站(1)中,所述光探测器(1-10)连接一个射频放大器(1-11),射频放大器(1-11)通过一个乘法器(1-12)同射频本振(1-13)连接;所述乘法器(1-12)的输出口输出信号到一个解调器(1-14),解调器(1-14)输出解调的数字基带信号(1-15)。
3.根据权利要求1所述的射频光纤传输系统的下行链路结构,其特征在于所述光载波滤波器的结构是:一个光环型器(1-6)的1一号端口构成光载波滤波器的进口,而其2二号端口连接一个光子晶体光纤(1-7),3号端口连接一个可变光滤波器(1-8),所述的光子晶体光纤(1-7)和可变光衰减器(1-8)通过一个3dB光耦合器(1-9)相连。所述3dB光耦合器(1-9)的两个出口端构成光载波滤波器的两个输出口;本光载波滤波器使得光调制深度得到提高;由于受激布里渊散射SBS本身的特性,光纤环的中心波长可与需要抑制的光载波自动匹配。
4.一种上行链路提供光载波方法,用于权利要求2所述的射频光纤传输系统的上行链路结构,为其提供光载波,其特征在于:利用权利要求3所述的射频光纤传输系统的上行链路结构中的光载波滤波器SBS产生的低于输入光载波频率11GHz的光信号。低于输入光载波频率11GHz的光信号和载波受到一定抑制的双边带信号同时传输到基站(2)中。光栅(2-2)的中心频率选在低于输入光载波频率11GHz的光信号的频率点处。光栅(2-2)将低于输入光载波频率11GHz的光信号反射到光环形器(2-1)的2号口,从光环形器(2-1)的3号口输出到F-P激光器(2-11),对F-P激光器(2-11)的输出模式进行锁定,使其单模输出。将F-P激光器(2-11)单模输出的光信号作为光源,为上行链路提供光载波。
CN2008102019079A 2008-10-29 2008-10-29 射频光纤传输系统的上、下行链路系统及为上行链路提供光载波方法 Expired - Fee Related CN101389148B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2008102019079A CN101389148B (zh) 2008-10-29 2008-10-29 射频光纤传输系统的上、下行链路系统及为上行链路提供光载波方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2008102019079A CN101389148B (zh) 2008-10-29 2008-10-29 射频光纤传输系统的上、下行链路系统及为上行链路提供光载波方法

Publications (2)

Publication Number Publication Date
CN101389148A true CN101389148A (zh) 2009-03-18
CN101389148B CN101389148B (zh) 2012-06-13

Family

ID=40478253

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2008102019079A Expired - Fee Related CN101389148B (zh) 2008-10-29 2008-10-29 射频光纤传输系统的上、下行链路系统及为上行链路提供光载波方法

Country Status (1)

Country Link
CN (1) CN101389148B (zh)

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102075239A (zh) * 2009-11-20 2011-05-25 康宁光缆系统有限公司 用于毫米波rof系统的光发射机
WO2014201700A1 (zh) * 2013-06-21 2014-12-24 华为技术有限公司 光线路终端、光网络单元、光网络系统及信号处理方法
US9112611B2 (en) 2009-02-03 2015-08-18 Corning Optical Communications LLC Optical fiber-based distributed antenna systems, components, and related methods for calibration thereof
US9178635B2 (en) 2014-01-03 2015-11-03 Corning Optical Communications Wireless Ltd Separation of communication signal sub-bands in distributed antenna systems (DASs) to reduce interference
US9184843B2 (en) 2011-04-29 2015-11-10 Corning Optical Communications LLC Determining propagation delay of communications in distributed antenna systems, and related components, systems, and methods
US9219879B2 (en) 2009-11-13 2015-12-22 Corning Optical Communications LLC Radio-over-fiber (ROF) system for protocol-independent wired and/or wireless communication
US9240835B2 (en) 2011-04-29 2016-01-19 Corning Optical Communications LLC Systems, methods, and devices for increasing radio frequency (RF) power in distributed antenna systems
US9247543B2 (en) 2013-07-23 2016-01-26 Corning Optical Communications Wireless Ltd Monitoring non-supported wireless spectrum within coverage areas of distributed antenna systems (DASs)
US9319138B2 (en) 2010-02-15 2016-04-19 Corning Optical Communications LLC Dynamic cell bonding (DCB) for radio-over-fiber (RoF)-based networks and communication systems and related methods
US9357551B2 (en) 2014-05-30 2016-05-31 Corning Optical Communications Wireless Ltd Systems and methods for simultaneous sampling of serial digital data streams from multiple analog-to-digital converters (ADCS), including in distributed antenna systems
US9385810B2 (en) 2013-09-30 2016-07-05 Corning Optical Communications Wireless Ltd Connection mapping in distributed communication systems
US9420542B2 (en) 2014-09-25 2016-08-16 Corning Optical Communications Wireless Ltd System-wide uplink band gain control in a distributed antenna system (DAS), based on per band gain control of remote uplink paths in remote units
US9455784B2 (en) 2012-10-31 2016-09-27 Corning Optical Communications Wireless Ltd Deployable wireless infrastructures and methods of deploying wireless infrastructures
US9602210B2 (en) 2014-09-24 2017-03-21 Corning Optical Communications Wireless Ltd Flexible head-end chassis supporting automatic identification and interconnection of radio interface modules and optical interface modules in an optical fiber-based distributed antenna system (DAS)
US9621293B2 (en) 2012-08-07 2017-04-11 Corning Optical Communications Wireless Ltd Distribution of time-division multiplexed (TDM) management services in a distributed antenna system, and related components, systems, and methods
US9647758B2 (en) 2012-11-30 2017-05-09 Corning Optical Communications Wireless Ltd Cabling connectivity monitoring and verification
US9661781B2 (en) 2013-07-31 2017-05-23 Corning Optical Communications Wireless Ltd Remote units for distributed communication systems and related installation methods and apparatuses
US9673904B2 (en) 2009-02-03 2017-06-06 Corning Optical Communications LLC Optical fiber-based distributed antenna systems, components, and related methods for calibration thereof
US9681313B2 (en) 2015-04-15 2017-06-13 Corning Optical Communications Wireless Ltd Optimizing remote antenna unit performance using an alternative data channel
US9715157B2 (en) 2013-06-12 2017-07-25 Corning Optical Communications Wireless Ltd Voltage controlled optical directional coupler
US9730228B2 (en) 2014-08-29 2017-08-08 Corning Optical Communications Wireless Ltd Individualized gain control of remote uplink band paths in a remote unit in a distributed antenna system (DAS), based on combined uplink power level in the remote unit
US9775123B2 (en) 2014-03-28 2017-09-26 Corning Optical Communications Wireless Ltd. Individualized gain control of uplink paths in remote units in a distributed antenna system (DAS) based on individual remote unit contribution to combined uplink power
US9807700B2 (en) 2015-02-19 2017-10-31 Corning Optical Communications Wireless Ltd Offsetting unwanted downlink interference signals in an uplink path in a distributed antenna system (DAS)
CN107408984A (zh) * 2015-11-16 2017-11-28 伊欧斯贝斯公司 利用光信号处理的高‑射频‑频率模拟光纤链路
US9948349B2 (en) 2015-07-17 2018-04-17 Corning Optical Communications Wireless Ltd IOT automation and data collection system
US9974074B2 (en) 2013-06-12 2018-05-15 Corning Optical Communications Wireless Ltd Time-division duplexing (TDD) in distributed communications systems, including distributed antenna systems (DASs)
US10128951B2 (en) 2009-02-03 2018-11-13 Corning Optical Communications LLC Optical fiber-based distributed antenna systems, components, and related methods for monitoring and configuring thereof
US10136200B2 (en) 2012-04-25 2018-11-20 Corning Optical Communications LLC Distributed antenna system architectures
US10236924B2 (en) 2016-03-31 2019-03-19 Corning Optical Communications Wireless Ltd Reducing out-of-channel noise in a wireless distribution system (WDS)
CN110456453A (zh) * 2018-05-08 2019-11-15 上海诺基亚贝尔股份有限公司 光通信设备、光通信方法和计算机可读介质
US10560214B2 (en) 2015-09-28 2020-02-11 Corning Optical Communications LLC Downlink and uplink communication path switching in a time-division duplex (TDD) distributed antenna system (DAS)
US11671914B2 (en) 2010-10-13 2023-06-06 Corning Optical Communications LLC Power management for remote antenna units in distributed antenna systems

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101166059B (zh) * 2002-06-11 2012-05-02 华为技术有限公司 一种光纤拉远软基站自动时延测量方法及系统
CN1323499C (zh) * 2003-12-19 2007-06-27 中兴通讯股份有限公司 应用于时分双工同步系统中实现灵活组网的装置和方法

Cited By (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10128951B2 (en) 2009-02-03 2018-11-13 Corning Optical Communications LLC Optical fiber-based distributed antenna systems, components, and related methods for monitoring and configuring thereof
US9112611B2 (en) 2009-02-03 2015-08-18 Corning Optical Communications LLC Optical fiber-based distributed antenna systems, components, and related methods for calibration thereof
US9673904B2 (en) 2009-02-03 2017-06-06 Corning Optical Communications LLC Optical fiber-based distributed antenna systems, components, and related methods for calibration thereof
US9900097B2 (en) 2009-02-03 2018-02-20 Corning Optical Communications LLC Optical fiber-based distributed antenna systems, components, and related methods for calibration thereof
US10153841B2 (en) 2009-02-03 2018-12-11 Corning Optical Communications LLC Optical fiber-based distributed antenna systems, components, and related methods for calibration thereof
US9219879B2 (en) 2009-11-13 2015-12-22 Corning Optical Communications LLC Radio-over-fiber (ROF) system for protocol-independent wired and/or wireless communication
US9485022B2 (en) 2009-11-13 2016-11-01 Corning Optical Communications LLC Radio-over-fiber (ROF) system for protocol-independent wired and/or wireless communication
US9729238B2 (en) 2009-11-13 2017-08-08 Corning Optical Communications LLC Radio-over-fiber (ROF) system for protocol-independent wired and/or wireless communication
CN102075239A (zh) * 2009-11-20 2011-05-25 康宁光缆系统有限公司 用于毫米波rof系统的光发射机
US9319138B2 (en) 2010-02-15 2016-04-19 Corning Optical Communications LLC Dynamic cell bonding (DCB) for radio-over-fiber (RoF)-based networks and communication systems and related methods
US11671914B2 (en) 2010-10-13 2023-06-06 Corning Optical Communications LLC Power management for remote antenna units in distributed antenna systems
US9369222B2 (en) 2011-04-29 2016-06-14 Corning Optical Communications LLC Determining propagation delay of communications in distributed antenna systems, and related components, systems, and methods
US10148347B2 (en) 2011-04-29 2018-12-04 Corning Optical Communications LLC Systems, methods, and devices for increasing radio frequency (RF) power in distributed antenna systems
US9240835B2 (en) 2011-04-29 2016-01-19 Corning Optical Communications LLC Systems, methods, and devices for increasing radio frequency (RF) power in distributed antenna systems
US9184843B2 (en) 2011-04-29 2015-11-10 Corning Optical Communications LLC Determining propagation delay of communications in distributed antenna systems, and related components, systems, and methods
US9806797B2 (en) 2011-04-29 2017-10-31 Corning Optical Communications LLC Systems, methods, and devices for increasing radio frequency (RF) power in distributed antenna systems
US9807722B2 (en) 2011-04-29 2017-10-31 Corning Optical Communications LLC Determining propagation delay of communications in distributed antenna systems, and related components, systems, and methods
US10136200B2 (en) 2012-04-25 2018-11-20 Corning Optical Communications LLC Distributed antenna system architectures
US10349156B2 (en) 2012-04-25 2019-07-09 Corning Optical Communications LLC Distributed antenna system architectures
US9973968B2 (en) 2012-08-07 2018-05-15 Corning Optical Communications Wireless Ltd Distribution of time-division multiplexed (TDM) management services in a distributed antenna system, and related components, systems, and methods
US9621293B2 (en) 2012-08-07 2017-04-11 Corning Optical Communications Wireless Ltd Distribution of time-division multiplexed (TDM) management services in a distributed antenna system, and related components, systems, and methods
US9455784B2 (en) 2012-10-31 2016-09-27 Corning Optical Communications Wireless Ltd Deployable wireless infrastructures and methods of deploying wireless infrastructures
US9647758B2 (en) 2012-11-30 2017-05-09 Corning Optical Communications Wireless Ltd Cabling connectivity monitoring and verification
US10361782B2 (en) 2012-11-30 2019-07-23 Corning Optical Communications LLC Cabling connectivity monitoring and verification
US11792776B2 (en) 2013-06-12 2023-10-17 Corning Optical Communications LLC Time-division duplexing (TDD) in distributed communications systems, including distributed antenna systems (DASs)
US11291001B2 (en) 2013-06-12 2022-03-29 Corning Optical Communications LLC Time-division duplexing (TDD) in distributed communications systems, including distributed antenna systems (DASs)
US9715157B2 (en) 2013-06-12 2017-07-25 Corning Optical Communications Wireless Ltd Voltage controlled optical directional coupler
US9974074B2 (en) 2013-06-12 2018-05-15 Corning Optical Communications Wireless Ltd Time-division duplexing (TDD) in distributed communications systems, including distributed antenna systems (DASs)
WO2014201700A1 (zh) * 2013-06-21 2014-12-24 华为技术有限公司 光线路终端、光网络单元、光网络系统及信号处理方法
US10292056B2 (en) 2013-07-23 2019-05-14 Corning Optical Communications LLC Monitoring non-supported wireless spectrum within coverage areas of distributed antenna systems (DASs)
US9247543B2 (en) 2013-07-23 2016-01-26 Corning Optical Communications Wireless Ltd Monitoring non-supported wireless spectrum within coverage areas of distributed antenna systems (DASs)
US9526020B2 (en) 2013-07-23 2016-12-20 Corning Optical Communications Wireless Ltd Monitoring non-supported wireless spectrum within coverage areas of distributed antenna systems (DASs)
US9967754B2 (en) 2013-07-23 2018-05-08 Corning Optical Communications Wireless Ltd Monitoring non-supported wireless spectrum within coverage areas of distributed antenna systems (DASs)
US9661781B2 (en) 2013-07-31 2017-05-23 Corning Optical Communications Wireless Ltd Remote units for distributed communication systems and related installation methods and apparatuses
US9385810B2 (en) 2013-09-30 2016-07-05 Corning Optical Communications Wireless Ltd Connection mapping in distributed communication systems
US9178635B2 (en) 2014-01-03 2015-11-03 Corning Optical Communications Wireless Ltd Separation of communication signal sub-bands in distributed antenna systems (DASs) to reduce interference
US9775123B2 (en) 2014-03-28 2017-09-26 Corning Optical Communications Wireless Ltd. Individualized gain control of uplink paths in remote units in a distributed antenna system (DAS) based on individual remote unit contribution to combined uplink power
US9357551B2 (en) 2014-05-30 2016-05-31 Corning Optical Communications Wireless Ltd Systems and methods for simultaneous sampling of serial digital data streams from multiple analog-to-digital converters (ADCS), including in distributed antenna systems
US9807772B2 (en) 2014-05-30 2017-10-31 Corning Optical Communications Wireless Ltd. Systems and methods for simultaneous sampling of serial digital data streams from multiple analog-to-digital converters (ADCs), including in distributed antenna systems
US9730228B2 (en) 2014-08-29 2017-08-08 Corning Optical Communications Wireless Ltd Individualized gain control of remote uplink band paths in a remote unit in a distributed antenna system (DAS), based on combined uplink power level in the remote unit
US10397929B2 (en) 2014-08-29 2019-08-27 Corning Optical Communications LLC Individualized gain control of remote uplink band paths in a remote unit in a distributed antenna system (DAS), based on combined uplink power level in the remote unit
US9602210B2 (en) 2014-09-24 2017-03-21 Corning Optical Communications Wireless Ltd Flexible head-end chassis supporting automatic identification and interconnection of radio interface modules and optical interface modules in an optical fiber-based distributed antenna system (DAS)
US9929810B2 (en) 2014-09-24 2018-03-27 Corning Optical Communications Wireless Ltd Flexible head-end chassis supporting automatic identification and interconnection of radio interface modules and optical interface modules in an optical fiber-based distributed antenna system (DAS)
US9788279B2 (en) 2014-09-25 2017-10-10 Corning Optical Communications Wireless Ltd System-wide uplink band gain control in a distributed antenna system (DAS), based on per-band gain control of remote uplink paths in remote units
US9420542B2 (en) 2014-09-25 2016-08-16 Corning Optical Communications Wireless Ltd System-wide uplink band gain control in a distributed antenna system (DAS), based on per band gain control of remote uplink paths in remote units
US10292114B2 (en) 2015-02-19 2019-05-14 Corning Optical Communications LLC Offsetting unwanted downlink interference signals in an uplink path in a distributed antenna system (DAS)
US9807700B2 (en) 2015-02-19 2017-10-31 Corning Optical Communications Wireless Ltd Offsetting unwanted downlink interference signals in an uplink path in a distributed antenna system (DAS)
US10009094B2 (en) 2015-04-15 2018-06-26 Corning Optical Communications Wireless Ltd Optimizing remote antenna unit performance using an alternative data channel
US9681313B2 (en) 2015-04-15 2017-06-13 Corning Optical Communications Wireless Ltd Optimizing remote antenna unit performance using an alternative data channel
US9948349B2 (en) 2015-07-17 2018-04-17 Corning Optical Communications Wireless Ltd IOT automation and data collection system
US10560214B2 (en) 2015-09-28 2020-02-11 Corning Optical Communications LLC Downlink and uplink communication path switching in a time-division duplex (TDD) distributed antenna system (DAS)
CN107408984A (zh) * 2015-11-16 2017-11-28 伊欧斯贝斯公司 利用光信号处理的高‑射频‑频率模拟光纤链路
US10236924B2 (en) 2016-03-31 2019-03-19 Corning Optical Communications Wireless Ltd Reducing out-of-channel noise in a wireless distribution system (WDS)
CN110456453A (zh) * 2018-05-08 2019-11-15 上海诺基亚贝尔股份有限公司 光通信设备、光通信方法和计算机可读介质
CN110456453B (zh) * 2018-05-08 2021-08-27 上海诺基亚贝尔股份有限公司 光通信设备、光通信方法和计算机可读介质

Also Published As

Publication number Publication date
CN101389148B (zh) 2012-06-13

Similar Documents

Publication Publication Date Title
CN101389148B (zh) 射频光纤传输系统的上、下行链路系统及为上行链路提供光载波方法
CN108199776B (zh) 一种基于光电振荡器的微波光子上变频装置及方法
Kaszubowska et al. Remote downconversion with wavelength reuse for the radio/fiber uplink connection
CN101833221B (zh) 基于硅基微环谐振腔的全光单边带上变频产生装置
CN103091932B (zh) 一种超宽调谐范围的单带通微波光子滤波器
CN102075239A (zh) 用于毫米波rof系统的光发射机
CN103278888B (zh) 一种宽通带可重构微波光子滤波装置及滤波方法
CN100536371C (zh) 基于电光调制器和光纤光栅的微波光子下变频方法及装置
CN101599800A (zh) 利用铌酸锂调制器产生8倍频光载毫米波的装置与方法
CN103997375B (zh) 一种产生四倍频光载毫米波的方法和系统
Zhang et al. A full-duplex WDM-RoF system based on tunable optical frequency comb generator
CN101414881B (zh) 毫米波光纤下行链路装置及其频率可调谐毫米波生成方法
CN104330939A (zh) 一种sbs宽带可调谐光纤延迟系统
CN103888191A (zh) 一种基于双向利用相位调制器的微波光子下变频方法
CN201213262Y (zh) 可调谐光纤微波/毫米波发生器
CN102544985A (zh) 基于调制不稳定性的光纤型太赫兹波产生装置及方法
JPH098737A (ja) 受信システム
CN204481833U (zh) 一种基于光频率梳的wdm-rof混合接入系统
CN204481832U (zh) 一种基于光梳和载波重用的rof-pon全双工系统
Chen et al. Optical front-ends to generate optical millimeter-wave signal in radio-over-fiber systems with different architectures
CN102694599A (zh) 基于混合布里渊soa激光器的用于wdm-pon无色onu的可调光源
CN101001114A (zh) 结构简单的全双工光纤无线通信系统
CN104683035A (zh) 一种用于高频窄带信号的光下变频方法及系统
CN101000411A (zh) 采用直接调制激光器产生光毫米波方法及装置
CN103199795B (zh) 一种独立非相干双激光低相位噪声16倍频信号生成装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20120613

Termination date: 20141029

EXPY Termination of patent right or utility model