CN101372314A - Method and device for producing high-purity hydrogen from hydrogen-containing synthesis gas using palladium membrane - Google Patents
Method and device for producing high-purity hydrogen from hydrogen-containing synthesis gas using palladium membrane Download PDFInfo
- Publication number
- CN101372314A CN101372314A CNA2008100294635A CN200810029463A CN101372314A CN 101372314 A CN101372314 A CN 101372314A CN A2008100294635 A CNA2008100294635 A CN A2008100294635A CN 200810029463 A CN200810029463 A CN 200810029463A CN 101372314 A CN101372314 A CN 101372314A
- Authority
- CN
- China
- Prior art keywords
- hydrogen
- palladium membrane
- synthesis gas
- heater
- burner
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 title claims abstract description 154
- 239000012528 membrane Substances 0.000 title claims abstract description 107
- 229910052739 hydrogen Inorganic materials 0.000 title claims abstract description 106
- 239000001257 hydrogen Substances 0.000 title claims abstract description 106
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 title claims abstract description 99
- 239000007789 gas Substances 0.000 title claims abstract description 89
- 229910052763 palladium Inorganic materials 0.000 title claims abstract description 77
- 238000000034 method Methods 0.000 title claims abstract description 25
- 230000015572 biosynthetic process Effects 0.000 title claims description 62
- 238000003786 synthesis reaction Methods 0.000 title claims description 62
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 38
- 238000004519 manufacturing process Methods 0.000 claims abstract description 18
- 239000007788 liquid Substances 0.000 claims abstract description 14
- 238000011144 upstream manufacturing Methods 0.000 claims abstract description 12
- 230000008569 process Effects 0.000 claims description 13
- 238000002485 combustion reaction Methods 0.000 claims description 11
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 claims description 10
- 239000003546 flue gas Substances 0.000 claims description 10
- 238000010438 heat treatment Methods 0.000 claims description 6
- 229930195733 hydrocarbon Natural products 0.000 claims description 5
- 150000002430 hydrocarbons Chemical class 0.000 claims description 5
- 238000002407 reforming Methods 0.000 claims description 3
- 239000004215 Carbon black (E152) Substances 0.000 claims description 2
- 238000000926 separation method Methods 0.000 abstract description 34
- 150000002431 hydrogen Chemical class 0.000 abstract description 9
- 230000018044 dehydration Effects 0.000 abstract 1
- 238000006297 dehydration reaction Methods 0.000 abstract 1
- 239000012466 permeate Substances 0.000 abstract 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 11
- 238000006243 chemical reaction Methods 0.000 description 9
- 239000000203 mixture Substances 0.000 description 5
- 239000000446 fuel Substances 0.000 description 4
- 239000003345 natural gas Substances 0.000 description 4
- 238000000746 purification Methods 0.000 description 4
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 3
- 238000000629 steam reforming Methods 0.000 description 3
- 239000000956 alloy Substances 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000003054 catalyst Substances 0.000 description 2
- 239000000498 cooling water Substances 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 239000002028 Biomass Substances 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 241000183024 Populus tremula Species 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 125000004429 atom Chemical group 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 238000001311 chemical methods and process Methods 0.000 description 1
- 239000003245 coal Substances 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 238000002309 gasification Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 229920005597 polymer membrane Polymers 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 239000012429 reaction media Substances 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
Images
Landscapes
- Separation Using Semi-Permeable Membranes (AREA)
- Hydrogen, Water And Hydrids (AREA)
Abstract
Description
技术领域: Technical field:
本发明涉及一种从含氢合成气中生产高纯度氢的工艺,特别涉及到利用钯膜分离制备高纯度氢气的方法和装置。The invention relates to a process for producing high-purity hydrogen from hydrogen-containing synthesis gas, in particular to a method and device for preparing high-purity hydrogen by using palladium membrane separation.
背景技术 Background technique
目前世界上90%的氢气来自于碳氢化合物(天然气,煤,生物质等)的重整,气化或裂解等化学过程后经过纯化得到,合成气的提纯是其中一个关键的工艺过程。可用的提纯技术有:变压吸附,高分子膜分离,钯膜分离,低温分离等。与其他分离技术相比,钯膜分离可以生产只含ppb级别杂质的高纯度氢气,尤其适应燃料电池的要求;另外钯膜分离装置占地小,在小型化方面也较其他几种分离方法容易。At present, 90% of the hydrogen in the world comes from the reforming of hydrocarbons (natural gas, coal, biomass, etc.), purification after chemical processes such as gasification or cracking, and the purification of synthesis gas is one of the key processes. Available purification techniques include: pressure swing adsorption, polymer membrane separation, palladium membrane separation, low temperature separation, etc. Compared with other separation technologies, palladium membrane separation can produce high-purity hydrogen containing only ppb-level impurities, which is especially suitable for fuel cells; in addition, the palladium membrane separation device occupies a small area and is easier to miniaturize than other separation methods .
氢气在钯膜中的传递服从所谓的“溶解—扩散”(Solution-diffusion)机理,它包含以下几个过程:氢气从边界层中扩散到钯膜表面;氢气在膜表面分解成氢原子;氢原子被钯膜溶解;氢原子在钯膜中从高压侧扩散到低压侧;氢原子在钯膜低压侧重新合成为氢分子;氢气扩散离开膜表面。根据上述理论,氢气在钯膜中的穿透率与膜的温度,厚度,合金成分,以及氢气在膜两侧的分压有关,并可用Sievert’s Law来表达:The transfer of hydrogen in the palladium membrane obeys the so-called "solution-diffusion" (Solution-diffusion) mechanism, which includes the following processes: hydrogen diffuses from the boundary layer to the surface of the palladium membrane; hydrogen decomposes into hydrogen atoms on the membrane surface; Atoms are dissolved by the palladium membrane; hydrogen atoms diffuse from the high pressure side to the low pressure side in the palladium membrane; hydrogen atoms recombine into hydrogen molecules on the low pressure side of the palladium membrane; hydrogen gas diffuses away from the membrane surface. According to the above theory, the penetration rate of hydrogen in the palladium membrane is related to the temperature, thickness, alloy composition of the membrane, and the partial pressure of hydrogen on both sides of the membrane, and can be expressed by Sievert's Law:
式中:In the formula:
R:气体常数;T:温度;A:膜面积;L:膜厚度;E:活化能;Ph:氢气高压侧分压;Pl:氢气低压侧分压;n:压力指数;k:指数函数前系数;M:透过率。R: Gas constant; T: Temperature; A : Membrane area; L: Membrane thickness; E : Activation energy; Coefficient before function; M: transmittance.
应用钯膜分离生产氢气的方法主要有两种:A)将膜组件与制氢反应器耦合为一体成为膜反应器,利用该反应器一步法从原料气中经过反应和分离得到高纯度的氢气。膜分离与反应过程的耦合可打破反应的热力学平衡,使得反应有利于向产氢的方向进行。但由于反应器中增加了膜分离组件,反应器结构复杂,钯膜与反应介质及催化剂直接接触,运行条件比较恶劣,钯膜寿命较短。B)钯膜分离与制氢反应器分离,制氢反应器生产含氢合成气,其下游采用钯膜分离得到高纯度氢气,该方法工艺简单,操作维修都比较方便。在工业上广泛应用的碳氢化合物水蒸汽重整生产合成气的工艺中,为了防止催化剂积碳及提高碳氢化合物的转化率,水蒸汽经常是大大过量,造成合成气中含有30%以上的水蒸汽。由钯膜分离的Sievert’s Law可知,钯膜分离的动力主要来自有膜内外氢气分压的差别,而在合成气总压力保持不变的情况下,合成气中大量的水蒸汽的存在,大大降低了合成气中氢气的分压,从而降低了膜分离生产氢气的效率。如图2所示,传统的直接膜分离工艺,上游制氢反应器生成的合成气直接经管路P21先进入换热器1换热到膜分离器工作温度(450-600℃);从换热器1出来经管路P22进入膜分离器5,产品氢气由管路P23输送到下游,尾气由管路P24输送到燃烧器6燃烧,所产生的烟气经管路26输送到上游产生水蒸汽。该工艺存在两方面的问题,一是混合气体中水蒸气含量高,降低钯膜分离效率。二是热能不能有效利用,能耗高。There are two main methods of using palladium membrane separation to produce hydrogen: A) The membrane module is coupled with the hydrogen production reactor to form a membrane reactor, and the reactor is used to react and separate the raw material gas to obtain high-purity hydrogen in one step. . The coupling of membrane separation and reaction process can break the thermodynamic balance of the reaction, making the reaction favor the direction of hydrogen production. However, due to the addition of membrane separation components in the reactor, the structure of the reactor is complex, the palladium membrane is in direct contact with the reaction medium and the catalyst, the operating conditions are relatively harsh, and the life of the palladium membrane is short. B) Palladium membrane separation is separated from the hydrogen production reactor. The hydrogen production reactor produces hydrogen-containing synthesis gas, and its downstream adopts palladium membrane separation to obtain high-purity hydrogen. This method is simple in process and convenient in operation and maintenance. In the process of steam reforming of hydrocarbons widely used in industry to produce synthesis gas, in order to prevent carbon deposition on the catalyst and improve the conversion rate of hydrocarbons, the water vapor is often in excess, resulting in the synthesis gas containing more than 30% steam. According to Sievert's Law of palladium membrane separation, the power of palladium membrane separation mainly comes from the difference of hydrogen partial pressure inside and outside the membrane, and when the total pressure of synthesis gas remains unchanged, the existence of a large amount of water vapor in the synthesis gas greatly reduces The partial pressure of hydrogen in the synthesis gas is reduced, thereby reducing the efficiency of membrane separation to produce hydrogen. As shown in Figure 2, in the traditional direct membrane separation process, the synthesis gas generated by the upstream hydrogen production reactor directly enters the
发明内容 Contents of the invention
本发明的目的在于客服现有技术的缺点,提供一种氢气分离效率高、节能的利用钯膜从含氢合成气中生产高纯度氢气的方法。The purpose of the present invention is to overcome the shortcomings of the prior art and provide a high-efficiency hydrogen separation and energy-saving method for producing high-purity hydrogen from hydrogen-containing synthesis gas using a palladium membrane.
本发明的另一目的在于提供实现上述利用钯膜从含氢合成气中生产高纯度氢气方法的装置。Another object of the present invention is to provide a device for realizing the above-mentioned method for producing high-purity hydrogen from hydrogen-containing synthesis gas by utilizing palladium membrane.
本发明的目的通过如下技术方案实现:The purpose of the present invention is achieved through the following technical solutions:
一种利用钯膜从含氢合成气中生产高纯度氢气的方法,包括如下步骤:A method for producing high-purity hydrogen from hydrogen-containing synthesis gas by using a palladium membrane, comprising the steps of:
(1)从上游制氢反应器生产的含有水蒸汽和氢气的合成气首先进入冷却器,降低到75~85℃,降温后的合成气进入气液分离器,实现水蒸气冷凝后与合成气分离;(1) The synthesis gas containing water vapor and hydrogen produced from the upstream hydrogen production reactor first enters the cooler and is lowered to 75-85°C. The cooled synthesis gas enters the gas-liquid separator to realize the condensation of water vapor and the synthesis gas separation;
(2)除水后的合成气进入初级加热器,合成气在加热器内被加热到250~350℃,加热器的加热介质为经过钯膜分离出氢气后的高温尾气;被加热后合成气进入次级加热器,合成气被加热到450~600℃,加热介质为经过初加热器的尾气燃烧所形成的烟气;(2) The syngas after water removal enters the primary heater, and the syngas is heated to 250-350°C in the heater. The heating medium of the heater is the high-temperature tail gas after the hydrogen is separated through the palladium membrane; the heated syngas Entering the secondary heater, the syngas is heated to 450-600°C, and the heating medium is the flue gas formed by the combustion of the tail gas passing through the primary heater;
(3)被加热的合成气进入钯膜分离器,合成气中的大部分氢气透过钯膜分离器成为高纯度产品氢气;高温尾气进入初级加热器加热除水后的合成气。(3) The heated synthesis gas enters the palladium membrane separator, and most of the hydrogen in the synthesis gas passes through the palladium membrane separator to become high-purity product hydrogen; the high-temperature tail gas enters the primary heater to heat the synthesis gas after water removal.
所述步骤(1)换热的介质为冷水,冷水经换热后成为水蒸汽,作为上游碳氢化合物重整用的工艺水蒸汽。The heat exchange medium in the step (1) is cold water, and the cold water becomes water vapor after heat exchange, which is used as process water vapor for upstream hydrocarbon reforming.
利用钯膜从含氢合成气中生产高纯度氢气的装置,包括换热器、钯膜分离器、燃烧器,所述换热器与钯膜分离器连接,钯膜分离器与燃烧器连接,其特征在于:所述连接换热器与钯膜分离器的管道上依次设有气液分离器、初级加热器和次级加热器,所述钯膜分离器通过初级加热器与燃烧器连接,所述燃烧器还与次级加热器连接。A device for producing high-purity hydrogen from hydrogen-containing synthesis gas using a palladium membrane, comprising a heat exchanger, a palladium membrane separator, and a burner, the heat exchanger is connected to the palladium membrane separator, and the palladium membrane separator is connected to the burner, It is characterized in that: the pipeline connecting the heat exchanger and the palladium membrane separator is sequentially provided with a gas-liquid separator, a primary heater and a secondary heater, and the palladium membrane separator is connected to the burner through the primary heater, The burner is also connected to a secondary heater.
本发明针对单独采用钯膜分离器从含氢合成气中生产高纯度氢气时,合成气中的大量水蒸汽降低钯膜分离效率的情况,采用换热器降低合成气的温度,从而降低合成气中的水蒸汽含量,将除水后的合成气重新加热进入钯膜分离器生产高纯度氢气。本发明设计简单,钯膜分离氢气效率高,为高效生产高纯度氢气提供了一种新的工艺方法。The invention aims at the situation that a large amount of water vapor in the synthesis gas reduces the separation efficiency of the palladium membrane when the palladium membrane separator is used alone to produce high-purity hydrogen from the hydrogen-containing synthesis gas, and a heat exchanger is used to reduce the temperature of the synthesis gas, thereby reducing the temperature of the synthesis gas. In order to reduce the water vapor content in the reactor, the dewatered synthesis gas is reheated into the palladium membrane separator to produce high-purity hydrogen. The invention has simple design, high hydrogen separation efficiency of the palladium membrane, and provides a new process method for efficient production of high-purity hydrogen.
现有膜分离生产氢气的工艺相比,本发明具有如下优点:Compared with the existing membrane separation technology for producing hydrogen, the present invention has the following advantages:
(1)含氢合成气在进入膜分离器之前除去合成气中含有的大量水蒸汽,提高了膜分离的效率。与传统工艺相比,在同样的氢气产率下,可以减少分离所需的膜面积,节约成本。(1) Before the hydrogen-containing synthesis gas enters the membrane separator, a large amount of water vapor contained in the synthesis gas is removed, which improves the efficiency of membrane separation. Compared with the traditional process, under the same hydrogen production rate, the membrane area required for separation can be reduced and the cost can be saved.
(2)本发明在除去合成气中水蒸汽的时候采用能量集成的方式,利用高温合成气生产上游制氢过程所需的水蒸汽,并利用钯膜分离器的尾气的显热及燃烧热来加热除水后的合成气,提高了能量利用效率。(2) The present invention adopts the mode of energy integration when removing the water vapor in the synthesis gas, utilizes the high-temperature synthesis gas to produce the water vapor required in the upstream hydrogen production process, and utilizes the sensible heat and combustion heat of the tail gas of the palladium membrane separator to generate The synthesis gas after water removal is heated to improve the energy utilization efficiency.
附图说明 Description of drawings
图1为利用钯膜从含氢合成气中生产高纯度氢气的装置示意图。Figure 1 is a schematic diagram of a device for producing high-purity hydrogen from hydrogen-containing synthesis gas using a palladium membrane.
图2为传统直接用钯膜分离生产高纯度氢气的装置示意图。Figure 2 is a schematic diagram of a conventional device for producing high-purity hydrogen directly by palladium membrane separation.
具体实施方式 Detailed ways
为了更好地理解本发明的技术方案,以下结合实施例和附图进一步说明本发明,需要说明的是,实施例并不构成对本发明保护范围的限定。In order to better understand the technical solution of the present invention, the present invention will be further described below in conjunction with the examples and accompanying drawings. It should be noted that the examples are not intended to limit the protection scope of the present invention.
如图1所示,利用钯膜从含氢合成气中生产高纯度氢气的装置,包括冷却器1、气液分离器2、初级加热器3、次级加热器4、钯膜分离器5和燃烧器6。流通含氢合成气的管路P01、P02、P04、P06依次连接冷却器1、气液分离器2、初级加热器3、次级加热器4和钯膜分离器5;冷却器1的冷却水由管路P13进入,由管路P14流出。气液分离器2中分离出的冷凝水由管路P03排出。钯膜分离器5生产的高纯1氢气由管路P07引出,尾气由管路P08、P09依次连接至初级加热器3和燃烧器6。管路P10将燃烧器6燃烧所需的空气引入,燃烧器6燃烧所产生的高温烟气由管路P11引入次级加热器4,并由管路P12接至下游再次利用。As shown in Figure 1, the device for producing high-purity hydrogen from hydrogen-containing synthesis gas using a palladium membrane includes a
本发明的冷却器1、初级加热器3和次级加热器4都可以采用套管式换热器,也可采用板式、列管式、管壳式换热器。气液分离器是一种压力容器,为满足工艺要求(压力、温度)的通用气液分离器。钯膜分离器5为内含分离氢气的钯膜组件的压力容器,膜组件的设计详见专利申请200710031743.5,燃烧器6为大气式燃烧器,也可以是无焰式燃烧器。The
实施例:千瓦级燃料电池供氢系统中氢气的分离提纯Example: Separation and purification of hydrogen in kilowatt-level fuel cell hydrogen supply system
质子交换膜燃料电池的氢源需要纯度很高的氢气,特别对CO的含量有着很高的要求,利用钯膜分离可以得到杂质为ppb级的纯氢气,而且钯膜分离体积小,适合应用于小型家庭燃料电池电站。The hydrogen source of the proton exchange membrane fuel cell requires high purity hydrogen, especially for the content of CO. Pure hydrogen with impurities at the ppb level can be obtained by palladium membrane separation, and the palladium membrane separation volume is small, which is suitable for application Small home fuel cell power station.
合成气由天然气水蒸汽重整反应生产,反应器可以是常规的固定床反应器,或新型流化床反应器、微通道反应器等。合成气组成为反应达到平衡时的气体组成。反应原料气流量如下:天然气(按甲烷计):0.280kg/h,水蒸汽:0.944kg/h,反应温度:700℃;反应压力:1.1MPa;则其出口(P01)合成气摩尔组分如下:CH4:7.9%;H2O:39.5%;H2:41.2%;CO:4.5%;CO2:69%;可见合成气中含有约近40%体积的水蒸汽,氢气分压为0.453MPa。Synthesis gas is produced by steam reforming of natural gas, and the reactor can be a conventional fixed-bed reactor, a new fluidized-bed reactor, a microchannel reactor, etc. The syngas composition is the composition of the gas when the reaction reaches equilibrium. The reaction raw gas flow rate is as follows: natural gas (according to methane): 0.280kg/h, water vapor: 0.944kg/h, reaction temperature: 700°C; reaction pressure: 1.1MPa; then its outlet (P01) synthesis gas molar composition is as follows : CH4: 7.9%; H 2 O: 39.5%; H 2 : 41.2%; CO: 4.5%; CO 2 : 69%; it can be seen that the syngas contains about 40% water vapor by volume, and the hydrogen partial pressure is 0.453MPa .
采用图1所示的氢气分离流程。采用ASPEN Plus软件模拟计算图1各管段中介质的温度、压力等工艺数据,如表1所示。The hydrogen separation process shown in Figure 1 is adopted. ASPEN Plus software was used to simulate and calculate the process data of the medium in each pipe section in Figure 1, such as temperature and pressure, as shown in Table 1.
本例中,为降低水蒸汽含量,增加氢气分压,首先将管路P01中的合成气通入冷却器1。在此冷却器器1作用下,合成气温度降低到83℃。换热的介质为冷水,该冷水经加热后成为水蒸汽,作为上游天然气水蒸汽重整反应用的工艺水蒸汽。冷却器选用列管式换热器,合成气进入壳程,冷却水走管程,换热面积:0.0027m2,换热量为0.62kw。In this example, in order to reduce the water vapor content and increase the hydrogen partial pressure, the synthesis gas in the pipeline P01 is first passed into the
降温后的合成气通过管路P02进入气液分离器2,合成气中90%的水从气液分离器中分离,冷凝水由管路P03排出。气液分离器为压力容器,材质选用为316L不锈钢,设计压力1.2MPa:设计温度100℃,安装有自动排水设施。The cooled synthesis gas enters the gas-
除水后的合成气中的氢气体积含量由41.2%增加为65.0%,分压由0.453MPa升高为0.715MPa,通过管路P04进入初级加热器3,合成气被加热到324℃。加热器的加热介质为经过钯膜分离出氢气后的高温尾气,尾气温度由600℃降低到180℃。初加热器3选用套管式换热器,合成气进入壳程,高温尾气走管程,换热面积0.009m2,换热量0.128kw。The volume content of hydrogen in the syngas after water removal increases from 41.2% to 65.0%, and the partial pressure increases from 0.453MPa to 0.715MPa. The syngas enters the
离开初级加热器3的合成气通过管路P05进入次级加热器4,合成气在此加热器内被加热到600℃。加热器的加热介质为经过初加热器3的尾气燃烧所形成的烟气,烟气温度由1000℃降低到765℃。加热器4采用套管式换热器,合成气进入壳程,高温烟气走管程,换热面积0.00043m2。The syngas leaving the
被加热到600℃的含氢合成气通过管路P06进入钯膜分离器5。在此,合成气中的大部分氢气透过钯膜分离器成为高纯度产品氢气。钯膜分离器5为一内含钯膜组件的压力容器(如中国发明专利申请200710031743.5介绍),容器设计压力1.2MPa:设计温度650℃。钯膜组件中的钯膜采用钯(75%)银(25%)合金膜,膜厚度25μm,膜面积0.018m2,氢气产量0.06kg/h,氢气回收率80%。The hydrogen-containing synthesis gas heated to 600°C enters the
钯膜分离器5中去除大部分氢气的尾气通过管路P08进入初级加热器3,温度降低到180℃,通过管路P09进入燃烧器6燃烧。燃烧后的高温烟气通过管路P11进入次级加热器4加热含氢合成气,温度由1000℃降低到765℃,低温烟气由管路P12送入上游制氢系统,可为制氢反应器提供热量。The tail gas from which most of the hydrogen is removed in the
如果采用如图2所示传统的直接膜分离工艺,上游制氢反应器生成的合成气直接经管路P21先进入冷却器1冷却到膜分离器的最佳工作温度450-600℃;从冷却器1出来经管路P22进入膜分离器5,氢气由管路P23输送到下游,尾气由管路P24输送到燃烧器6燃烧,所产生的烟气经管路26输送到上游产生水蒸汽。管路P25将燃烧器6燃烧所需的空气引入。若管路P21中的合成气的成分与图1中P01中的相同,则要达到与上述实施例中相同的氢气产量0.06kg/h,所需要的总膜面积为0.046m2,与传统的膜分离工艺相比,本发明可以将钯膜面积减少为原来的39%。If the traditional direct membrane separation process as shown in Figure 2 is adopted, the synthesis gas generated by the upstream hydrogen production reactor directly enters the
由上述对比可以看出,通过将进入膜分离器的合成气冷却的方法,能够有效的除去合成气中的水组分,提高合成气中氢气的分压,从而提高膜分离的效率。From the above comparison, it can be seen that by cooling the synthesis gas entering the membrane separator, the water component in the synthesis gas can be effectively removed, the partial pressure of hydrogen in the synthesis gas can be increased, and the efficiency of membrane separation can be improved.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2008100294635A CN101372314B (en) | 2008-07-15 | 2008-07-15 | Method and device for producing high-purity hydrogen from hydrogen-containing synthesis gas using palladium membrane |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2008100294635A CN101372314B (en) | 2008-07-15 | 2008-07-15 | Method and device for producing high-purity hydrogen from hydrogen-containing synthesis gas using palladium membrane |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101372314A true CN101372314A (en) | 2009-02-25 |
CN101372314B CN101372314B (en) | 2011-04-27 |
Family
ID=40446724
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2008100294635A Expired - Fee Related CN101372314B (en) | 2008-07-15 | 2008-07-15 | Method and device for producing high-purity hydrogen from hydrogen-containing synthesis gas using palladium membrane |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN101372314B (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102328906A (en) * | 2011-07-18 | 2012-01-25 | 中国科学院大连化学物理研究所 | Recycling hydrogen purification processing method for producing polysilicon by reducing trichlorosilane |
CN104129758A (en) * | 2014-08-19 | 2014-11-05 | 中国工程物理研究院核物理与化学研究所 | Hydrogen isotope exchange membrane reaction assembly |
CN110526211A (en) * | 2019-09-25 | 2019-12-03 | 浙江高成绿能科技有限公司 | A kind of portable chemical hydrogen generating system |
CN112062088A (en) * | 2019-06-11 | 2020-12-11 | 义乌市锐胜新材料科技有限公司 | Hydrogen separation system for alcohol reforming hydrogen production |
CN113252591A (en) * | 2021-06-15 | 2021-08-13 | 佛山绿色发展创新研究院 | Detection system and detection method applied to hydrogen distribution station |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN2266586Y (en) * | 1996-10-26 | 1997-11-05 | 中国科学院山西煤炭化学研究所 | Self-supplying heat palladium film separation high purity hydrogen generator |
CN100469417C (en) * | 2005-03-15 | 2009-03-18 | 大连欧科膜技术工程有限公司 | System for recovering hydrogen from air of methanol synthesis processing by membrane method |
CN201301223Y (en) * | 2008-07-15 | 2009-09-02 | 华南理工大学 | Palladium membrane module device for producing high-purity hydrogen from hydrogen-contained synthesis gas |
-
2008
- 2008-07-15 CN CN2008100294635A patent/CN101372314B/en not_active Expired - Fee Related
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102328906A (en) * | 2011-07-18 | 2012-01-25 | 中国科学院大连化学物理研究所 | Recycling hydrogen purification processing method for producing polysilicon by reducing trichlorosilane |
CN102328906B (en) * | 2011-07-18 | 2014-02-12 | 中国科学院大连化学物理研究所 | A recycling hydrogen purification treatment method for producing polysilicon by reduction of trichlorosilane |
CN104129758A (en) * | 2014-08-19 | 2014-11-05 | 中国工程物理研究院核物理与化学研究所 | Hydrogen isotope exchange membrane reaction assembly |
CN104129758B (en) * | 2014-08-19 | 2015-10-21 | 中国工程物理研究院核物理与化学研究所 | A kind of hydrogen isotopic exchange film reaction assembly |
CN112062088A (en) * | 2019-06-11 | 2020-12-11 | 义乌市锐胜新材料科技有限公司 | Hydrogen separation system for alcohol reforming hydrogen production |
CN110526211A (en) * | 2019-09-25 | 2019-12-03 | 浙江高成绿能科技有限公司 | A kind of portable chemical hydrogen generating system |
CN110526211B (en) * | 2019-09-25 | 2024-03-29 | 浙江高成绿能科技有限公司 | Portable chemical hydrogen production system |
CN113252591A (en) * | 2021-06-15 | 2021-08-13 | 佛山绿色发展创新研究院 | Detection system and detection method applied to hydrogen distribution station |
CN113252591B (en) * | 2021-06-15 | 2021-10-15 | 佛山绿色发展创新研究院 | Detection system and detection method applied to hydrogen distribution station |
Also Published As
Publication number | Publication date |
---|---|
CN101372314B (en) | 2011-04-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10106404B2 (en) | Residual gas heat exchange combustion-supporting system based on methanol-water mixture reforming hydrogen production system, and method thereof | |
CN109179320B (en) | Natural gas on-site hydrogen production device and method | |
CN101372314B (en) | Method and device for producing high-purity hydrogen from hydrogen-containing synthesis gas using palladium membrane | |
CN101239702B (en) | High temperature coke oven crude gas hydrogen generating system device and technique | |
CN210103452U (en) | Skid-mounted high-purity hydrogen purification device | |
CN113148952A (en) | System for preparing synthesis gas and hydrogen fuel by methane dry reforming | |
CN105733717B (en) | A kind of natural gas from coal conversion process system | |
CN103359688A (en) | Method for preparing hydrogen with different purity levels by use of semi-coke coke oven gas and system thereof | |
CN110357039A (en) | A kind of the synthesis gas preparation system and method for biogas and solar energy complementation | |
CN201301223Y (en) | Palladium membrane module device for producing high-purity hydrogen from hydrogen-contained synthesis gas | |
CN101704714A (en) | Method for preparing synthesis gas after pure oxygen catalytic partial oxidation of purge gas in methanol synthesis loop to increase yield of methanol and device | |
CN118387835A (en) | Tandem reforming conversion hydrogen production device and reforming conversion hydrogen production method | |
CN218174670U (en) | Low-consumption and zero-carbon-emission methanol hydrogen production system | |
CN216377479U (en) | Plasma reforming distributed natural gas hydrogen production device | |
CN201485400U (en) | Device for preparing synthesis gas after partial oxidation of purge gas in methanol synthesis loop through pure oxygen catalysis to increase methanol in yield | |
CN215667144U (en) | A gas conversion and purification device for producing high-purity hydrogen from biogas | |
CN213265730U (en) | Hydrogen preparation device | |
CN214611518U (en) | Methanol-water fuel reforming hydrogen production system | |
CN110436413B (en) | Biogas and solar complementary two-stage synthesis gas preparation system and method | |
CN211078472U (en) | Device for improving sulfur recovery efficiency | |
CN103569965B (en) | The method of hydro carbons two-stage method steam pure oxygen reformation producing synthesis gas | |
CN217418188U (en) | System for preparing methanol and co-producing hydrogen from synthesis gas by integrating chemical-looping coke oven gas reforming | |
CN101704715A (en) | Method for preparing synthesis gas after pure oxygen non-catalytic partial oxidation of purge gas in methanol synthesis loop to increase yield of methanol and device | |
CN221413049U (en) | System for utilize hydrogen shaft furnace tail gas synthesis methyl alcohol | |
CN222287253U (en) | Hydrogen purification system based on methyl alcohol hydrogen production |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C17 | Cessation of patent right | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20110427 Termination date: 20130715 |