CN101378293B - 一种水下传感器网络节点测量方法及装置 - Google Patents

一种水下传感器网络节点测量方法及装置 Download PDF

Info

Publication number
CN101378293B
CN101378293B CN2007101210774A CN200710121077A CN101378293B CN 101378293 B CN101378293 B CN 101378293B CN 2007101210774 A CN2007101210774 A CN 2007101210774A CN 200710121077 A CN200710121077 A CN 200710121077A CN 101378293 B CN101378293 B CN 101378293B
Authority
CN
China
Prior art keywords
node apparatus
underwater
data
communication
interface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN2007101210774A
Other languages
English (en)
Other versions
CN101378293A (zh
Inventor
谭民
王硕
吕超
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Automation of Chinese Academy of Science
Original Assignee
Institute of Automation of Chinese Academy of Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Automation of Chinese Academy of Science filed Critical Institute of Automation of Chinese Academy of Science
Priority to CN2007101210774A priority Critical patent/CN101378293B/zh
Publication of CN101378293A publication Critical patent/CN101378293A/zh
Application granted granted Critical
Publication of CN101378293B publication Critical patent/CN101378293B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Landscapes

  • Arrangements For Transmission Of Measured Signals (AREA)

Abstract

本发明公开一种水下无线传感器网络节点测量方法及装置,其方法为利用超声换能器进行电信号和超声信号的相互转换,完成水下超声通信;利用节点间通信的传输延迟和超声在水下的传播速度,计算节点装置间的相对距离;利用水下检测专用传感器,采集节点装置所在位置水下环境数据信息。装置,包括微控制器、FSK调制及功率放大模块、换能器串联连接;水听器、微弱信号放大器、FSK解调芯片、微控制器串联连接;电源管理模块用于对所述电路电源供给和电源管理功能;外扩接口模块用于与相应接口传感器或外设相连。本发明实现了低成本、低功耗、短距离水声通信功能和无线传感器网络节点装置间的测距功能。

Description

一种水下传感器网络节点测量方法及装置
技术领域
本发明涉及水下无线通信领域,具体地说用于水下无线传感器网络,是一种同时具有水下通信、节点间测距和环境参数测量的装置。
背景技术
自二十世纪九十年代以来,水下传感器网络的研究在国外开始兴起,美国麻省理工学院(MIT)在水声通信及水下自组织网络上进行了深入的研究。MIT机器人实验室构建了水下传感器网络的实验系统,该系统中采用了水下声通信与光通信结合的方式实现节点定位和数据回收,采用了水下自治机器人(AUV)作为移动节点布置与回收固定节点,并通过蓝绿光与固定节点通信进行数据回传。美国南加利福尼亚大学John Heidemann研究组提出了密集型水下传感器网络的概念,并根据无线传感器网络应用平台MICA2的设计原则,设计了具有通信能量检测和功耗控制功能的水声通信系统,但没有给出该系统在水下工作的具体实验数据。
水声通信技术早在第二次世界大战时已被应用,世界上第一个水声通信系统是美国海军水声实验室于1945年研制的水下电话,主要用于潜艇之间的通信。近年来,随着微电子技术发展及信号处理芯片计算能力的不断提高,水声通信技术在逐步走向成熟。MIT和WHOI(WoodsHole Oceanographic Institution)的Milica Stojanovic等人在水声通信技术上进行了深入的研究,开发了基于TI TMS320C6713和TMS320C5416DSP的水声通信系统。我国在“八五”期间开始进行水声通信的研究,最早的研究单位有厦门大学、哈尔滨工程大学和中科院声学研究所,主要有低速率远程通信和高速率近程通信两个方向,都取得了很好的成果。中国科学院声学研究所在国家高技术研究发展计划和“十五”国防预研基金的支持下,在关于水下高速通信的项目中,对水下通信系统,特别是多进制PSK调制解调系统和水下OFDM通信系统进行了深入的理论和实验研究。但这些工作主要针对水下通信,没有针对完整的水下传感器网络节点装置开展研制。
发明内容
为了解决现有技术目前市场上的水声通信设备存在价格高、功耗大、体积大的缺点,无法达到水下大规模应用和电池供电情况下的水下长时间工作需求的问题,本发明的目的是降低水下无线传感器网络节点装置的成本,满足水下传感器网络大规模应用的要求,设计一种水下无线传感器网络节点装置及测量方法。
为了实现所述目的,本发明的第一方面,提供一种水下传感器网络节点测量方法,其测量步骤包括:
步骤1:利用超声换能器进行电信号和超声信号的相互转换,完成水下超声通信;
步骤2:利用节点间水声通信的传输延迟和超声在水下的传播速度,计算节点装置间的相对距离;
步骤3:利用水下检测专用传感器,采集节点装置所在位置水下环境数据信息。
所述节点间短距超声通信包括:
步骤11:节点装置a的微控制器将工作模式默认为通信接收模式并切换通道的打开与关闭,切换通信发送模式和通信接收模式的操作;
步骤12:节点装置b默认工作模式为通信接收模式;微控制器接收到通信数据后进行帧检测,在帧无误接收后进行帧地址和类型判断,微控制器做出相应数据存储、转发或者丢弃的操作,完成对输出接口控制;
步骤13:为确认通信数据收到,节点装置b按照步骤11的相同过程向节点装置a发送收条信息;
步骤14:节点装置a收到节点装置b发送的收条信息后,确定数据通信成功,完成数据通信;否则重复步骤11至步骤14,直至通信成功。
所述节点间相对距离测定步骤包括:
步骤21:节点装置a按通信协议向节点装置b发送距离测量命令,同时记录数据发射结束时的时刻T1,并转入通信接收模式;
步骤22.节点装置b接收到节点装置a的距离测量命令后,按通信协议回应节点装置a;
步骤23.节点装置a接收到节点装置b的确认数据后立刻记录接收时刻T2
步骤24.节点装置a按下面公式计算节点装置a与节点装置b之间的距离R:
R=V×(T2-T1-T)/2
式中,R表示节点装置a与节点装置b间的测量距离,T1,T2分别表示节点装置a计时的起始时刻与终止时刻,V表示声波在水下的传播速度,T表示节点装置b处理接收数据的耗时。
所述数据采集流程:
步骤31:节点装置默认工作模式为通信接收模式,其他模块电路均为休眠模式;在节点装置收到传感器启动命令后,由微处理器产生相应传感器的工作时序信号;
步骤32:节点装置根据数据采集命令初始化传感器工作模式;
步骤33:节点装置数据采集结束,微控制器关闭传感器及其相应接口和工作电源;
步骤34:微控制器按数据长度,将其分割分批次按通信协议进行打包成帧进行数据传输,完成数据采集过程。
为了实现所述目的,本发明的第二方面,提供一种水下传感器网络节点测量装置,其技术方案包括:微控制器、FSK调制器、功率放大器、超声换能器串联连接;由微控制器产生的待传输信号经硬件FSK调制后,由功率放大器输出信号驱动超声换能器实现超声发射;
水听器、微弱信号放大器、FSK解调芯片、微控制器串联连接;水听器接收到超声信号后转换为微弱电信号,经微弱信号放大器送入专用FSK解调芯片,由微控制器接收解调数据;
电源管理模块分别与微弱信号放大器、FSK解调芯片、微控制器、FSK调制器、功率放大器、A/D转换接口、PWM输出接口、扩展接口连接,用于对所述电路电源供给和电源管理功能。
所述A/D转换接口为外扩两路模数转换接口,且附带由微处理器控制使能的电源输出接口,用于实现与模拟量输出的水下应用传感器相连完成水下环境信息的采样、收集。
所述PWM输出接口为外扩四路PWM输出接口,且附带由微处理器控制使能的电源输出接口,四路PWM输出信号作为电机控制信号。
所述扩展接口包括:
外扩异步串行接口,与相应接口的传感器或外设进行通信;和
外扩同步串行接口,与相应接口的传感器或外设进行数据传输。
所述FSK调制器的通信载波频率在10KHz~200KHz范围内调整,用于宽频带超声发射与接收,实现与多种超声换能器配合使用。
所述超声换能器的发射功率可调。
所述的水下无线传感器网络节点装置用于装置间的水下超声通信和装置间相对距离的测量。
利用本发明设计的水下无线传感器网络节点装置,该装置具有短距离水下超声通信能力,节点装置间的相对距离测量能力,外扩了多种方式接口可连接多种传感器完成水下信息采集功能,输出的PWM信号可作为电机控制信号,可以完成水下环境信息的采集,建立水下无线传感器网络。由于其具有低成本、低功耗、体积小的特点,可在许多领域广泛应用,如浅海环境监测,鱼池水质监测,污染监控等具体应用。
附图说明
图1本发明节点装置硬件系统结构图
图2本发明节点装置软件系统结构图
图3本发明微处理器及外设及口扩展电路原理图
图4本发明FSK调制与功率放大电路原理图
图5本发明弱信号放大与FSK解调电路原理图
图6本发明电源管理电路原理图
图7装置实物图
具体实施方式
下面将结合附图对本发明对本发明提供的水下无线传感器网络节点装置加以详细说明,应指出的是,所描述的实施例仅旨在便于对本发明的理解,而对其不起任何限定作用。
系统硬件系统框图如图1所示,系统软件系统框图如图2所示。
本发明设计的水下无线传感器网络节点装置包括如下几部分:微控制器1、FSK调制模块2及功率放大模块3、超声发射换能器4、水听器5、弱信号放大模块6及FSK解调模块7、电源管理模块8、A/D转换接口9、外设扩展接口模块10包括同步串行接口101和异步串行接口102、PWM输出接口11等。
微控制器1运行嵌入式多任务操作系统,完成本节点装置的实时数据处理、智能决策管理及其它模块的控制等功能。
FSK调制模块2及功率放大模块3完成原始数据的FSK调制,调制信号经过功率放大模块3后驱动超声发射换能器4;通过调节FSK调制模块2及功率放大模块3的内部电路参数可以在10KHz~200KHz范围内调整FSK调制的载波频率和信号放大功率以适应不同的超声换能器4。超声发射换能器4负责将电信号转换为超声信号在水中传播,水听器5负责将水中接收的超声信号转换为电信号。弱信号放大模块6及FSK解调模块7负责将水听器5输出的电信号放大后进行FSK解调。A/D转换接口9可以将具有模拟量输出接口的传感器输出的模拟电信号转换为数字信号,本装置共外扩两路A/D转换接口9且均受微处理器1控制使能;同步串行接口101与异步串行接口102可以供相应接口的传感器或外设使用,本装置共外扩一路同步串行接口101和一路异步串行接口102且均受微处理器1控制使能;PWM输出接口11可以输出占空比和频率可调的PWM电信号,可作为电机等外设的控制信号,本装置共外扩四路PWM输出接口11且均受微处理器1控制使能,每路PWM输出接口11均附带电源输出。电源管理模块8负责本装置各模块的电源供给,本装置共有五路电源输出,分别为+12V、-12V、三路+5V,除微处理器1电路电源外的其他电源输出均受微控制器1控制使能。
本实例仅仅对两个水下无线传感器网络节点装置间的通信进行举例。其具体流程步骤包括:
步骤1.节点装置a的微处理器1将工作模式(装置默认工作模式为通信接收方式)切换为通信发送模式。切换过程包括,微处理器1接收通道关闭,同时发送通道(FSK调制模块2与功率放大模块3,超声发射换能器4)电源打开,微处理器1延时200ms以使超声换能器4“预热”,保证其正常工作。微处理器1整理须发送的数据并按照通信协议规定的格式将数据进行打包成帧,通过异步串行接口101将通信数据发送至FSK调制模块2和功率放大模块3进行通信数据信号调制与功率放大,功率放大后的信号驱动超声发射换能器4将电信号转换为超声信号。数据发送过程结束后,微处理器1关闭发送通道,打开接收通道,进入通信接收模式;
步骤2.节点装置b默认工作模式为通信接收模式。水听器5在其工作频带内检测到超声信号后将其转换为电信号,并提供给弱信号放大模块6及FSK解调模块7,解调后的数据信号发送到微处理器1、异步串行接收接口102,微处理器1接收到通信数据后进行帧检测,在帧无误接收后进行帧地址和类型判断,微处理器1做出相应的处理措施,如数据存储、转发或者丢弃等操作;
步骤3.为确认数据收到,节点装置b可以如步骤1所示的相同过程向节点装置a发送收条信息;
步骤4.节点装置a收到节点装置b发送的收条信息后,确定数据通信成功,完成数据通信;否则重复步骤1至步骤4,直至通信成功。
水下传感器网络节点装置数据采集流程:
步骤1.节点装置默认工作模式为通信接收模式,其他模块电路均为休眠模式(即电源关闭)。在节点装置收到数据采集命令后,根据命令类型使能相应接口电源并启动传感器开始工作。
步骤2.节点装置根据数据采集命令初始化传感器工作模式,包括采样数据长度、采样速率、采样时间等。
步骤3.节点装置数据采集结束,微处理器1关闭传感器工作相应接口及其工作电源。
步骤4.微处理器1按数据长度,将采样进行分割并分批次打包成帧进行数据传输,完成数据采集过程。
微控制器1电路如图3所示,微控制器1由AVR单片机Mega128实现,完成本装置电源管理模块8的控制及时序产生,通信数据的收发,外设的扩展接口10,工作模式的切换,传感器信息的处理等功能。
◆Mega128的控制信号输出端包括:
PE4(6脚)作为四路PWM接口11的电源输出使能信号,谁控制电源芯片U6TPS76850使能端;
PE5(7脚)作为FSK调制模块2调制过程电源使能信号,控制电源芯片U7 MAX667使能端;
PE6(8脚)作为FSK信号发射功率放大模块3的输出使能信号,控制功率放大芯片U2输出使能端。
◆Mega128的通信接口使用:Mega128具有两路异步串行接口102,在本装置中,异步串行接口102采用USART 0(异步串行接口0脚)用于对外扩展通信接口,可直接与无线通信模块EM100或具有异步串行接口102输出的传感器相连;异步串行接口102的USART1(异步串行接口1脚)用于FSK通信。
◆Mega128的外设接口扩展包括:本装置中,OC3A/PE3(5脚),OC1A/PB5(15脚),OC1B/PB6(16脚),OC1C/PB7(17脚),分别用于四路PWM输出扩展接口10(PWM0,PWM1,PWM2,PWM3),可作为电机控制信号。INT7/PE7(9脚)用于外部中断输入扩展接口。SS/PB0(10脚),SCK/PB1(11脚),MOSI/PB2(12脚),MISO/PB3(13脚),用于SPI(同步串行外设接口)扩展接口,可与具有SPI接口形式的传感器或外设相连,如APMS-10G型混浊度传感器。SCL/INT0/PD0(25脚),SDA/INT1/PD1(26脚),用于I2C(两线串行总线)扩展接口,可与具有I2C接口形式的传感器或外设相连,如LM86型温度传感器。外部中断扩展接口,SPI接口,I2C接口由J9扩展。PA3(48脚),PA4(47脚),PA5(46脚)作为三路带上拉输出的扩展IO接口,可用于相应传感器相连,如红外传感器。ADC0/PF0(61脚),ADC1/PF1(60脚),用于模数转换接口扩展,可用于模拟量输出的传感器接口,如水下压力传感器40PC系列压力传感器。
◆Mega128的工作模式切换。本装置具有三种工作模式,休眠模式,通信模式,采集模式。为节省功耗,本装置会定期在休眠模式和通信模式间切换,在收到通信命令后执行命令进入采集模式。休眠模式下,本装置各模块电路中具有电源使能功能的均为不使能状态,微处理器处于休眠状态,整个装置处于最低功耗状态,当微处理器定时器定时时间到,由休眠模式转为通信模式。通信模式下,本装置监听信道,有数据接收到时,处理接收数据,根据命令类型使能相应传感器进行数据采集,进入采集模式。采集模式下,微处理器及相应的传感器模块处于全速工作状态,数据采集完毕,进入通信模式。
◆Mega128对传感器信息的处理。为提高水下传感器数据采集的精度和效率,本装置微处理器须对采集数据进行处理后再进行数据传输,处理的方法包括过采样取平均法,数据压缩方法等。
◆AVR Mega128型微处理器1的开发采用Windows xp+GCC+AVR Studio 4.0完成,开发语言为C语言。
FSK调制模块2及功率放大模块3,如图4所示,由FSK专用调制芯片XR2206和功率放大芯片TLE2301组成,实现数据通信的FSK调制和调制信号的功率放大作用。专用中频FSK调制芯片XR2206,可将微处理器1发出的通信数据进行FSK调制。XR2206外围电阻、电容主要完成载波频率设置和输出信号幅度控制作用,其中包括有:电容C3,电阻R3,电阻R4,设置键控频率(f1,f2),调整电阻R3和电阻R4阻值可调整f1和f2;调整电阻R5可调节调制信号的输出电平。功率放大芯片TLE2301,完成FSK调制信号的功率放大作用,用以驱动超声换能器4,增大发射距离。TLE2301外围电阻电容主要完成功率放大倍数设置作用,通过调节电阻R7可调整本装置的输出功率。
弱信号放大模块6及FSK解调模块7,如图5所示,由低噪声高精度仪用运算放大器AD623和FSK专用解调芯片XR2211组成,实现接收微弱电信号的放大和FSK解调作用。AD623外围电阻电容主要完成信号放大倍数设置,输入信号滤波及抑制运算放大器输入偏置电流的作用,电阻R11用于设置运算放大器的放大倍数;C32与R14,C33与R13分别构成了两输入端的高通滤波器,以滤除工频等信号的干扰;R14和R15还起到抑制运算放大器输入偏置电流的作用,减小信号的放大失真。XR2211,为专用中频FSK相干解调芯片,实现接收信号的FSK解调,并输出给微处理器,完成数据通信过程。XR2211外围电阻、电容主要完成FSK中心频率设置和解调过程参数设置,电容C26和电阻R19设置FSK解调的中心频率,调整电阻R19可调节中心频率,使得中心频率f0,满足f0=(f1+f2)/2;电阻R16,电阻R18,电容C29,电容C30用于FSK解调过程中低通滤波器参数设置。
发射与接收超声换能器4,如装置实物图图7所示,由T/R40防水型超声换能器4实现,在空气中应用频率为40KHz,水下应用频率为32KHz。
电源管理电路8,如图6所示,由两片MAX667,一片TPS76850,一片DC-DC IA0512KS-2W组成,完成本装置各模块电路的电源供给。U5(MAX667),向微处理器电路,弱信号及FSK解调电路提供+5V电源;U6(TPS76850)向四路PWM输出接口提供电源,该路电源输出受微处理器控制使能。U7(MAX667),提供的+5V电源提供给DC-DC模块产生+12V和-12V电源,用于FSK调制及功率放大电路,U7电源输出受微处理器控制使能。本装置的总电源供给为具有+6V~+10V输出的Li电池。
微处理器1的软件系统结构如图2所示。软件系统在主线程下共有五个子线程,即通信线程、测距线程、电源管理线程、内存管理线程、外设接口线程。主线程决定各子线程生命周期,进行各子线程间的调度和参数传递。
◆通信线程,包含两个子程序有:数据发送子程序和数据接收子程序,用于完成通信数据的封装与解析,通知主线程所收到的通信命令和数据的含义,或按固定的通信格式对待发送的命令和数据进行封装。通信步骤如权利要求中步骤11~步骤14所示。
测距线程,包含三个子程序有:通信命令控制子程序、定时子程序及距离计算子程序,分别完成测距命令的发送和接收、定时时间的测量、根据水声传播速度计算节点装置间相对距离等功能。节点装置间相对距离测定步骤包括:
步骤21:节点装置a按通信协议向节点装置b发送距离测量命令,同时记录数据发射结束时的时刻T1,并转入通信接收模式;
步骤22.节点装置b接收到节点装置a的距离测量命令后,按通信协议回应节点装置a;
步骤23.节点装置a接收到节点装置b的确认通信数据后立刻记录接收时刻T2
步骤24.节点装置a按下面公式计算节点装置a与节点装置b之间的距离R:
R=V×(T2-T1-T)/2
式中,R表示节点装置a与节点装置b间的测量距离,T1,T2分别表示节点装置a计时的起始时刻与终止时刻,V表示声波在水下的传播速度,T表示节点装置b处理接收数据的耗时。
◆电源管理线程,包含三个子程序有:微处理器电源控制子程序、外设接口电源控制子程序及通信模块电源控制子程序,完成本装置的各模块电源的使能控制。微处理器的电路电源、通信模块的电路电源、外设接口的电路电源分别被三个子程序控制,即微处理器电源控制子程序、通信模块电源子程序、外设接口电源子程序。
◆内存管理线程,包含三个子程序有:通信数据区管理子程序、外设接口区管理子程序及临时变量管理子程序,完成各数据区的数据管理,包括数据初始化、地址分配、异常处理等。内存管理线程将微处理器1内存分为三个区,通信数据区128字节,临时变量区128字节,外设接口区3480字节。
◆外设接口线程,包含五个子程序有:异步串行接口控制子程序、同步串行接口控制子程序、PWM接口控制子程序、模数转换接口控制子程序及I2C总线接口控制子程序,分别完成本装置五种外设接口的驱动,包括异步串行接口101(SCI)控制子程序、同步串行接口102控制(SPI)子程序、脉宽调制(PWM)输出接口控制子程序、模数转换(ADC)接口控制子程序、两线串行总线(I2C)接口控制子程序等。
装置实物图如图7所示。
以上所述,仅为本发明中的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉该技术的人在本发明所揭露的技术范围内,可理解想到的变换或替换,都应涵盖在本发明的包含范围之内,因此,本发明的保护范围应该以权利要求书的保护范围为准。

Claims (9)

1.一种水下无线传感器网络节点测量方法,其特征在于,测量步骤包括:
步骤1:利用超声换能器进行电信号和超声信号的相互转换,完成水下超声通信;
步骤2:利用节点间水声通信的传输延迟和超声在水下的传播速度,计算节点装置间的相对距离;
步骤3:利用水下检测专用传感器,采集节点装置所在位置水下环境数据信息;
所述节点间短距超声通信包括:
步骤11:节点装置a的微控制器将工作模式默认为通信接收模式并切换通道的打开与关闭,切换通信发送模式和通信接收模式的操作;
步骤12:节点装置b默认工作模式为通信接收模式;微控制器接收到通信数据后进行帧检测,在帧无误接收后进行帧地址和类型判断,微控制器做出相应数据存储、转发或者丢弃的操作,完成对输出接口控制;
步骤13:为确认通信数据收到,节点装置b按照步骤11的相同过程向节点装置a发送收条信息;
步骤14:节点装置a收到节点装置b发送的收条信息后,确定数据通信成功,完成数据通信;否则重复步骤11至步骤14,直至通信成功。
2.根据权利要求1所述的测量方法,其特征在于,所述节点间相对距离测定步骤包括:
步骤21:节点装置a按通信协议向节点装置b发送距离测量命令,同时记录数据发射结束时的时刻T1,并转入通信接收模式;
步骤22.节点装置b接收到节点装置a的距离测量命令后,按通信协议回应节点装置a;
步骤23.节点装置a接收到节点装置b的确认数据后立刻记录接收时刻T2
步骤24.节点装置a按下面公式计算节点装置a与节点装置b之间 的距离R:
R=V×(T2-T1-T)/2
式中,R表示节点装置a与节点装置b间的测量距离,T1,T2分别表示节点装置a计时的起始时刻与终止时刻,V表示声波在水下的传播速度,T表示节点装置b处理接收数据的耗时。
3.根据权利要求1所述的测量方法,其特征在于,采集数据信息的步骤包括:
步骤31:节点装置默认工作模式为通信接收模式,其他模块电路均为休眠模式;在节点装置收到传感器启动命令后,由微处理器产生相应传感器的工作时序信号;
步骤32:节点装置根据数据采集命令初始化传感器工作模式;
步骤33:节点装置数据采集结束,微控制器关闭传感器及其相应接口和工作电源;
步骤34:微控制器按数据长度,将其分割分批次按通信协议进行打包成帧进行数据传输,完成数据采集过程。
4.一种水下无线传感器网络节点装置,其特征在于:
微控制器、FSK调制器、功率放大器、超声换能器串联连接;由微控制器产生的待传输信号经硬件FSK调制后,由功率放大器输出信号驱动超声换能器实现超声发射;
水听器、微弱信号放大器、FSK解调芯片、微控制器串联连接;水听器接收到超声信号后转换为微弱电信号,经微弱信号放大器送入专用FSK解调芯片,由微控制器接收解调数据;
电源管理模块分别与微弱信号放大器、FSK解调芯片、微控制器、FSK调制器、功率放大器、A/D转换接口、PWM输出接口、扩展接口连接,用于电源供给和电源管理;
所述A/D转换接口为外扩两路模数转换接口,且附带由微处理器控制使能的电源输出接口,用于实现与具有模拟量输出接口的水下应用传感器相连,完成水下环境信息的采样、收集。
5.根据权利要求4所述的水下无线传感器网络节点装置,其特征在于,所述PWM输出接口为外扩四路PWM输出接口,且附带由微处 理器控制使能的电源输出接口,四路PWM输出信号作为电机控制信号。
6.根据权利要求4所述的水下无线传感器网络节点装置,其特征在于,所述扩展接口包括:
外扩异步串行接口,与相应接口的传感器或外设进行通信;和
外扩同步串行接口,与相应接口的传感器或外设进行数据传输。
7.根据权利要求4所述的水下无线传感器网络节点装置,其特征在于,所述FSK调制器的通信载波频率在10KHz~200KHz范围内调整,用于宽频带超声发射与接收,实现与多种超声换能器配合使用。
8.根据权利要求4所述的水下无线传感器网络节点装置,其特征在于,所述超声换能器的发射功率可调。
9.根据权利要求4所述的水下无线传感器网络节点装置,用于装置间的水下超声通信和装置间相对距离的测量。 
CN2007101210774A 2007-08-29 2007-08-29 一种水下传感器网络节点测量方法及装置 Expired - Fee Related CN101378293B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2007101210774A CN101378293B (zh) 2007-08-29 2007-08-29 一种水下传感器网络节点测量方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2007101210774A CN101378293B (zh) 2007-08-29 2007-08-29 一种水下传感器网络节点测量方法及装置

Publications (2)

Publication Number Publication Date
CN101378293A CN101378293A (zh) 2009-03-04
CN101378293B true CN101378293B (zh) 2011-08-31

Family

ID=40421658

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2007101210774A Expired - Fee Related CN101378293B (zh) 2007-08-29 2007-08-29 一种水下传感器网络节点测量方法及装置

Country Status (1)

Country Link
CN (1) CN101378293B (zh)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010001134A1 (de) * 2010-01-22 2011-07-28 Robert Bosch GmbH, 70469 Verfahren zum Messen einer Betriebsgröße an mehreren Elektromotoren einer automatischen Parkbremse
CN101848027A (zh) * 2010-06-19 2010-09-29 哈尔滨工程大学 一种无线电与水声组合遥控系统及遥控方法
CN102183798B (zh) * 2011-01-30 2013-06-19 中国海洋石油总公司 一种海洋拖曳多线阵声学定位装置测控系统
CN103729047B (zh) * 2012-10-11 2017-04-05 中国航空工业集团公司第六三一研究所 一种水下auv控制计算机的电源管理方法
CN103431875B (zh) * 2013-09-13 2014-12-31 于一 一种提高水听器线性度的方法及装置
CN103618648A (zh) * 2013-12-02 2014-03-05 中国科学院声学研究所 一种传感器网络上位机的测试方法及其系统
CN104052969A (zh) * 2014-06-12 2014-09-17 上海海洋大学 一种水下led集鱼灯电力载波摄像系统
CN104122376B (zh) * 2014-06-30 2016-05-25 南京领先环保技术股份有限公司 一种多参数水质分析仪
CN105371889A (zh) * 2014-08-12 2016-03-02 湖北泽捷电子科技有限公司 管道流体监测系统
CN105448075A (zh) * 2014-08-12 2016-03-30 湖北泽捷电子科技有限公司 管道流体监测方法
CN105333902A (zh) * 2014-08-12 2016-02-17 湖北泽捷电子科技有限公司 管道流体监测器
CN104202408B (zh) * 2014-09-11 2017-10-20 中国海洋石油总公司 一种获取海洋拖曳全网中各节点位置的方法和系统
KR102317831B1 (ko) * 2015-02-13 2021-10-27 삼성전자주식회사 다중 데이터의 배칭 처리 방법 및 장치
CN104936194B (zh) * 2015-06-08 2018-08-21 浙江理工大学 一种水声传感器网络及其节点部署及组网方法
CN104918263B (zh) * 2015-06-08 2018-08-21 浙江理工大学 一种基于水声传感器网的移动辅助组网装置及其组网方法
KR101717947B1 (ko) * 2015-12-21 2017-03-20 호서대학교 산학협력단 수중 통신 방법
CN106452577A (zh) * 2016-09-26 2017-02-22 北京邮电大学 一种可见光通信装置、系统及方法
CN108234372A (zh) * 2018-03-29 2018-06-29 成都亿佰特电子科技有限公司 一种带测距功能的多调制高速无线传输系统及其工作方法
CN109462564B (zh) * 2018-11-16 2021-08-03 泰山学院 基于深度神经网络的水下通信调制方式识别方法及系统
CN110703206B (zh) * 2019-09-19 2023-07-25 上海船舶电子设备研究所(中国船舶重工集团公司第七二六研究所) 水下uuv通信定位一体化系统
CN111800202B (zh) * 2020-06-28 2021-06-15 西北工业大学 一种基于Labview平台的水声网络节点测距方法
CN112099610B (zh) * 2020-08-05 2022-06-14 中国科学院声学研究所 一种带定时预约功能的hadcp系统
CN113114383B (zh) * 2021-03-03 2022-04-05 同济大学 一种超声通信方法和体波驱动软体机器人
CN115167231A (zh) * 2022-07-27 2022-10-11 西北工业大学 一种多通道的水声信号同步采集系统及其方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1632531A (zh) * 2004-12-10 2005-06-29 华南师范大学 水下金属物探测方法及其装置
CN1800810A (zh) * 2006-01-18 2006-07-12 上海浩顺科技有限公司 遥控多层采水装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1632531A (zh) * 2004-12-10 2005-06-29 华南师范大学 水下金属物探测方法及其装置
CN1800810A (zh) * 2006-01-18 2006-07-12 上海浩顺科技有限公司 遥控多层采水装置

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
JP昭62-9392A 1987.01.17
周伟,来鸿飞,刘忠.水下无线传感器网络的节点精确定位.《指挥控制与仿真》.2007, *
梁炎.海底网络中心战传感器网络.《舰船科学技术》.2006, *

Also Published As

Publication number Publication date
CN101378293A (zh) 2009-03-04

Similar Documents

Publication Publication Date Title
CN101378293B (zh) 一种水下传感器网络节点测量方法及装置
Vasilescu et al. Data collection, storage, and retrieval with an underwater sensor network
CN103869321B (zh) 一种超声波测距系统及控制其测距的方法
CN101886744B (zh) 便携式检测管道故障内检设备的超声定位装置及定位方法
CN1804923A (zh) 深海水下长期锚系自动观测装置
CN111024049B (zh) 一种深海声学接收潜标及信号采集方法
CN107579782B (zh) 一种具有跨介质通信能力的水声调制解调器及调制方法
CN1971305A (zh) 智能深水应答器
CN106444771A (zh) 一种基于ZigBee的仿真多智能体协调的控制方法
CN106843069A (zh) 一种基于手机客户端多功能矿井搜救机器人
CN201600359U (zh) 一种无线气体监测仪
CN208432609U (zh) 一种水质在线监测无人船
CN108362369B (zh) 一种具备同步功能的自容式单通道海洋声信号测量装置
CN109302201B (zh) 小型海洋通讯转换装置及海洋通讯转换方法
CN205608466U (zh) 基于单片机的视频监控移动小车系统
CN205483079U (zh) 一种基于北斗的地下水位检测系统
CN107864003A (zh) 一种用LoRa无线技术实现通信的公网中继器
CN210863702U (zh) 一种基于树莓派的水面可移动水质监测节点装置
CN2812158Y (zh) 深海水下长期锚系自动观测装置
CN104297019A (zh) 一种取水系统
CN209149155U (zh) 一种电力巡检机器人电气控制系统
CN208638085U (zh) 电力巡检机器人供电系统
CN202127426U (zh) 一种基于混杂现场总线技术的化工安全监控系统
Lu et al. Design and realization of sensor nodes for dense underwater wireless sensor networks
CN111807223A (zh) 一种塔机变幅机构实时防摇控制方法及防摇装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20110831

Termination date: 20210829