CN101381887B - Single crystal boron nanotaper, method for preparing same and applications in electricity and field emission device - Google Patents
Single crystal boron nanotaper, method for preparing same and applications in electricity and field emission device Download PDFInfo
- Publication number
- CN101381887B CN101381887B CN200710121358XA CN200710121358A CN101381887B CN 101381887 B CN101381887 B CN 101381887B CN 200710121358X A CN200710121358X A CN 200710121358XA CN 200710121358 A CN200710121358 A CN 200710121358A CN 101381887 B CN101381887 B CN 101381887B
- Authority
- CN
- China
- Prior art keywords
- boron
- catalyst
- nanocone
- single crystal
- gas
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 title claims abstract description 86
- 229910052796 boron Inorganic materials 0.000 title claims abstract description 68
- 238000000034 method Methods 0.000 title claims abstract description 27
- 239000013078 crystal Substances 0.000 title claims abstract description 16
- 230000005611 electricity Effects 0.000 title 1
- 239000002110 nanocone Substances 0.000 claims abstract description 62
- 239000002105 nanoparticle Substances 0.000 claims abstract description 14
- 239000000463 material Substances 0.000 claims abstract description 13
- 239000003426 co-catalyst Substances 0.000 claims abstract description 12
- 239000000203 mixture Substances 0.000 claims abstract description 12
- 238000005229 chemical vapour deposition Methods 0.000 claims abstract description 10
- SZVJSHCCFOBDDC-UHFFFAOYSA-N ferrosoferric oxide Chemical compound O=[Fe]O[Fe]O[Fe]=O SZVJSHCCFOBDDC-UHFFFAOYSA-N 0.000 claims abstract description 10
- 239000003054 catalyst Substances 0.000 claims abstract description 7
- 239000007789 gas Substances 0.000 claims description 19
- 239000000758 substrate Substances 0.000 claims description 10
- 229910052739 hydrogen Inorganic materials 0.000 claims description 9
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 8
- 239000002245 particle Substances 0.000 claims description 8
- 229910052710 silicon Inorganic materials 0.000 claims description 8
- 239000010703 silicon Substances 0.000 claims description 8
- 238000010438 heat treatment Methods 0.000 claims description 7
- 230000001681 protective effect Effects 0.000 claims description 7
- 239000004094 surface-active agent Substances 0.000 claims description 6
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 claims description 4
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 4
- 229910052786 argon Inorganic materials 0.000 claims description 4
- 239000011261 inert gas Substances 0.000 claims description 4
- 239000002904 solvent Substances 0.000 claims description 4
- WRIDQFICGBMAFQ-UHFFFAOYSA-N (E)-8-Octadecenoic acid Natural products CCCCCCCCCC=CCCCCCCC(O)=O WRIDQFICGBMAFQ-UHFFFAOYSA-N 0.000 claims description 3
- QGLWBTPVKHMVHM-KTKRTIGZSA-N (z)-octadec-9-en-1-amine Chemical group CCCCCCCC\C=C/CCCCCCCCN QGLWBTPVKHMVHM-KTKRTIGZSA-N 0.000 claims description 3
- LQJBNNIYVWPHFW-UHFFFAOYSA-N 20:1omega9c fatty acid Natural products CCCCCCCCCCC=CCCCCCCCC(O)=O LQJBNNIYVWPHFW-UHFFFAOYSA-N 0.000 claims description 3
- QSBYPNXLFMSGKH-UHFFFAOYSA-N 9-Heptadecensaeure Natural products CCCCCCCC=CCCCCCCCC(O)=O QSBYPNXLFMSGKH-UHFFFAOYSA-N 0.000 claims description 3
- ZQPPMHVWECSIRJ-UHFFFAOYSA-N Oleic acid Natural products CCCCCCCCC=CCCCCCCCC(O)=O ZQPPMHVWECSIRJ-UHFFFAOYSA-N 0.000 claims description 3
- 239000005642 Oleic acid Substances 0.000 claims description 3
- 239000001257 hydrogen Substances 0.000 claims description 3
- QXJSBBXBKPUZAA-UHFFFAOYSA-N isooleic acid Natural products CCCCCCCC=CCCCCCCCCC(O)=O QXJSBBXBKPUZAA-UHFFFAOYSA-N 0.000 claims description 3
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid Chemical compound CCCCCCCC\C=C/CCCCCCCC(O)=O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 claims description 3
- 239000007787 solid Substances 0.000 claims description 3
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 2
- 239000011248 coating agent Substances 0.000 claims description 2
- 238000000576 coating method Methods 0.000 claims description 2
- 238000000151 deposition Methods 0.000 claims description 2
- 229910052757 nitrogen Inorganic materials 0.000 claims description 2
- 239000000155 melt Substances 0.000 claims 1
- 230000015572 biosynthetic process Effects 0.000 abstract description 3
- 238000003786 synthesis reaction Methods 0.000 abstract 1
- 238000006243 chemical reaction Methods 0.000 description 23
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 10
- 230000035484 reaction time Effects 0.000 description 7
- 238000002360 preparation method Methods 0.000 description 6
- 238000000619 electron energy-loss spectrum Methods 0.000 description 5
- 239000000243 solution Substances 0.000 description 5
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 4
- IMNFDUFMRHMDMM-UHFFFAOYSA-N N-Heptane Chemical compound CCCCCCC IMNFDUFMRHMDMM-UHFFFAOYSA-N 0.000 description 4
- 239000002086 nanomaterial Substances 0.000 description 4
- 239000004065 semiconductor Substances 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- 238000000635 electron micrograph Methods 0.000 description 3
- 238000001878 scanning electron micrograph Methods 0.000 description 3
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 238000003917 TEM image Methods 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 239000002041 carbon nanotube Substances 0.000 description 2
- 229910021393 carbon nanotube Inorganic materials 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- LZKLAOYSENRNKR-LNTINUHCSA-N iron;(z)-4-oxoniumylidenepent-2-en-2-olate Chemical compound [Fe].C\C(O)=C\C(C)=O.C\C(O)=C\C(C)=O.C\C(O)=C\C(C)=O LZKLAOYSENRNKR-LNTINUHCSA-N 0.000 description 2
- 239000011259 mixed solution Substances 0.000 description 2
- 239000002071 nanotube Substances 0.000 description 2
- 239000002070 nanowire Substances 0.000 description 2
- 238000011056 performance test Methods 0.000 description 2
- 238000004098 selected area electron diffraction Methods 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 229910000640 Fe alloy Inorganic materials 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- ZDVYABSQRRRIOJ-UHFFFAOYSA-N boron;iron Chemical compound [Fe]#B ZDVYABSQRRRIOJ-UHFFFAOYSA-N 0.000 description 1
- 239000012159 carrier gas Substances 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 230000007123 defense Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- 229910003460 diamond Inorganic materials 0.000 description 1
- USIUVYZYUHIAEV-UHFFFAOYSA-N diphenyl ether Chemical compound C=1C=CC=CC=1OC1=CC=CC=C1 USIUVYZYUHIAEV-UHFFFAOYSA-N 0.000 description 1
- ZITKDVFRMRXIJQ-UHFFFAOYSA-N dodecane-1,2-diol Chemical compound CCCCCCCCCCC(O)CO ZITKDVFRMRXIJQ-UHFFFAOYSA-N 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 239000010410 layer Substances 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 239000002122 magnetic nanoparticle Substances 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002127 nanobelt Substances 0.000 description 1
- 239000002074 nanoribbon Substances 0.000 description 1
- 239000006250 one-dimensional material Substances 0.000 description 1
- 238000004321 preservation Methods 0.000 description 1
- 239000011241 protective layer Substances 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 230000002787 reinforcement Effects 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 238000012876 topography Methods 0.000 description 1
- 238000002525 ultrasonication Methods 0.000 description 1
Images
Landscapes
- Crystals, And After-Treatments Of Crystals (AREA)
Abstract
本发明提供一种单晶硼纳米锥,其由纯硼组成,具有单晶结构。本发明还提供一种制备硼纳米锥的方法,该方法以硼化物和硼粉的混合物作为源材料,Fe3O4催化剂纳米粒子与微量硼粉的混合物作为共催化剂,利用化学气相沉积CVD法合成硼纳米锥。通过本发明的方法制备的硼纳米锥具有良好的电学性质和场发射性能。The invention provides a single crystal boron nanocone, which is composed of pure boron and has a single crystal structure. The present invention also provides a method for preparing boron nano cones. The method uses a mixture of borides and boron powder as a source material, a mixture of Fe3O4 catalyst nanoparticles and a small amount of boron powder as a co-catalyst, and utilizes chemical vapor deposition CVD method Synthesis of boron nanocones. The boron nano cone prepared by the method of the invention has good electrical properties and field emission performance.
Description
技术领域technical field
本发明涉及一种硼的一维纳米材料,具体而言涉及一种单晶硼纳米锥,其制备方法以及在电学和场发射器件的应用。The invention relates to a boron one-dimensional nanometer material, in particular to a single crystal boron nanocone, its preparation method and its application in electrical and field emission devices.
背景技术Background technique
自1992年饭岛发现碳纳米管之后(S.Jijima,Nature,354(1991),56),金属、半导体、氧化物以及复合物纳米一维材料的制备及应用引起了人们极大的兴趣,尤其是它们在电子、信息、生物医学、国防、能源等领域的潜在应用。Since Iijima discovered carbon nanotubes in 1992 (S. Jijima, Nature, 354(1991), 56), the preparation and application of metal, semiconductor, oxide and composite nano-one-dimensional materials have aroused great interest, especially It is their potential application in electronics, information, biomedicine, national defense, energy and other fields.
硼是IIIA族中唯一的一个半导体元素。由于硼具有独特的“三中心两电子”的电子结构和特有的二十面体结构,可以形成以二十面体为结构单元的硼一维纳米材料(纳米管、纳米线、纳米带和纳米锥等)。而且单质硼是一个密度低、熔点高,难挥发的固体,其硬度仅次与金刚石,是少数几个可用于核反应、飞船增强材料和保护层、高温半导体等领域的元素。同时,理论计算表明,硼可以形成奇异的准平面型、笼状和管状结构。并且硼纳米管与碳纳米管相比,其显示了金属性的态密度,因此,硼一维纳米材料是一个非常好的导体,因此,硼一维纳米结构材料在场发射、储氢、储锂以及在高温轻材料、高温电子装置具有潜在的应用价值。Boron is the only semiconductor element in group IIIA. Since boron has a unique electronic structure of "three centers and two electrons" and a unique icosahedral structure, boron one-dimensional nanomaterials (nanotubes, nanowires, nanobelts, and nanocones, etc.) can be formed with icosahedrons as structural units. ). Moreover, elemental boron is a solid with low density, high melting point, and low volatility. Its hardness is second only to that of diamond. It is one of the few elements that can be used in nuclear reactions, spacecraft reinforcement materials and protective layers, and high-temperature semiconductors. Meanwhile, theoretical calculations show that boron can form exotic quasi-planar, cage-like, and tubular structures. And compared with carbon nanotubes, boron nanotubes show a metallic density of states. Therefore, boron one-dimensional nanomaterials are a very good conductor. Therefore, boron one-dimensional nanostructure materials are capable of field emission, hydrogen storage, and lithium storage. And it has potential application value in high-temperature light materials and high-temperature electronic devices.
然而,目前硼一维纳米材料的研究还局限于硼纳米线和纳米带,对于可能具有奇特的电学和场发射性质的硼纳米锥尚未见有任何文献与专利报道。However, the current research on boron one-dimensional nanomaterials is still limited to boron nanowires and nanoribbons, and there are no literature and patent reports on boron nanocones that may have peculiar electrical and field emission properties.
发明内容Contents of the invention
本发明的目的在于提供一种单晶硼纳米锥,一种简单的单晶硼纳米锥的制备方法,以及单晶硼纳米锥在在电学和场发射器件的应用。The object of the present invention is to provide a single crystal boron nano cone, a simple preparation method of the single crystal boron nano cone, and the application of the single crystal boron nano cone in electrical and field emission devices.
本发明的第一方面涉及一种硼纳米锥,其由纯硼组成,具有单晶结构。这种硼纳米锥的底部直径为300-500纳米,顶端直径为50-100纳米,长度为3-10μm。A first aspect of the invention relates to a boron nanocone consisting of pure boron with a single crystal structure. The bottom diameter of the boron nano cone is 300-500 nanometers, the top diameter is 50-100 nanometers, and the length is 3-10 μm.
本发明的第二方面涉及一种制备硼纳米锥的方法,其以硼化物和硼粉的混合物作为源材料,Fe3O4催化剂纳米粒子与微量硼粉的混合物作为共催化剂,利用化学气相沉积CVD法合成硼纳米锥,该方法包括以下步骤:The second aspect of the present invention relates to a method for preparing boron nanocones, which uses a mixture of borides and boron powder as a source material, a mixture of Fe3O4 catalyst nanoparticles and a trace amount of boron powder as a co-catalyst, and utilizes chemical vapor deposition The boron nano cone is synthesized by CVD method, and the method comprises the following steps:
(a)将表面活性剂包覆的Fe3O4催化剂纳米粒子溶液与微量硼粉混合形成共催化剂;(a) the Fe3O4catalyst nanoparticle solution of surfactant coating is mixed with trace boron powder to form co-catalyst;
(b)将步骤(a)中获得的共催化剂沉积在硅片衬底上;(b) depositing the cocatalyst obtained in step (a) on a silicon wafer substrate;
(c)在保护气体的气氛下,在200-500℃的温度加热衬底以除去共催化剂中的溶剂和表面活性剂;(c) under a protective gas atmosphere, heating the substrate at a temperature of 200-500° C. to remove the solvent and the surfactant in the co-catalyst;
(d)在保护气体的气氛下,在1000-1300℃的温度将作为源材料的硼化物和硼粉的混合物和沉积有除去了溶剂的共催化剂的衬底一起加热,使源材料蒸发扩散到衬底表面上的共催化剂熔融液滴上,从而通过气-液-固生长模式形成硼纳米锥。(d) Under the atmosphere of protective gas, at the temperature of 1000-1300 ℃, the mixture of boride and boron powder as the source material is heated together with the substrate deposited with the co-catalyst from which the solvent has been removed, so that the source material evaporates and diffuses into The co-catalysts on the surface of the substrate are melted onto the droplets, thereby forming boron nanocones via a gas-liquid-solid growth mode.
在上述方法中,步骤(a)中的表面活性剂包括油胺和油酸,共催化剂中的Fe3O4催化剂纳米粒子的粒子直径为8-14nm,硼粉的粒子直径为500nm-20μm,并且微量硼粉与Fe3O4催化剂纳米粒子溶液的重量为0.0001-0.001。其中,在Fe3O4纳米颗粒中掺杂微量的硼的作用是可以形成硼铁合金,成为硼化物和硼粉的混合物源料蒸发后沉积活性点,有利于纳米锥的形成。In the above method, the surfactant in the step (a) includes oleylamine and oleic acid, the Fe in the co - catalyst O The particle diameter of the catalyst nanoparticles is 8-14nm, and the particle diameter of the boron powder is 500nm-20μm, And the weight of the trace boron powder and Fe3O4 catalyst nano particle solution is 0.0001-0.001. Among them, the role of doping a small amount of boron in Fe 3 O 4 nanoparticles is to form boron-iron alloy, which becomes a mixture of boride and boron powder. After the source material is evaporated, active points are deposited, which is beneficial to the formation of nanocones.
在上述方法中,保护气体是惰性气体和0-10%氢气的混合气体,并且惰性气体包括氮气和氩气。而且,化学气相沉积CVD可以在真空或一个大气压下进行。In the above method, the protective gas is a mixed gas of inert gas and 0-10% hydrogen, and the inert gas includes nitrogen and argon. Also, chemical vapor deposition CVD can be performed in vacuum or at one atmospheric pressure.
在上述方法中,硼化物包括B2O3,并且硼化物与硼粉的重量比例为1∶5~5∶1。In the above method, the boride includes B 2 O 3 , and the weight ratio of boride to boron powder is 1:5˜5:1.
在上述方法中,步骤(d)中的保护气体流量小于100sccm。In the above method, the protective gas flow rate in step (d) is less than 100 sccm.
本发明的第三方面涉及硼纳米锥在场发射器件的应用。The third aspect of the present invention relates to the application of boron nanocones in field emission devices.
本发明的第四方面涉及硼纳米锥在电学器件的应用。The fourth aspect of the present invention relates to the application of boron nanocones in electrical devices.
本发明首次获得了高质量的单晶硼纳米锥,其具有良好的形貌。而且本发明的制备硼纳米锥的方法是一种简单的的方法,采用这种方法能够制备大面积、高质量的单晶硼纳米锥,所制备出的的硼纳米锥具有良好的电学性质和场发射性能。The present invention obtains high-quality single-crystal boron nanocone for the first time, which has good shape. And the method for preparing boron nanocone of the present invention is a kind of simple method, adopts this method to be able to prepare large-area, high-quality monocrystalline boron nanocone, prepared boron nanocone has good electrical property and field emission performance.
附图说明Description of drawings
图1是单分散的Fe3O4纳米粒子的TEM图。Figure 1 is a TEM image of monodisperse Fe 3 O 4 nanoparticles.
图2是单晶硼纳米锥的SEM图;a)为大面积图,b)为局部放大图。Figure 2 is a SEM image of a single crystal boron nanocone; a) is a large-area image, and b) is a partially enlarged image.
图3是单晶硼纳米锥的TEM图和选区电子衍射图(SAED)。Figure 3 is a TEM image and a selected area electron diffraction image (SAED) of a single crystal boron nanocone.
图4是单晶硼纳米锥的电子能量损失谱(EELS)图。Fig. 4 is an electron energy loss spectrum (EELS) diagram of a single crystal boron nanocone.
图5是显示载气的流量和对应B纳米锥形貌的图。Figure 5 is a graph showing the flow rate of carrier gas and the corresponding B nanocone topography.
图6是不同生长时间下的硼纳米锥的SEM像。Fig. 6 is an SEM image of boron nanocones under different growth times.
图7是B纳米锥的场发射曲线。Figure 7 is the field emission curve of the B nanocone.
图8是三个不同尺寸的B纳米锥器件电极的SEM照片。Fig. 8 is an SEM photo of three B nanocone device electrodes with different sizes.
图9是三个B纳米锥电极在输入电压为-20到20V的电流曲线。Fig. 9 is a current curve of three B nanocone electrodes at an input voltage of -20 to 20V.
具体实施方式Detailed ways
实施例一、单分散磁性纳米粒子Fe3O4的制备Example 1. Preparation of Monodisperse Magnetic Nanoparticles Fe 3 O 4
采用孙守恒等的高温液相还原法合成Fe3O4纳米粒子(Sun,S.H.等,J.Am.Chem.Soc.2004,126,273),但对反应条件进行了改进以得到8-14纳米Fe3O4颗粒。具体制备方法如下:Fe 3 O 4 nanoparticles were synthesized by the high-temperature liquid phase reduction method of Sun Shouheng et al. (Sun, SH et al., J.Am.Chem.Soc.2004, 126, 273), but the reaction conditions were improved to obtain 8-14 Nano Fe 3 O 4 particles. The specific preparation method is as follows:
将0.5mmol乙酰丙酮铁、20ml苯醚、2.5mmol 1,2-十二烷二醇、0.75mmol油酸和0.75mmol油胺依次加入到三颈瓶中。以5℃/min的加热速度将混合溶液加热到200℃,反应半小时,然后继续加热使温度升高到270℃,在此温度下反应一个小时,移去加热源,使反应溶液自然冷却到室温。然后加入40ml无水乙醇搅十分钟,静置3-4个小时,于7000rpm下离心,将所得样品在分散到乙醇中,微超声并再次离心,最后得到的黑色产物分散到庚烷中保存。如果在270℃反应2小时,可以得到8nm的Fe3O4颗粒;如果提高乙酰丙酮铁的浓度,可以得到14nm的Fe3O4颗粒。0.5mmol iron acetylacetonate, 20ml phenyl ether, 2.5
用这种方法制备的8纳米的Fe3O4颗粒的TEM(透射电子显微镜)图像如图1所示。The TEM (transmission electron microscope) image of 8 nm Fe 3 O 4 particles prepared by this method is shown in FIG. 1 .
实施例二:单晶硼纳米锥的制备:Embodiment two: the preparation of single crystal boron nanocone:
首先将2ml Fe3O4纳米粒子庚烷溶液与0.1-1.0毫克的硼粉进行混合,然后将混合液滴在硅基片上,自然晾干。First, mix 2ml of Fe 3 O 4 nanoparticle heptane solution with 0.1-1.0 mg of boron powder, then drop the mixed solution on the silicon substrate, and let it dry naturally.
其次将B2O3(99.99%)和B(99.9%)按1∶5的质量比混合在一起,研磨均匀,放入Al2O3反应舟中。将基底硅片放置在Al2O3反应舟垂直上端,反应舟被放入水平的石英管中,加热前反应舟置于低温反应区外。Secondly, B 2 O 3 (99.99%) and B (99.9%) are mixed together at a mass ratio of 1:5, ground evenly, and put into an Al 2 O 3 reaction boat. The substrate silicon wafer is placed on the vertical upper end of the Al 2 O 3 reaction boat, and the reaction boat is placed in a horizontal quartz tube, and the reaction boat is placed outside the low-temperature reaction zone before heating.
之后采取两步升温步骤进行化学气相沉积,具体如下:Afterwards, chemical vapor deposition is carried out in two heating steps, as follows:
第一步在H2/Ar混合气(5%H2)保护下,将反应区先以5-50℃/min的升温速度加热到300-400℃,将反应舟迅速推入高温反应区,保温30~60分钟,保持H2/Ar混合气(5%H2)气流量为200~300sccm(标准立方厘米/分钟),以除去包覆在Fe3O4纳米颗粒上的有机分子,然后将反应舟移出高温反应区。In the first step, under the protection of H 2 /Ar mixed gas (5% H 2 ), the reaction zone is first heated to 300-400°C at a rate of 5-50°C/min, and the reaction boat is quickly pushed into the high-temperature reaction zone. Insulated for 30 to 60 minutes, keeping the H 2 /Ar mixed gas (5% H 2 ) gas flow at 200 to 300 sccm (standard cubic centimeters per minute), to remove the organic molecules coated on the Fe 3 O 4 nanoparticles, and then Move the reaction boat out of the high temperature reaction area.
第二步以20-30℃/min的升温速度快速将反应区加热到1000~1300℃,然后将反应舟再次迅速推入高温反应区,在此温度下反应1~4小时,此时H2/Ar混合气(5%H2)的气流量为20~40sccm(标准立方厘米/分钟)。反应结束后,产物在H2/Ar混合气(95%Ar与5%H2)保护下冷却到室温。在硅片表面可以观察到一层黯黑色或棕黑色薄膜。将硅片直接进行扫描电子显微镜观测得到SEM图像。另外,将硅片放入无水乙醇中超声,得到的溶液滴在微栅上,进行TEM测试。The second step is to quickly heat the reaction zone to 1000-1300℃ at a heating rate of 20-30℃/min, and then quickly push the reaction boat into the high-temperature reaction zone again, and react at this temperature for 1-4 hours. At this time, the H 2 The flow rate of the /Ar mixed gas (5% H 2 ) is 20-40 sccm (standard cubic centimeter per minute). After the reaction, the product was cooled to room temperature under the protection of H 2 /Ar gas mixture (95% Ar and 5% H 2 ). A layer of dark black or brown-black film can be observed on the surface of the silicon wafer. SEM images were obtained by direct scanning electron microscope observation of the silicon wafer. In addition, the silicon wafer was placed in absolute ethanol for ultrasonication, and the resulting solution was dropped on the microgrid for TEM testing.
硼纳米锥的电子显微照片如图2(SEM,扫描电子显微镜)和图3(TEM,透射电子显微镜)所示。纳米锥的底部直径为300-500纳米之间,顶端直径为50-100纳米之间,长度约为3-10μm。选区电子衍射图(SAED)表明,硼纳米锥具有单晶结构。纳米锥的电子能量损失谱(Electron Energy Loss Spectrum)测试结果如图4所示,EELS谱中在188eV出现是B元素的K壳层峰值,EELS谱检测结果也没有发现其它元素的特征峰,表明制备纳米锥的组成是纯硼。Electron micrographs of boron nanocones are shown in Figure 2 (SEM, scanning electron microscope) and Figure 3 (TEM, transmission electron microscope). The bottom diameter of the nano cone is between 300-500 nanometers, the top diameter is between 50-100 nanometers, and the length is about 3-10 μm. The selected area electron diffraction pattern (SAED) shows that the boron nanocone has a single crystal structure. The electron energy loss spectrum (Electron Energy Loss Spectrum) test result of nanocone is shown in Fig. 4, and the K shell peak of B element appears in EELS spectrum at 188eV, and the characteristic peak of other elements is not found in EELS spectrum detection result, shows The composition of the prepared nanocones is pure boron.
实例三、B2O3和B质量比的影响Instance three, B 2 O 3 and the influence of B mass ratio
当B2O3(99.99%)和B(99.9%)质量比在1∶5,1∶4,1∶3,1∶2,1∶1,2∶1,3∶1,4∶1和5∶1时,反应温度在1000-1300℃,反应时间1-4小时,可以得到硼纳米锥。在这些比例下都可以得到形貌一致的硼纳米锥。When the mass ratio of B 2 O 3 (99.99%) to B (99.9%) is 1:5, 1:4, 1:3, 1:2, 1:1, 2:1, 3:1, 4:1 and When the ratio is 5:1, the reaction temperature is 1000-1300° C., and the reaction time is 1-4 hours, and boron nanocones can be obtained. Boron nanocones with consistent morphology can be obtained under these ratios.
实例四、保护气体流量的影响Example 4. Influence of shielding gas flow rate
在反应温度1200℃,反应时间1-4小时,Ar和H2混合气(5%H2)的气流量分别为20、30、40、50、60、70、80sccm时,可以得到高纯度的硼纳米锥,其形貌和尺寸基本一致表面。硼纳米锥的电子显微照片如图5所示。当气流量超过100sccm时,没有发现B纳米锥的形成。When the reaction temperature is 1200°C, the reaction time is 1-4 hours, and the gas flow of Ar and H 2 mixed gas (5% H 2 ) is respectively 20, 30, 40, 50, 60, 70, 80 sccm, high-purity Boron nanocones whose shape and size are basically consistent with the surface. Electron micrographs of boron nanocones are shown in Figure 5. When the gas flow exceeds 100 sccm, no B nanocone formation is found.
实例五、反应时间的影响Example 5. The Influence of Reaction Time
当B2O3(99.99%)和B(99.9%)质量比在1∶5,反应温度在1000-1300℃,反应时间分别为1小时,2小时,3小时和4小时,可以得到高纯度、高密度的硼纳米锥,硼纳米锥的电子显微照片如图6所示。反应时间对其形貌影响不大,只是当增加反应时间,纳米锥的直径和长度随之逐渐增加。When the mass ratio of B 2 O 3 (99.99%) to B (99.9%) is 1:5, the reaction temperature is 1000-1300° C., and the reaction time is 1 hour, 2 hours, 3 hours and 4 hours, high purity can be obtained , high-density boron nanocone, and the electron micrograph of boron nanocone is shown in Figure 6. The reaction time has little effect on its morphology, but the diameter and length of the nanocones increase gradually when the reaction time increases.
实例六、反应温度的影响Example six, the influence of temperature of reaction
在B2O3(99.99%)和B(99.9%)质量比为1∶5,反应时间为2小时,反应温度为1000,1100,1200和1300℃的条件下,均可以得到高纯度、高密度的硼纳米锥,如图2所示。因此,反应温度对硼纳米锥的表面形貌影响不大。Under the conditions that the mass ratio of B2O3 ( 99.99 %) to B (99.9%) is 1:5, the reaction time is 2 hours, and the reaction temperature is 1000, 1100, 1200 and 1300°C, high purity and high Density of boron nanocones, as shown in Figure 2. Therefore, the reaction temperature has little effect on the surface morphology of boron nanocones.
实例七、硼纳米锥场发射性能测试:Example seven, boron nano cone field emission performance test:
将生长于硅表面的硼纳米锥作为场发射阴极,Mo针尖作为阳极,两电极间距200μm。缓慢增加两极间电压,同时记录发射电流。图7是硼纳米锥的场发射曲线,当电压达到10μA/cm2时,开启场强为3.5V/μm。当达到平板显示器要求的最低发射电流密度,即1mA/cm2时,阈值场强为5.3V/μm。场发射性能测试表明,单晶硼纳米锥具有低的开启场强和阈值场强,是一个非常理想的场发射材料。The boron nanocone grown on the silicon surface was used as the field emission cathode, the Mo needle tip was used as the anode, and the distance between the two electrodes was 200 μm. Slowly increase the voltage between the two electrodes while recording the emission current. Figure 7 is the field emission curve of the boron nanocone, when the voltage reaches 10μA/cm 2 , the turn-on field strength is 3.5V/μm. When reaching the minimum emission current density required by flat panel display, ie 1mA/cm 2 , the threshold field strength is 5.3V/μm. The field emission performance test shows that the single crystal boron nanocone has low turn-on field strength and threshold field strength, and is a very ideal field emission material.
实例八、硼纳米锥器件的电学性质测试:Example eight, electrical property test of boron nanocone device:
通过EBL(电子束曝光)技术制备了3个硼纳米锥电极。图8分别给出了三个不同尺寸的硼纳米锥电极的SEM照片。这三个电极的尺寸分别为:(a)电极1(长:3.1μm,直径:110nm和90nm),(b)电极2(长:3.8μm,直径:240nm和280nm),(c)电极3(长:2.5μm,直径:450nm)。Three boron nanocone electrodes were prepared by EBL (electron beam exposure) technique. Figure 8 shows the SEM pictures of three boron nanocone electrodes with different sizes. The dimensions of the three electrodes are: (a) electrode 1 (length: 3.1 μm, diameter: 110 nm and 90 nm), (b) electrode 2 (length: 3.8 μm, diameter: 240 nm and 280 nm), (c) electrode 3 (length: 2.5 μm, diameter: 450 nm).
采用KEITHLEY 4200-SCS半导体高精度测量仪器分别对三种硼纳米锥组成的器件进行了电学性质的测试,图9是这三个电极在输入电压为-20到20V的电流曲线。采用如下公式计算其导电率:σ=l/RS(σ是电导率,单位为Ω·cm-1;l是长度,单位为cm;R是电阻,单位为Ω·;S是截面积,单位为cm2)。对于器件一,正、负饱和电流分别为20pA和40pA,计算的电导率分别为3.7×10-5(Ω·cm)-1和7.3×10-5(Ω·cm)-1;对于器件二,正、负饱和电流分别为32pA和27pA,计算的电导率分别为2.1×10-5(Ω·cm)-1和1.8×10-5(Ω·cm)-1;对于器件三,正、负饱和电流分别为60pA和60pA,计算的电导率为1.0×10-5(Ω·cm)-1。测量的I-V数据表明,B纳米锥的电子输运与块体硼单质的相比没有出现显著的变化。KEITHLEY 4200-SCS semiconductor high-precision measuring instrument was used to test the electrical properties of the devices composed of three boron nanocones. Figure 9 shows the current curves of these three electrodes at an input voltage of -20 to 20V. Use the following formula to calculate its conductivity: σ=l/RS (σ is the conductivity, the unit is Ω cm -1 ; l is the length, the unit is cm; R is the resistance, the unit is Ω; S is the cross-sectional area, the unit is cm 2 ). For
Claims (11)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN200710121358XA CN101381887B (en) | 2007-09-05 | 2007-09-05 | Single crystal boron nanotaper, method for preparing same and applications in electricity and field emission device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN200710121358XA CN101381887B (en) | 2007-09-05 | 2007-09-05 | Single crystal boron nanotaper, method for preparing same and applications in electricity and field emission device |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101381887A CN101381887A (en) | 2009-03-11 |
CN101381887B true CN101381887B (en) | 2012-02-15 |
Family
ID=40461933
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN200710121358XA Active CN101381887B (en) | 2007-09-05 | 2007-09-05 | Single crystal boron nanotaper, method for preparing same and applications in electricity and field emission device |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN101381887B (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1438176A (en) * | 2003-03-17 | 2003-08-27 | 郭水虎 | Method for preparing modified nano boron oxide |
CN1594083A (en) * | 2004-06-22 | 2005-03-16 | 清华大学 | B6O nanowire and crystal whisker structure and its preparation method |
CN1789115A (en) * | 2005-12-20 | 2006-06-21 | 山东大学 | Method for preparing boron nitride nanometer ring and tube |
-
2007
- 2007-09-05 CN CN200710121358XA patent/CN101381887B/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1438176A (en) * | 2003-03-17 | 2003-08-27 | 郭水虎 | Method for preparing modified nano boron oxide |
CN1594083A (en) * | 2004-06-22 | 2005-03-16 | 清华大学 | B6O nanowire and crystal whisker structure and its preparation method |
CN1789115A (en) * | 2005-12-20 | 2006-06-21 | 山东大学 | Method for preparing boron nitride nanometer ring and tube |
Non-Patent Citations (4)
Title |
---|
Gao Yunpeng等.Crystalline boron nanowires grown by magnetron sputtering.《Materials Science and Engineering A》.2006,第434卷(第1-2期),53-57. * |
Weiqiang Ding.Mechanics of crystalline boron nanowires.《Composites Science and Technology》.2006,第66卷1112–1124. * |
曹立民等.羽毛状硼纳米线并联结及其高定向列阵.《中国科学G辑》.2004,第34卷(第1期),76-86. * |
曹立民等.高取向硼纳米线列阵.《中国科学G辑》.2003,第33卷(第6期),551-560. * |
Also Published As
Publication number | Publication date |
---|---|
CN101381887A (en) | 2009-03-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Liu et al. | Metal-like single crystalline boron nanotubes: synthesis and in situ study on electric transport and field emission properties | |
Nguyen et al. | Synthesis of single-crystalline sodium vanadate nanowires based on chemical solution deposition method | |
Miyazawa | Synthesis of fullerene nanowhiskers using the liquid–liquid interfacial precipitation method and their mechanical, electrical and superconducting properties | |
Gao et al. | Growth of aligned carbon nanotube arrays on metallic substrate and its application to supercapacitors | |
US8114518B2 (en) | Single-walled carbon nanotube and aligned single-walled carbon nanotube bulk structure, and their production process, production apparatus and application use | |
Liu et al. | Fabrication of vertically aligned single‐crystalline boron nanowire arrays and investigation of their field‐emission behavior | |
JP2012508682A (en) | Single crystal germanium cobalt nanowire, germanium cobalt nanowire structure, and manufacturing method thereof | |
Tovar-Martinez et al. | Synthesis of carbon nano-onions doped with nitrogen using spray pyrolisis | |
Li et al. | Synthesis and field emission properties of GaN nanowires | |
Ryu et al. | Stabilized electron emission from silicon coated carbon nanotubes for a high-performance electron source | |
Shen et al. | Highly conductive vertically aligned molybdenum nanowalls and their field emission property | |
Hao et al. | Synthesis and characterization of few-layer Sb 2 Te 3 nanoplates with electrostatic properties | |
Tsai et al. | A feasibility study of preparing carbon nanotubes by using a metal dusting process | |
Beltran-Huarac et al. | Synthesis and transport properties of La0. 67Sr0. 33MnO3 conformally-coated on carbon nanotubes | |
CN101381887B (en) | Single crystal boron nanotaper, method for preparing same and applications in electricity and field emission device | |
Liu et al. | Controlled synthesis of ultra-long AlN nanowires in different densities and in situ investigation of the physical properties of an individual AlN nanowire | |
Cai et al. | Formation of modulated structures in single-crystalline hexagonal α-Fe2O3 nanowires | |
Ma et al. | Stable field emission from cone-shaped SnO2 nanorod arrays | |
TW200842105A (en) | Transmission electron microscope grid and method for making same | |
Li et al. | Orientation of silicon nanowires grown from nickel-coated silicon wafers | |
Lee et al. | Sensitive and stable gas ionization sensor based on 3-D single-walled carbon nanotube networks suspended on ZnO nanorods | |
CN105374652B (en) | A kind of nano-particle modified SiC nanowire field-transmitting cathodes of Au | |
CN105428184B (en) | A kind of preparation method of the nano-particle modified SiC nanowires of Au | |
Sankaran et al. | Fabrication, microstructure, and enhanced thermionic electron emission properties of vertically aligned nitrogen-doped nanocrystalline diamond nanorods | |
Ma et al. | Improved field emission properties of Au nanoparticles and CNTs decorated SnO2 nanowire arrays on carbon fibers |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant |